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EXEMPLE : RESEAU DE CAPILLAIRES I

Les capillaires sont des vaisseaux sanguins micro-
scopiques, la plus petite unité du systéme circu-
latoire. Les capillaires se regroupent en réseaux
appelés lits capillaires comportant de 10 a 100
capillaires selon I'organe ou le tissu considére.

Le sang arrive dans le lit capillaire par de petites
artérioles. Dans le lit capillaire un échange de sang
oxygéné et une élimination des déchets ont lieu. A copilaries  Tiesscelle VA
Ensuite, des veinules recueillent le sang des ca-

pillaires, puis le transmettent a des veines qui le

retournent au ceceur.

Arteriole Wenule
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EXEMPLE : RESEAU DE CAPILLAIRES 11

Nous considérons un modéle de lit capillaire.

Nous pouvons modéliser une certaine portion du systéme capillaire par un
réseau hydraulique ot chaque capillaire est représenté par un tuyau.

On appelle nceuds (petits cercles vides dans la figure de la page suivante) les
points de rencontre de plusieurs capillaires.

L'artére a partir de laquelle le réseau capillaire se développe est représentée
comme un réservoir a une pression constante de 50mmHg.

Nous supposons que les sorties du réseau (petits cercles noirs dans la figure)
ont une pression constante (pression veineuse), fixée a la valeur de référence
zéro (toutes les valeurs de pression se référent donc a cette valeur).

Le sang coule du réservoir aux sorties (on suppose de fagon continue en
temps) par effet du gradient de pression.

S. DEeparis, SCI-SB-SC-EPFL S SMES LINEAIRES



SYSTEMES LINEAIRES
oe ©000000000000000000000000000000000

EXEMPLE : RESEAU DE CAPILLAIRES III

Q1
Q2 1 Q3
a3 :
< — < —
Q4 Qs Q6 Q7
4 \1/ 5 6 ‘l’ ‘l’ 7
Qs Qo Q10 Q11 Q12 Q13 Q14 Q15
8 VE 10 11 12 13 14y 15
ik Q16 Q17 Qs Q19 Q20 Q21 Q22 Q23 Q24 Q25 Qo6 Qo7 Q28 Q20 Q30 Q31

Atery capillaries Tissue cells

On veut trouver la distribution des pressions p;, j = 1,--- , 15, et des débits
Qm, m=1,--- 31, dans le réseau capillaire. Pour ce faire, on considére que :
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EXEMPLE : RESEAU DE CAPILLAIRES IV

@ dans chaque branche m du réseau, m=1,--- ,31, on a la relation suivante,
dite loi constitutive, entre le débit de sang Q,, (mm3/s) et la pression
(mesurée en mmHg) aux deux nceuds d'extrémité i et j de la branche

1
Qm = RmLm(pi - P, (1)

ol R, est la résistance hydraulique par unité de longueur (mmHgs/mm?)
et L,, est la longueur (mm) de la m-éme branche;

@ dans chaque nceud j du réseau, j = 1,---15, on peut écrire le bilan des
débits entrants et sortants. On a

Z Qm - Z Qm - 07

m entrants m sortants

ol on a donné un signe négatif aux débits sortants du neeud.
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EXEMPLE : RESEAU DE CAPILLAIRES V

Par exemple, pour le nceud 2 de la figure, le débit @, est entrant et les débits Qs
et Q5 sont sortants. Le bilan doit étre

Q@ —Q—Q =0

En utilisant pour chaque débit la loi de constitution (1) dans le bilan ci-dessus,
on peut écrire

1
Ry L,

1 1
—po) — — pg) — - =0.
(p1— p2) R4L4(p2 Pa) RsLs (P2 — ps)
Des relations analogues sont obtenues pour tous les autres noeuds du réseau.
A noter : si on considére le bilan pour le nceud 1, on a

1 1 1
RlLl (pr - Pl) - R2L2 (pl - p2) - R3L3 (pl - p3) - 0
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EXEMPLE : RESEAU DE CAPILLAIRES VI

Comme la pression p, (pression du ) est connue, on la mettra dans le membre de

droite
1 1 ( ) 1 ( )= 1
Ryl P1 Ryls p1— p2 Rils P1—Pp3)= Rl Pr-
De facon similaire pour le nceud 8
1 1 1

(Pa — ps) — =0,

RsLs Rislis ® Ruly'®

ol on observe que p;g = p17 = 0. On procéde similairement pour les nceuds
9,---,15.

