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Systèmes linéaires

Exemple : Réseau de capillaires I

Les capillaires sont des vaisseaux sanguins micro-
scopiques, la plus petite unité du système circu-
latoire. Les capillaires se regroupent en réseaux
appelés lits capillaires comportant de 10 à 100
capillaires selon l’organe ou le tissu considéré.
Le sang arrive dans le lit capillaire par de petites
artérioles. Dans le lit capillaire un échange de sang
oxygéné et une élimination des déchets ont lieu.
Ensuite, des veinules recueillent le sang des ca-
pillaires, puis le transmettent à des veines qui le
retournent au cœur.
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Systèmes linéaires

Exemple : Réseau de capillaires II

Nous considérons un modèle de lit capillaire.
Nous pouvons modéliser une certaine portion du système capillaire par un
réseau hydraulique où chaque capillaire est représenté par un tuyau.
On appelle nœuds (petits cercles vides dans la figure de la page suivante) les
points de rencontre de plusieurs capillaires.
L’artère à partir de laquelle le réseau capillaire se développe est représentée
comme un réservoir à une pression constante de 50mmHg.
Nous supposons que les sorties du réseau (petits cercles noirs dans la figure)
ont une pression constante (pression veineuse), fixée à la valeur de référence
zéro (toutes les valeurs de pression se réfèrent donc à cette valeur).
Le sang coule du réservoir aux sorties (on suppose de façon continue en
temps) par effet du gradient de pression.
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Systèmes linéaires

Exemple : Réseau de capillaires III
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On veut trouver la distribution des pressions pj , j = 1, · · · , 15, et des débits
Qm, m = 1, · · · , 31, dans le réseau capillaire. Pour ce faire, on considère que :
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Systèmes linéaires

Exemple : Réseau de capillaires IV

dans chaque branche m du réseau, m = 1, · · · , 31, on a la relation suivante,
dite loi constitutive, entre le débit de sang Qm (mm3/s) et la pression
(mesurée en mmHg) aux deux nœuds d’extrémité i et j de la branche

Qm =
1

RmLm
(pi − pj), (1)

où Rm est la résistance hydraulique par unité de longueur (mmHg s/mm4)
et Lm est la longueur (mm) de la m-ème branche ;
dans chaque nœud j du réseau, j = 1, · · · 15, on peut écrire le bilan des
débits entrants et sortants. On a( ∑

m entrants

Qm

)
−

( ∑
m sortants

Qm

)
= 0,

où on a donné un signe négatif aux débits sortants du nœud.
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Systèmes linéaires

Exemple : Réseau de capillaires V

Par exemple, pour le nœud 2 de la figure, le débit Q2 est entrant et les débits Q4

et Q5 sont sortants. Le bilan doit être

Q2 − Q4 − Q5 = 0.

En utilisant pour chaque débit la loi de constitution (1) dans le bilan ci-dessus,
on peut écrire

1
R2L2

(p1 − p2)−
1

R4L4
(p2 − p4)−

1
R5L5

(p2 − p5) = 0.

Des relations analogues sont obtenues pour tous les autres nœuds du réseau.
A noter : si on considère le bilan pour le nœud 1, on a

1
R1L1

(pr − p1)−
1

R2L2
(p1 − p2)−

1
R3L3

(p1 − p3) = 0.
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Systèmes linéaires

Exemple : Réseau de capillaires VI

Comme la pression pr (pression du ) est connue, on la mettra dans le membre de
droite

1
R1L1

p1 −
1

R2L2
(p1 − p2)−

1
R3L3

(p1 − p3) = −
1

R1L1
pr .

De façon similaire pour le nœud 8

1
R8L8

(p4 − p8)−
1

R16L16
p8 −

1
R17L17

p8 = 0,

où on observe que p16 = p17 = 0. On procède similairement pour les nœuds
9, · · · , 15.

