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Systèmes linéaires

Formulation du problème

On appelle système linéaire d’ordre n (n entier positif), une expression de la
forme

Ax = b,

où A = (aij) est une matrice de taille n× n donnée, b = (bj) est un vecteur
colonne également donné et x = (xj) est le vecteur des inconnues du système.
La relation précédente équivaut aux n équations

n∑
j=1

aijxj = bi, i = 1, . . . , n.

La matrice A est dite régulière (non singulière) si det(A) ̸= 0. On a l’existence
et l’unicité de la solution x (pour n’importe quel vecteur b donné) si et
seulement si la matrice associée au système linéaire est régulière.
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Systèmes linéaires

Résumé
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Systèmes linéaires

Algorithme d’élimination de Gauss et factorisation LU

Une fois calculée la factorisation LU de A (coût O(n3)), on peut résoudre le
système linéaire Ax = b par les étapes

1 Ly = b

2 Ux = y

dont le coût est O(n2). (en fait b = Ly = LUx = Ax, donc x est bien la
solution recherchée).

Remarque : si on doit résoudre deux systèmes linéaires Ax1 = b1 et Ax2 = b2

avec la même matrice, on calcule la factorisation LU une seule fois.
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Systèmes linéaires

Condition nécessaire et suffisante

Des conditions restrictives sur A sont nécessaires pour assurer que la méthode
d’élimination de Gauss (et la factorisation LU) puissent se réaliser sans
permutations :

Soit di le déterminant de la i-ième sous-matrice principale Ai :

Si les mineurs principaux di de A sont non nuls pour i = 1, . . . , n− 1 alors les
pivots correspondants a(i)ii sont également non nuls.

Celle-ci est une condition nécessaire et suffisante pour que la méthode de
Gauss puisse être appliquée sans permutations.
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Systèmes linéaires

Conditions suffisantes

Voici des critères suffisants pour que la méthode de Gauss puisse être appliquée
sans permutations.

1 Les matrices à diagonale dominante par ligne. Une matrice A est dite à
diagonale dominante par ligne si

|aii| ≥
∑

j=1,...,n;j ̸=i

|aij|, i = 1, . . . , n.

2 Les matrices à diagonale dominante par colonne. Une matrice A est dite à
diagonale dominante par colonne si

|ajj| ≥
∑

i=1,...,n;i ̸=j

|aij|, j = 1, . . . , n.

3 Les matrices symétriques définies positives. Une matrice A est symétrique si
A = AT (aij = aji ∀i, j) ; elle est définie positive si toutes ses valeurs
propres sont positives, c’est-à-dire : λi(A) > 0, i = 1, . . . , n.
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Systèmes linéaires

Factorisation LU avec pivoting

LU = QA

Q est une matrice orthogonale car les colonnes sont orthonormées. Donc
Q−1 = QT . Du coup, pour P = QT , on a

A = PLU.

La matrice Q ou P sert à mémoriser les permutations effectuées.

Dans la pratique il est bien d’effectuer le pivoting même si l’élément diagonal
n’est pas nul. Le mieux c’est de choisir comme pivot le coefficient le plus grand
de la colonne.
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Systèmes linéaires

Factorisation LU avec pivoting

Théorème
Toute matrice A ∈ Rn×n non singulière admet une factorisation A = PLU où L
est une matrice triangulaire inférieure, U une matrice triangulaire supérieure et P
une matrice de permutation.

En Python, l’algorithme de factorisation LU est disponible avec la commande
P,L,U=scipy.linalg.lu(A) et on obtient A = PLU ou P TA = LU

Une fois calculée la factorisation LU de A avec pivoting (coût O(n3)), on peut
résoudre le système linéaire Ax = b (⇔ P TAx = P Tb) par les étapes

1 Ly = P Tb

2 Ux = y

dont le coût est O(n2).
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Systèmes linéaires

D’autres factorisations

Factorisation de Choleski
Factorisation QR

La diagonalisation PDP−1

Factorisation SV D
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Systèmes linéaires

La factorisation de Cholesky

Dans le cas où A est une matrice n× n symétrique et définie positive, il existe
une unique matrice triangulaire inférieure H avec les éléments diagonaux positifs
telle que

A = HTH.

Cette factorisation s’appelle la factorisation de Cholesky. Dans scipy.linalg, on
peut utiliser la commande

H = cholesky(A)

Critère de Sylvester : une matrice symétrique A ∈ Rn×n est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.
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Systèmes linéaires

Considérations sur la précision

Les méthodes qu’on a vu jusqu’à maintenant sont des méthodes qui permettent
de trouver la solution d’un système linéaire en un nombre fini d’opérations. C’est
pourquoi on les appelle méthodes directes. Toutefois, il y a des cas où ces
méthodes ne fonctionnent pas de manière satisfaisante.

Définition
On définit le conditionnement d’une matrice M symétrique définie positive
comme le rapport entre la valeur maximale et minimale de ses valeurs propres, i.e.