En écrivant le bilan pour chaque nceud aprés y avoir remplacé la loi de
constitution, on peut construire un systéme d'équations linéaires pour les
pressions, du type

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES
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EXEMPLE : RESEAU DE CAPILLAIRES VII

ot p=[p1,p2, -+, p15]" est le vecteur des pressions inconnues aux nceuds du
réseau, A € R5%1% est la matrice des coefficients du systéme et b € R!® est le
vecteur des données.

Si on suppose que les branches du réseau ont toutes le méme coefficient

R, = R =1 et qu'a chaque niveau, la longueur devient la moitié de celle d'avant
(si on pose L1 =20, onaura L, =1L3=10, Ly = Ls = Lg = L; =5 etc..), on
trouve

b =[-5/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]”

et la matrice A suivante :
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EXEMPLE : RESEAU DE CAPILLAIRES IX

Déterminer les pressions et les débits dans le réseau revient donc a résoudre le
systéme linéaire Ap = b.

Nous observons que, dans notre cas, la matrice A est symétrique et définie
positive. Cette derniére propriété nous assure que la matrice A est non singuliére
et donc que le systéme admet une solution unique.

La solution est donnée par le vecteur

p = [12.46,3.07,3.07,0.73,0.73,0.73,0.15,0.15,0.15,0.15,0.15,0.15,0.15, 0.15,0.15] '

Une fois les pressions trouvées, on peut calculer, grace a la relation (1), les flux :

@ = 1.88
02’3 = 0.94
Q.7 = 047
Q87...715 - 023
Q6,31 = 012
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EXEMPLE : RESEAU DE CAPILLAIRES X

Distribution linéaire des pressions dans les branches du réseau calculée a partir
des valeurs de la pression dans chaque nceud (solution du systéeme)
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EXEMPLE : RESEAU DE CAPILLAIRES XI

Distribution des dégits dans les branches du réseau

150
100
05}

—l_m_l_l_ﬂ_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l

1 5 10 15 20 25 30
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SYSTEMES LINEAIRES — METHODES DIRECTES

Considérons un systéme linéaire de n équations et n inconnues

aiixy + apXo + ...+ aix, = by

dr1X1 + doo Xo + ...+ dopnXp = b2

apiX1 + amXo + ...+ appX, = by.

Sous forme matricielle :

Ax=b
ou
X1 by di1 di2 ... din
X2 by dy1 dx ... dzp
X = € R", b= € R", A= e R™",
Xn bn dnl dn2 ... dnn

S. DEeparis, SCI-SB-SC-EPFL
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SYSTEME TRIANGULAIRE INFERIEUR

Il 'y a des systémes qui sont particuliérement simples a résoudre. Un systéme
triangulaire inférieur en est un exemple

(

d11X1 = by

a1X1  + anx = b,

asixy  +apxe +asxs = b3 (4)
L dn1X1 —+ dna X2 —+ ... —+ dnnXn = bn

avec a; #0,Vi=1,...,n.

i—1

b 1 1

X1 = " Xy =—(ba—anx1), -+ x=—|b— g ajjXj
a1l d22 djj =

S. DEeparis, SCI-SB-SC-EPFL S SMES LINEAIRES
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SYSTEME TRIANGULAIRE INFERIEUR

Algorithme 1 : Algorithme de substitution directe (forward substitution)

pour i =1,...,n faire
_ 1 AU W Uit SR
‘ Xi = oo (b, Zj:l aUXJ>’

fin

Nombre d'opérations a faire :

@ pour calculer x; a I'i-éme pas, il faut faire i — 1 multiplications; i — 1
additions/soustractions; 1 division.