En écrivant le bilan pour chaque nœud après y avoir remplacé la loi de
constitution, on peut construire un système d’équations linéaires pour les
pressions, du type

Ap = b, (2)
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Systèmes linéaires

Exemple : Réseau de capillaires VII

où p = [p1, p2, · · · , p15]T est le vecteur des pressions inconnues aux nœuds du
réseau, A ∈ R15×15 est la matrice des coefficients du système et b ∈ R15 est le
vecteur des données.
Si on suppose que les branches du réseau ont toutes le même coefficient
Rm = R = 1 et qu’à chaque niveau, la longueur devient la moitié de celle d’avant
(si on pose L1 = 20, on aura L2 = L3 = 10, L4 = L5 = L6 = L7 = 5 etc..), on
trouve

b = [−5/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

et la matrice A suivante :
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Systèmes linéaires

Exemple : Réseau de capillaires VIII

−1
4

1
10

1
10 0 0 0 0 0 0 0 0 0 0 0 0

1
10 −1

2 0 1
5

1
5 0 0 0 0 0 0 0 0 0 0

1
10 0 −1

2 0 0 1
5

1
5 0 0 0 0 0 0 0 0

0 1
5 0 −1 0 0 0 0.4 0.4 0 0 0 0 0 0

0 1
5 0 0 −1 0 0 0 0 0.4 0.4 0 0 0 0

0 0 1
5 0 0 −1 0 0 0 0 0 0.4 0.4 0 0

0 0 1
5 0 0 0 −1 0 0 0 0 0 0 0.4 0.4

0 0 0 0.4 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0.4 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0.4 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0.4 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0.4 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0.4 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0.4 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 −2


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Systèmes linéaires

Exemple : Réseau de capillaires IX

Déterminer les pressions et les débits dans le réseau revient donc à résoudre le
système linéaire Ap = b.
Nous observons que, dans notre cas, la matrice A est symétrique et définie
positive. Cette dernière propriété nous assure que la matrice A est non singulière
et donc que le système admet une solution unique.
La solution est donnée par le vecteur

p = [12.46, 3.07, 3.07, 0.73, 0.73, 0.73, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15]T .

Une fois les pressions trouvées, on peut calculer, grâce à la relation (1), les flux :

Q1 = 1.88
Q2,3 = 0.94
Q4,··· ,7 = 0.47
Q8,··· ,15 = 0.23
Q16,··· ,31 = 0.12
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Systèmes linéaires

Exemple : Réseau de capillaires X

Distribution linéaire des pressions dans les branches du réseau calculée à partir
des valeurs de la pression dans chaque nœud (solution du système)
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Systèmes linéaires

Exemple : Réseau de capillaires XI

Distribution des débits dans les branches du réseau
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Systèmes linéaires

Systèmes linéaires – méthodes directes

Considérons un système linéaire de n équations et n inconnues
a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

an1x1 + an2x2 + . . .+ annxn = bn.

(3)

Sous forme matricielle :
Ax = b

où

x =


x1
x2
...
xn

 ∈ Rn, b =


b1
b2
...
bn

 ∈ Rn, A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

 ∈ Rn×n.
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Systèmes linéaires

Système triangulaire inférieur

Il y a des systèmes qui sont particulièrement simples à résoudre. Un système
triangulaire inférieur en est un exemple

a11x1 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 + a33x3 = b3

. . .

an1x1 + an2x2 + . . . + annxn = bn

(4)

avec aii 6= 0, ∀i = 1, . . . , n.

x1 =
b1
a11

, x2 =
1
a22

(b2 − a21x1), · · · xi =
1
aii

(
bi −

i−1∑
j=1

aijxj

)
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Systèmes linéaires

Système triangulaire inférieur

Algorithme 1 : Algorithme de substitution directe (forward substitution)
pour i = 1, . . . , n faire

xi =
1
aii

(
bi −

∑i−1
j=1 aijxj

)
;

fin

Nombre d’opérations à faire :
pour calculer xi à l’i -ème pas, il faut faire i − 1 multiplications ; i − 1
additions/soustractions ; 1 division.

Nombre total d’opérations :

N =
n∑

i=1

(2i − 1) = 2
n(n + 1)

2
− n = n2

L’algorithme de substitution directe coûte O(n2) opérations.
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Systèmes linéaires

Système triangulaire supérieur



a11x1+ a12x2+ . . .+ a1,n−1xn−1+ a1nxn = b1

a22x2+ . . .+ a2,n−1xn−1+ a2nxn = b2

. . .

an−1,n−1xn−1+ an−1,nxn = bn−1

annxn = bn

(5)

avec aii 6= 0, ∀i = 1, . . . , n

Algorithme 2 : Algorithme de substitution rétrograde (backward subst.)
pour i = n, . . . , 1 faire

xi =
1
aii

(
bi −

∑n
j=i+1 aijxj

)
;

fin

L’algorithme de substitution rétrograde coûte aussi O(n2) opérations.
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Systèmes linéaires

Algorithme d’élimination de Gauss

Idée : transformer le système dans un système triangulaire supérieur à l’aide
d’opérations élémentaires de combinaison linéaire de lignes de la matrice.