K(M) =
λmax(M)

λmin(M)
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Systèmes linéaires

On peut montrer que plus le conditionnement de la matrice est grand, plus la
solution du système linéaire obtenue par une méthode directe peut être mauvaise.
Par exemple, considérons un système linéaire Ax = b.
Si on résout ce système avec un ordinateur, à cause des erreurs d’arrondis, on ne
trouve pas la solution exacte mais une solution approchée x̂. On peut montrer la
relation suivante :

∥x− x̂∥
∥x∥

≤ K(A)
∥r∥
∥b∥

(1)

où r est le résidu r = b− Ax̂ ; on désigne par ∥v∥ = (
∑n

k=1 v
2
k)

1/2 la norme
euclidienne d’un vecteur v.
On remarque que, si le conditionnement de A est grand, la distance ∥x− x̂∥
entre la solution exacte et celle calculée numériquement peut être très grande
même si le résidu est très petit.
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Systèmes linéaires

Resoudre avec LU I

On considère le système linéaire Ax = b où :

A =


3 6 7

1 1 4

2 4 8

 , b =


4

5

6

 .

a) Calculer la factorisation LU de la matrice A avec Python.
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Systèmes linéaires

Resoudre avec LU II

# import ing l i b r a r i e s used in t h i s book
import numpy as np
import scipy.linalg as linalg
import pprint

A = np.array([[3, 6, 7],

[1, 1, 4],

[2, 4, 8] ])

# LU fa c t o r i s a t i o n with p ivot ing
P, L, U = linalg.lu(A)

print("A = P L U")
pprint.pprint(P.dot(L.dot(U)) )
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Systèmes linéaires

Resoudre avec LU III

P = I3 L =

 1 0 0
1/3 1 0
2/3 0 1

 U =

 3 6 7
0 −1 5/3
0 0 10/3

 b =


4

5

6

 .

b) Résoudre le système linéaire Ax = b en utilisant la factorisation trouvée au point
précédent (Ne plus utiliser Python.)

1 y = L−1b, x = U−1y

2 y = U−1b, x = L−1y

3 y = Ub, x = Ly

4 y = Lb, x = Uy
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Systèmes linéaires

Resoudre avec LU IV

x =

 3
−2
1


c) Calculer le déterminant de la matrice A en utilisant sa factorisation LU .

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 16 / 23



Systèmes linéaires

Mineurs principaux I

Les mineurs principaux d’une matrice A ∈ Rn×n sont les déterminants des
matrices Ap = (ai,j)1≤i,j≤p, p = 1, ..., n.
Critère de Sylvester : une matrice symétrique A ∈ Rn×n est définie positive si
et seulement si les mineurs principaux de A sont tous positifs.

On considère le système linéaire Ax = b où

A =

 ε 1 2
1 3 1
2 1 3

 .

Déterminer pour quelles valeurs du paramètre
réel ε ∈ R, la matrice A est symétrique défi-
nie positive

A ε > 0

B ε > 1
3

C ε > 11
8

D 1
3
< ε < 11

8

E jamais
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Systèmes linéaires

Mineurs principaux II

En appliquant le critère de Sylvester, il suffit d’imposer
ε > 0,

det
(

ε 1
1 3

)
= 3ε− 1 > 0,

detA = 8ε− 11 > 0,

⇒ ε >
11

8
.
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Systèmes linéaires

Mineurs principaux III

Soit maintenant ε = 0. On veut résoudre le système Ax = b par une méthode
directe ; quelle factorisation de la matrice A envisageriez-vous ? Justifier votre
réponse.

A Elimination de Gauss
B Factorisation LU sans permutation
C Factorisation LU avec permutation
D Factorisation de Cholevski
E Cramer
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Mineurs principaux IV

Si ε = 0 la matrice A est symétrique, mais elle n’est pas définie positive ; donc on
ne peut pas calculer la factorisation de Cholesky. On utilisera la méthode
d’élimination de Gauss avec changement de pivot, puisque a11 = 0 ; par exemple,
on peut considérer la matrice de permutation P par lignes :

P =

 0 1 0
1 0 0
0 0 1

 .

On peut voir que A = PLU avec

L =

 1 0 0
0 1 0
2 −5 1

 et U =

 1 3 1
0 1 2
0 0 11

 .
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Systèmes linéaires

Mineurs principaux V

En considérant ε = 2, vérifier que dans ce cas la matrice A est définie positive et
calculer sa factorisation de Cholesky A = HTH.

A Elimination de Gauss
B Factorisation LU sans permutation
C Factorisation LU avec permutation
D Factorisation de Cholevski
E Cramer

En supposant que b = (1, 1, 1)T , résoudre le système linéaire Ax = b en utilisant
la factorisation de Cholesky calculée au point c).
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Systèmes linéaires

Matrice de Hilbert et précision I
On considère le système Ax = b, où A est la matrice de Hilbert d’ordre 3

A =

 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 ,

et b est choisi tel que b = Ax, pour x = (1, 1, 1)T .
1 Calculer le conditionnement de la matrice A, en sachant que son spectre est
{0.0027, 0.1223, 1.4083}.

2 Estimer l’erreur δx sur la solution x pour une perturbation
δb = 10−10(1, 1, 1)T , en observant que

||δx||2
||x||2

=
||(x+ δx)− x||2

||x||2
≤ K(A)

||δb||2
||b||2

.
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Matrice de Hilbert et précision I
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Matrice de Hilbert et précision II
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Matrice de Hilbert et précision III
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