@ Nombre total d'opérations :
1
N = Z (2i — 1) (n+)—n:n2

L'algorithme de substitution directe coiite O(n?) opérations.

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES
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SYSTEME TRIANGULAIRE SUPERIEUR

.
aixit+  apXet+ ...+ 31 p-1Xpo1t ApXn = b,
axpXpt+ ...+ ap-1Xp-1t AnXp = b,
an—l,n—lxn—1+ An—1,nXn = bn—l
dnnXn = bn

\
avec a; #0,Vi=1,...,n

Algorithme 2 : Algorithme de substitution rétrograde (backward subst.)

pour i = n,...,1 faire

-1 . _\\n x| -
‘ Xi = o (b: Zj:iJrl a’JXJ>'

fin

L'algorithme de substitution rétrograde codite aussi O(n?) opérations.
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ALGORITHME D’ELIMINATION DE GAUSS

Idée : transformer le systéme dans un systéme triangulaire supérieur a I'aide
d'opérations élémentaires de combinaison linéaire de lignes de la matrice.

Résoudre le systéme linéaire

2X1 -+ Xo
—4X1 + 3X2 — X3 = 2
4 —3x +4x3 =-2

On fait des combinaisons linéaires de lignes pour
@ éliminer d'abord l'inconnue x; de la 2°™¢ et 3™ équations

@ ensuite éliminer x, de la 3°™¢ équation.

S. DEparis, SCI-
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

S. DEeparis, SCI-SB-SC-EPFL
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

2 1 0
n—(3)n| -4 3 -1 2
4 -3 4 -2

S. DEeparis, SCI-SB-SC-EPFL
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

2 1 0 4
rn — (?)rl 7"4/0 35 —1 210
4 -3 4 —2
L
1 0 O
-2 1 0
1
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

A= A0 | p=p®
1 0 4
5 —1| 10
r3 — (%)I’l 4 —3 4 -2
L
1 0 O
-2 1 0
2 1

S. Deparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 18 / 39
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

S. DEPARISs,

A=A b =pb®
2 1 0 4
0 5 -1 10
r3 — (%)r]_ 40 7%—5 4 7‘%—10
L
1 0 O
-2 1 0
2 1

SCI-SB-SC-EPFL
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

3 — (?)I’g 0 -5 4 —10
L
1 0 O
-2 1 0
2 -1 1

S. DEeparis, SCI-SB-SC-EPFL
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

S. DEPARIS,

A2 R
2 1 0 4
0 5 -1 10
r3 — (%5)@ 0 /50 4 3 71’60
L
1 0 O
-2 1 0
2 -1 1
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

A — U | b® =y
2 1 0 4
05 —1| 10
00 3 0
L
1 0 0

2 1 0
2 11

Remarque : LU = Al

S. DEeparis, SCI-SB-SC-EPFL
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FACTORISATION LU

Algorithme 3 : Algorithme d'élimination de Gauss (et factorisation LU)

Données : A= {a;} € R™", b= {b;} €R"
Résultat : U, L € R"™", b(M ¢ R"

A(l) = A;
pour k =1,...,n—1 faire // étapes de 1’algorithme
I = 1;
pour i = k+1,..., n faire // boucle sur les lignes
(k)
ly = s
"’5«)
pour j = k+1,..., n faire // boucle sur les colonnes
(k+1) _ (k) (K).
= T likag
fin
pHD) — ) _ g 0,
fin
fin

U=A0 | = {ls};

Nombre d’opérations O(n®) (trois boucles emboitées)

S. DEeparis, SCI-SB-SC-EPFL S EMES LINEAIRES
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ALGORITHME D’ELIMINATION DE GAUSS ET

FACTORISATION LU

Une fois calculée la factorisation LU de A (colit O(n?)), on peut résoudre le
systéme linéaire Ax = b par les étapes

Q@ Ly=>b

© Ux=y
dont le colit est O(n?). (en fait b = Ly = LUx = Ax, donc x est bien la solution
recherchée).

Remarque : si on doit résoudre deux systémes linéaires Ax; = by et Ax, = by
avec la méme matrice, on calcule la factorisation LU une seule fois.

