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Systémes linéaires

Formulation du probléme

On appelle systéme linéaire d'ordre n (n entier positif), une expression de la
forme
Ax = b,

ol A = (a;;) est une matrice de taille n x n donnée, b = (b;) est un vecteur
colonne également donné et x = (z;) est le vecteur des inconnues du systéme.
La relation précédente équivaut aux n équations

n

E aijxj:bi, 2:1,...,71.

J=1

La matrice A est dite réguliére (non singuliere) si det(A) # 0. On a |'existence
et 'unicité de la solution x (pour n'importe quel vecteur b donné) si et
seulement si la matrice associée au systéme linéaire est réguliére.
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Systémes linéaires

Algorithme d'élimination de Gauss et factorisation LU

Une fois calculée la factorisation LU de A (coiit O(n?)), on peut résoudre le
systéeme linéaire Ax = b par les étapes

Ly=Db

Ux=y
dont le coit est O(n?). (en fait b= Ly = LUx = Ax, donc x est bien la
solution recherchée).

Remarque : si on doit résoudre deux systémes linéaires Ax; = by et Axy = by
avec la méme matrice, on calcule la factorisation LU une seule fois.
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Systémes linéaires

Condition nécessaire et suffisante

Des conditions restrictives sur A sont nécessaires pour assurer que la méthode
d'élimination de Gauss (et la factorisation LU) puissent se réaliser sans
permutations :

Soit d; le déterminant de la i-iéme sous-matrice principale A; : ;

A

Si les mineurs principaux d; de A sont non nuls pouri=1,...,n — 1 alors les
pivots correspondants az(? sont également non nuls.

Celle-ci est une condition nécessaire et suffisante pour que la méthode de
Gauss puisse étre appliquée sans permutations.
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Systémes linéaires
Conditions suffisantes

Voici des critéres suffisants pour que la méthode de Gauss puisse étre appliquée
sans permutations.
Les matrices a diagonale dominante par ligne. Une matrice A est dite a
diagonale dominante par ligne si

]aii| Z E ’ai]", ’LIL,'N,
Les matrices a diagonale dominante par colonne. Une matrice A est dite a
diagonale dominante par colonne si

|ajj| Z Z |CL,‘j|, jzl,,n
i=1,...,n;1#j
Les matrices symétriques définies positives. Une matrice A est symétrique si
A= A" (a;; = a;; Vi, j); elle est définie positive si toutes ses valeurs
propres sont positives, c'est-a-dire : A\;(4) >0, i=1,...,n.
[

—J
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Systémes linéaires

Factorisation LU avec pivoting

LU = QA

() est une matrice orthogonale car les colonnes sont orthonormées. Donc
Q' = QT. Du coup, pour P =Q7, on a

A= PLU.

La matrice (Q ou P sert & mémoriser les permutations effectuées.

Dans la pratique il est bien d'effectuer le pivoting méme si I'élément diagonal
n'est pas nul. Le mieux c'est de choisir comme pivot le coefficient le plus grand
de la colonne.
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Systémes linéaires

Factorisation LU avec pivoting

Théoréme

Toute matrice A € R™ "™ non singuliére admet une factorisation A = PLU od L
est une matrice triangulaire inférieure, U une matrice triangulaire supérieure et P
une matrice de permutation.

En Python, I'algorithme de factorisation LU est disponible avec la commande
P,L,U=scipy.linalg.1lu(a) et on obtient A = PLU ou PTA = LU

Une fois calculée la factorisation LU de A avec pivoting (colit O(n?)), on peut
résoudre le systéme linéaire Ax = b (& P7Ax = P'Db) par les étapes

Ly = PTb

Ux=y

dont le cot est O(n?).
ici
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Systémes linéaires

D'autres factorisations

Factorisation de Choleski

La diagonalisation PDP~!

[
m Factorisation QR
[

m Factorisation SV D
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Systémes linéaires

La factorisation de Cholesky

Dans le cas ou A est une matrice n x n symétrique et définie positive, il existe
une unique matrice triangulaire inférieure H avec les éléments diagonaux positifs

telle que

Cette factorisation s'appelle la factorisation de Cholesky. Dans scipy.linalg, on
peut utiliser la commande

H = cholesky(A)

Critére de Sylvester : une matrice symétrique A € R"*" est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.
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Systémes linéaires

Considérations sur la précision

Les méthodes qu'on a vu jusqu'a maintenant sont des méthodes qui permettent
de trouver la solution d'un systéme linéaire en un nombre fini d'opérations. C'est
pourquoi on les appelle méthodes directes. Toutefois, il y a des cas ou ces
méthodes ne fonctionnent pas de maniére satisfaisante.

Définition
On définit le conditionnement d'une matrice M symétrique définie positive
comme le rapport entre la valeur maximale et minimale de ses valeurs propres, i.e.
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Systémes linéaires

On peut montrer que plus le conditionnement de la matrice est grand, plus la
solution du systéme linéaire obtenue par une méthode directe peut étre mauvaise.