Résoudre le système linéaire
2x1 + x2 = 4
−4x1 + 3x2 − x3 = 2
4x1 − 3x2 + 4x3 = −2

On fait des combinaisons linéaires de lignes pour
éliminer d’abord l’inconnue x1 de la 2eme et 3eme équations
ensuite éliminer x2 de la 3eme équation.
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A = A(1) b = b(1)

2 1 0 4
−4 3 −1 2
4 −3 4 −2

L
1 0 0

−2

1 0

2 −1

1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A = A(1) b = b(1)

2 1 0 4
r2 −

(−4
2

)
r1 −4 3 −1 2

4 −3 4 −2

L
1 0 0
−2 1 0

2 −1

1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A = A(1) b = b(1)

2 1 0 4
r2 −

(−4
2

)
r1 ��−4 0 �3 5 −1 �2 10

4 −3 4 −2

L
1 0 0
−2 1 0

2 −1

1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A = A(1) b = b(1)

2 1 0 4
0 5 −1 10

r3 −
(
4
2

)
r1 4 −3 4 −2

L
1 0 0
−2 1 0
2

−1

1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A = A(1) b = b(1)

2 1 0 4
0 5 −1 10

r3 −
(
4
2

)
r1 �4 0 ��−3 −5 4 ��−2 −10

L
1 0 0
−2 1 0
2

−1

1

Remarque : LU = A ! !

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 18 / 39



Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A(2) b(2)

2 1 0 4
0 5 −1 10
0 −5 4 −10

L
1 0 0
−2 1 0
2

−1

1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A(2) b(2)

2 1 0 4
0 5 −1 10

r3 −
(−5

5

)
r2 0 −5 4 −10

L
1 0 0
−2 1 0
2 −1 1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A(2) b(2)

2 1 0 4
0 5 −1 10

r3 −
(−5

5

)
r2 0 ��−5 0 �4 3 �

��−10 0

L
1 0 0
−2 1 0
2 −1 1

Remarque : LU = A ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

A(3) = U b(3) = y
2 1 0 4
0 5 −1 10
0 0 3 0

L
1 0 0
−2 1 0
2 −1 1

Remarque : LU = A ! !
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Systèmes linéaires

Factorisation LU

Algorithme 3 : Algorithme d’élimination de Gauss (et factorisation LU)
Données : A = {aij} ∈ Rn×n, b = {bi} ∈ Rn

Résultat : U, L ∈ Rn×n, b(n) ∈ Rn

A(1) = A;
pour k = 1, . . . , n − 1 faire // étapes de l’algorithme

lkk = 1;
pour i = k + 1, . . . , n faire // boucle sur les lignes

lik =
a
(k)
ik

a
(k)
kk

;

pour j = k + 1, . . . , n faire // boucle sur les colonnes
a
(k+1)
ij = a

(k)
ij − lika

(k)
kj ;

fin
b
(k+1)
i = b

(k)
i − likb

(k)
k ;

fin
fin
U = A(n), L = {lij};

Nombre d’opérations O(n3) (trois boucles emboîtées)
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Systèmes linéaires

Algorithme d’élimination de Gauss et
factorisation LU

Une fois calculée la factorisation LU de A (coût O(n3)), on peut résoudre le
système linéaire Ax = b par les étapes

1 Ly = b
2 Ux = y

dont le coût est O(n2). (en fait b = Ly = LUx = Ax, donc x est bien la solution
recherchée).

Remarque : si on doit résoudre deux systèmes linéaires Ax1 = b1 et Ax2 = b2
avec la même matrice, on calcule la factorisation LU une seule fois.
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Systèmes linéaires

Condition nécessaire et suffisante

Des conditions restrictives sur A sont nécessaires pour assurer que la méthode
d’élimination de Gauss (et la factorisation LU) puissent se réaliser sans
permutations :

Soit di le déterminant de la i -ième sous-matrice principale Ai :

Si les mineurs principaux di de A sont non nuls pour i = 1, . . . , n − 1 alors les
pivots correspondants a(i)ii sont également non nuls.

Celle-ci est une condition nécessaire et suffisante pour que la méthode de
Gauss puisse être appliquée sans permutations.
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Systèmes linéaires

Conditions suffisantes

Voici des critères suffisants pour que la méthode de Gauss puisse être appliquée
sans permutations.

1 Les matrices à diagonale dominante par ligne. Une matrice A est dite à
diagonale dominante par ligne si

|aii | ≥
∑

j=1,...,n;j 6=i

|aij |, i = 1, . . . , n.