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES



SYSTEMES LINEAIRES
00000000000000000000e000000000000000000

CONDITION NECESSAIRE ET SUFFISANTE

Des conditions restrictives sur A sont nécessaires pour assurer que la méthode
d'élimination de Gauss (et la factorisation LU) puissent se réaliser sans
permutations :

Soit d; le déterminant de la j-iéme sous-matrice principale A; : ;

A

Si les mineurs principaux d; de A sont non nuls pour i =1,...,n—1 alors les
pivots correspondants a,(,-') sont également non nuls.

Celle-ci est une condition nécessaire et suffisante pour que la méthode de
Gauss puisse étre appliquée sans permutations.

S. DEparis, SCI-
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CONDITIONS SUFFISANTES

Voici des critéres suffisants pour que la méthode de Gauss puisse étre appliquée
sans permutations.
© Les matrices a diagonale dominante par ligne. Une matrice A est dite a
diagonale dominante par ligne si

|aii| > Z laj|, i=1,...,n.

J=Lnj#i
© Les matrices a diagonale dominante par colonne. Une matrice A est dite a
diagonale dominante par colonne si

lagl > > agl, j=1,....n
i=1,...,mi#j
@ Les matrices symétriques définies positives. Une matrice A est symétrique si
A= AT (a; = a; Vi,j); elle est définie positive si toutes ses valeurs
propres sont positives, c'est-a-dire : \;(A) >0, i=1,...,n.

S. DEeparis, SCI-SB-SC-EPFL S SMES LINEAIRES



SYSTEMES LINEAIRES

000000000000 00000O00000e0000000000000000

ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

S. DEPARIS,

b= b

20
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

A=A | b=pM
1 2 3
rn—(2)n 2 4 5 2
7 8 9 20
L Q
1 0 0 1 00
2 10 010
1 0 0 1

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

A=Al b= bl
1 2 3 4
r2—(2)r1 20 40 5—1 2—6
7 8 9 20
L Q
1 0 O 1 0 O
2 1 0 0 1 0
1 0 01

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

A=Al b = b®
1 2 3 4
0 0 -1 —6
3 — (7)r1 8 9 20
L Q
1 0 O 1 0 O
2 10 0 1 0
7 1 0 0 1

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

A=Al b =b®
1 2 3 4
0 0 -1 —6
r—(7)n | 70 8-6 9-12 | 20-8

L Q
1 00 1 00
2 10 010
7 1 0 0 1

S. DEeparis, SCI-SB-SC-EPFL
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

A®) b
1 2 3 4
0 0 -1 —6
o -6 12 | -8
L Q

1 00 100

2 1 0 01 0

7 1 0 0 1

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

AQ2) b®
1 2 3 4
< 3 0 0 -1 —6
3 < N 0 —6 -12 -8
L Q

1 0 0 1 0 0

2 1 0 0 1 0

7 1 0 0 1

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

AQ) b
1 2 3 4
I < 3 0 —6 —12 —38
3 < n 0 0 -1 —6
L Q
1 0 O 1 0 O
7 1 0 0 0 1
2 1 0 1 0

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

AB) =y b3 =y

1 2 3 4
0 —6 —12 -8
0 0 -1 —6
L Q

1 00 1 00

7 10 0 0 1

2 01 010

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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ALGORITHME D’ELIMINATION DE GAUSS AVEC PIVOTING

AB) =y b3 =y

1 2 3 4
0 —6 —12 -8
0 0 -1 —6
L Q

1 00 1 00

7 10 0 0 1

2 01 010

Remarque : LU = QA

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES 23 / 39
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FACTORISATION LU AVEC PIVOTING

LU= QA

Q est une matrice orthogonale car les colonnes sont orthonormées. Donc
Q1= Q. Du coup, pour P=Q",ona

A= PLU.

La matrice @ ou P sert 3 mémoriser les permutations effectuées.

Dans la pratique il est bien d'effectuer le pivoting méme si I'élément diagonal
n'est pas nul. Le mieux c'est de choisir comme pivot le coefficient le plus grand
de la colonne.