Par exemple, considérons un systéme linéaire Ax = b.

Si on résout ce systéme avec un ordinateur, a cause des erreurs d'arrondis, on ne
trouve pas la solution exacte mais une solution approchée x. On peut montrer la

relation suivante :

Ix — ]| [l
=2 < ga) -l
Il bl
ol r est le résidu r = b — Ax; on désigne par ||v| = 3_,_, v,%)l/z la norme

euclidienne d'un vecteur v.

On remarque que, si le conditionnement de A est grand, la distance ||x — x|
entre la solution exacte et celle calculée numériquement peut étre trés grande

méme si le résidu est trés petit.
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Systémes linéaires

Resoudre avec LU |

On considére le systéme linéaire Ax = b ou :

3 6 7 4
A=l11 4|, b=]5
2 4 8 6

a) Calculer la factorisation LU de la matrice A avec Python.
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Systémes linéaires

Resoudre avec LU |l

# importing libraries used in this book
import numpy as np

import scipy.linalg as linalg
import pprint

A = np.array([[3, 6, 7],
[1, 1, 41,
[2, 4, 81 1D

# LU factorisation with pivoting
P, L,

U = linalg.lu(A)

print("A = P L U")
pprint.pprint(P.dot(L.dot(U)) )
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Systémes linéaires

Resoudre avec LU |l

1 00 3 6 7 4
P=1; L=[1/310 v=1{0 -1 5/3 b=| 5
2/3 0 1 0 0 10/3 ;

b) Résoudre le systéme linéaire Ax = b en utilisant la factorisation trouvée au point
précédent (Ne plus utiliser Python.)

y=L"'b,x=U"y
y:U_lb,X:L_ly
y=Ub,x= 1Ly
y=1Lb, x=Uy
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Systémes linéaires

Resoudre avec LU IV

c) Calculer le déterminant de la matrice A en utilisant sa factorisation LU .
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Systémes linéaires

Mineurs principaux |

Les mineurs principaux d'une matrice A € R"*" sont les déterminants des

matrices Ap = (ai,j)lgi’jgp, P = 17 o, N

Critére de Sylvester : une matrice symétrique A € R™™" est définie positive si

et seulement si les mineurs principaux de A sont tous positifs.

On considére le systéme linéaire Ax = b ol

A=

N — ™

1
3
1

W = N

Déterminer pour quelles valeurs du paramétre
réel ¢ € R, la matrice A est symétrique défi-
nie positive
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Systémes linéaires

Mineurs principaux |

En appliquant le critére de Sylvester, il suffit d'imposer

e >0,

e 1 11
1 3 =3¢—1>0, = a>§.

det A=8—11>0,

det (
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Systémes linéaires

Mineurs principaux |

Soit maintenant € = 0. On veut résoudre le systéme Ax = b par une méthode

directe ; quelle factorisation de la matrice A envisageriez-vous ? Justifier votre

réponse.
Elimination de Gauss

Factorisation LU sans permutation

Factorisation de Cholevski

B
Factorisation LU avec permutation
D
Cramer
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Systémes linéaires

Mineurs principaux [V

Si e = 0 la matrice A est symétrique, mais elle n'est pas définie positive ; donc on
ne peut pas calculer la factorisation de Cholesky. On utilisera la méthode
d’élimination de Gauss avec changement de pivot, puisque ay; = 0; par exemple,
on peut considérer la matrice de permutation P par lignes :

P =

o = O
o O =
—_ o O

On peut voir que A = PLU avec
0
L= 1

N O =
_ o O

1 3 1
et U= 01 2
-5 00
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Systémes linéaires

Mineurs principaux V

En considérant ¢ = 2, vérifier que dans ce cas la matrice A est définie positive et
calculer sa factorisation de Cholesky A = HT H.

Elimination de Gauss

B Factorisation LU sans permutation
Factorisation LU avec permutation
B Factorisation de Cholevski

Cramer

En supposant que b = (1,1, 1), résoudre le systéme linéaire Ax = b en utilisant
la factorisation de Cholesky calculée au point c).
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Systémes linéaires

Matrice de Hilbert et précision |

On considére le systéme Ax = b, ot A est la matrice de Hilbert d'ordre 3

—_

A=

[SUIT
Bl Wi N
Ol = Wl

et b est choisi tel que b = Ax, pour x = (1,1,1)T.

Calculer le conditionnement de la matrice A, en sachant que son spectre est
{0.0027, 0.1223, 1.4083}.

Estimer |'erreur dx sur la solution x pour une perturbation
6b = 1071°(1,1,1)%, en observant que
lox[[z _ [[(x +0%) — x|l

. 1|2

15bl],
bl

< K(A)

S. Deparis, SCI-SB-SC-EPFL Systémes linéaires 22 /23



Systémes linéaires

Matrice de Hilbert et précision |
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Systémes linéaires

Matrice de Hilbert et précision |l
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Systémes linéaires

Matrice de Hilbert et précision Il
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