S. DEparis, SCI-



SYSTEMES LINEAIRES
000000000000000000000000e00000000000000

FACTORISATION LU AVEC PIVOTING

Algorithme 4 : Algorithme d’élimination de Gauss avec pivoting
Données : A = {a;} € R"*", b= {b;} € R"

Résultat : U, L, P € R™" b(n) ¢ R"

A1) — A’ Q matrice identité;

pour k=1,...,n—1 faire
I (k) ) (k).
trouver r tel que |a,’| = maxj—k, ... nla;’|;

échanger la ligne k avec la ligne r dans les matrices AK) | [ et Q, ainsi que dans le vecteur b(k).
pour i = k+1,...,n faire

(k)

lie = 5

"5«)
pour j = k+1,..., n faire
(k+1) _ (k) _ . (K).
T T kA

fin

B0 = 50 b0,
fin

I = 1;

fin
U=A", L={l;}, P=QT;

S. DEparis, SCI- i TEMES LINEAIRES
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FACTORISATION LU AVEC PIVOTING

THEOREME

Toute matrice A € R™" non singuliére admet une factorisation A = PLU ou L
est une matrice triangulaire inférieure, U une matrice triangulaire supérieure et P
une matrice de permutation.

En Python, I'algorithme de factorisation LU est disponible avec la commande
P,L,U=scipy.linalg.1lu(a) et on obtient A= PLU ou PTA= LU

Une fois calculée la factorisation LU de A avec pivoting (cott O(n®)), on peut
résoudre le systéme linéaire Ax = b (< PTAx = PTb) par les étapes

@ Ly=P'b
Q@ Ux=y
dont le coiit est O(n?).

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES
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D’AUTRES FACTORISATIONS

Factorisation de Choleski
Factorisation QR
Factorisation SVD

Diagonalisation

S. DEeparis, SCI-SB-SC-EPFL S SMES LINEAIRES
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S LINEAI

LA FACTORISATION DE CHOLESKY

Dans le cas ou A est une matrice n X n symétrique et définie positive, il existe
une unique matrice triangulaire inférieure H avec les éléments diagonaux positifs

telle que

Cette factorisation s'appelle la factorisation de Cholesky. Dans scipy.linalg, on
peut utiliser la commande

# lower : returns lower—triangular matrix, A =H H"T
H = cholesky (A, lower=True)

Critére de Sylvester : une matrice symétrique A € R"*" est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.

S. DEeparis, SCI-SB-SC-EPFL S MES LINEAIRES
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EXEMPLE

On considére le calcul des déformations d'une structure soumise a des forces
données. La discrétisation par la méthode des éléments finis donne une matrice K
de taille 150 x 150. (La méme matrice dérive également de |'approximation du
potentiel d'un champ électrique.) Cette matrice est symétrique définie positive.
Le nombre d'éléments non nuls de K est égal & 964 et donc beaucoup plus petit
que (150)% = 22500. Il s'agit, dans ce cas, d'une matrice creuse.

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES
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La figure de gauche montre la disposition des éléments non nuls de K, tandis que
la figure de droite montre celle de la matrice H'.

Nombre d' éléments non nuls de la matrice A: 964

N
-~

Nombre d' éléments non nuls de la matrice U : 4235
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On remarque que le nombre d'éléments non nuls de H' est beaucoup plus grand
que celui de K (phénomeéne du fill-in). Ceci entraine une occupation mémoire
importante.

Pour réduire le phénoméne de remplissage, on peut réordonner de facon
intelligente les lignes et les colonnes de la matrice K'; on appelle cette procédure
réordonnancement de la matrice. Il y a plusieurs algorithmes qui permettent de
faire cela.
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Par exemple la figure ci-dessous a gauche, montre un réordonnancement possible
de la matrice K, tandis qu'a droite, on a affiché la disposition des éléments non
nuls de la factorisation de Cholesky de la matrice K réordonnée.

Nombre d’ éléments non nuls : 964 Nombre d’ éléments non nuls : 1583
o

50

100 100

150
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PROBLEMES DE PRECISION : LA MATRICE D’HILBERT I

Les erreurs d'arrondis peuvent causer des différences importantes entre la
solution calculée par la méthode d'élimination de Gauss (MEG) et la solution
exacte. Cela arrive si le conditionnement de la matrice du systéme est trés grand.

La matrice de Hilbert de taille n X n est une matrice symétrique, définie par

1
A.

=T ,j=1...,n
R Sy | hJ

Dans scipy.linalg, on peut construire une matrice de Hilbert de taille n
quelconque en utilisant la commande A = hilbert(n). Par exemple, pour n = 4,
ona:

>

Il
BIFWIFN R =
Ol =D =W (=N =
OV RO RN W~
~NI=O| O =D =
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PROBLEMES DE PRECISION : LA MATRICE D'HILBERT II

On considére les systémes linéaires A,x, = b, ou A, est la matrice de Hilbert de
taille n avec n =4,6,8,10,12, 14, ... tandis que b, est choisi de sorte que la
solution exacte soit x, = (1,1,--- ,1)7.

Pour chaque n, on calcule le conditionnement de la matrice, on résout le systéme
linaire par la factorisation LU et on note xtY la solution calculée. Le
conditionnement obtenu ainsi que I'erreur ||x, — xtY||/||x,|| (ou || - || est la norme
euclidienne d'un vecteur, ||x|| = vxT - x) sont montrés ci-dessous.
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PROBLEMES DE PRECISION : LA MATRICE D’HILBERT III

— KA
10— k=il
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CONSIDERATIONS SUR LA PRECISION

Les méthodes qu'on a vu jusqu'a maintenant sont des méthodes qui permettent
de trouver la solution d'un systéme linéaire en un nombre fini d'opérations. C'est
pourquoi on les appelle méthodes directes. Toutefois, il y a des cas ou ces
méthodes ne fonctionnent pas de maniére satisfaisante.

DEFINITION

On définit le conditionnement d'une matrice M symétrique définie positive
comme le rapport entre la valeur maximale et minimale de ses valeurs propres, i.e.

_ Amax(M)

K(M) )\min(M)
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On peut montrer que plus le conditionnement de la matrice est grand, plus la
solution du systéme linéaire obtenue par une méthode directe peut &tre mauvaise.
Par exemple, considérons un systéme linéaire Ax = b.

Si on résout ce systéme avec un ordinateur, a cause des erreurs d'arrondis, on ne
trouve pas la solution exacte mais une solution approchée X. On peut montrer la
relation suivante :

A

I =2 K(A)H (6)

ol r est le résidu r = b — AX; on désigne par ||v|]| = (D] _; v,f)l/2 la norme
euclidienne d'un vecteur v.

On remarque que, si le conditionnement de A est grand, la distance ||x — X|| entre
la solution exacte et celle calculée numériquement peut étre trés grande méme si
le résidu est trés petit.
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Preuve de (6) : A étant symétrique définie positive, on peut considérer les n
valeurs propres \; > 0 et les vecteurs propres unitaires associés {v;},
i=1,...,n. Ces derniers forment une base orthonormé de R", c'est-a-dire

viv;=§; pouri,j=1,...,n Soit w€ R" quelconque. Si on I'exprime comme
n
W = g Wivi,
i=1
on a

1Aw|[* = (Aw)" (Aw)

= ()\1W1v1T ApWpV )()\1W1v1 +. ./\anVn)
:Z)\/\W,ij VJ—Z/\/\W,WJ,J Z/\Z
iyj=1 ij=1
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Or, comme |w|? = >"7 , w?, on obtient [[Aw||> < A2 |lw|? c.a d.
| Aw|| < Apmax||w]| o Aax est la plus grande valeur propre de A.

Comme les valeurs propres de A~! sont 1/);, de la méme facon on trouve
A7 w]| < 52 |lw|] Yw € R", ot A est la plus petite valeur propre de A.

Donc, on a
o ~1 1
=%l = A7l < Il
min
bl = IAX] < AmaxlIx]l;
d'ou on trouve directement |'inégalité (6). [

o
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