2 Les matrices à diagonale dominante par colonne. Une matrice A est dite à
diagonale dominante par colonne si

|ajj | ≥
∑

i=1,...,n;i 6=j

|aij |, j = 1, . . . , n.

3 Les matrices symétriques définies positives. Une matrice A est symétrique si
A = AT (aij = aji ∀i , j) ; elle est définie positive si toutes ses valeurs
propres sont positives, c’est-à-dire : λi(A) > 0, i = 1, . . . , n.
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A = A(1) b = b(1)

1 2 3 4
2 4 5 2
7 8 9 20

L
1 0 0

1 0
1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A = A(1) b = b(1)

1 2 3 4
r2 − (2)r1 2 4 5 2

7 8 9 20

L
1 0 0
2 1 0

1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A = A(1) b = b(1)

1 2 3 4
r2 − (2)r1 �2 0 �4 0 �5 −1 �2 −6

7 8 9 20

L
1 0 0
2 1 0

1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A = A(1) b = b(1)

1 2 3 4
0 0 −1 −6

r3 − (7)r1 7 8 9 20

L
1 0 0
2 1 0
7 1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A = A(1) b = b(1)

1 2 3 4
0 0 −1 −6

r3 − (7)r1 �7 0 �8 −6 �9 −12 ��20 −8

L
1 0 0
2 1 0
7 1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A(2) b(2)

1 2 3 4
0 0 −1 −6
0 −6 −12 −8

L
1 0 0
2 1 0
7 1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A(2) b(2)

1 2 3 4
r2 ← r3 0 0 −1 −6
r3 ← r2 0 −6 −12 −8

L
1 0 0
2 1 0
7 1

Q
1 0 0
0 1 0
0 0 1

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A(2) b(2)

1 2 3 4
r2 ← r3 0 −6 −12 −8
r3 ← r2 0 0 −1 −6

L
1 0 0
7 1 0
2 1

Q
1 0 0
0 0 1
0 1 0

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A(3) = U b(3) = y
1 2 3 4
0 −6 −12 −8
0 0 −1 −6

L
1 0 0
7 1 0
2 0 1

Q
1 0 0
0 0 1
0 1 0

Remarque : LU = QA ! !
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Systèmes linéaires

Algorithme d’élimination de Gauss avec pivoting

A(3) = U b(3) = y
1 2 3 4
0 −6 −12 −8
0 0 −1 −6

L
1 0 0
7 1 0
2 0 1

Q
1 0 0
0 0 1
0 1 0

Remarque : LU = QA ! !
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Systèmes linéaires

Factorisation LU avec pivoting

LU = QA

Q est une matrice orthogonale car les colonnes sont orthonormées. Donc
Q−1 = QT . Du coup, pour P = QT , on a

A = PLU .

La matrice Q ou P sert à mémoriser les permutations effectuées.

Dans la pratique il est bien d’effectuer le pivoting même si l’élément diagonal
n’est pas nul. Le mieux c’est de choisir comme pivot le coefficient le plus grand
de la colonne.
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Factorisation LU avec pivoting

Algorithme 4 : Algorithme d’élimination de Gauss avec pivoting
Données : A = {aij} ∈ Rn×n, b = {bi} ∈ Rn

Résultat : U, L,P ∈ Rn×n, b(n) ∈ Rn

A(1) = A, Q matrice identité;
pour k = 1, . . . , n − 1 faire

trouver r tel que |a(k)rk | = maxi=k,...,n |a
(k)
ik |;

échanger la ligne k avec la ligne r dans les matrices A(k), L et Q, ainsi que dans le vecteur b(k);
pour i = k + 1, . . . , n faire

lik =
a
(k)
ik

a
(k)
kk

;

pour j = k + 1, . . . , n faire
a
(k+1)
ij = a

(k)
ij − lika

(k)
kj ;

fin
b
(k+1)
i = b

(k)
i − likb

(k)
k ;

fin
lkk = 1;

fin
U = A(n), L = {lij}, P = QT ;
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Factorisation LU avec pivoting

Théorème
Toute matrice A ∈ Rn×n non singulière admet une factorisation A = PLU où L
est une matrice triangulaire inférieure, U une matrice triangulaire supérieure et P
une matrice de permutation.

En Python, l’algorithme de factorisation LU est disponible avec la commande
P,L,U=scipy.linalg.lu(A) et on obtient A = PLU ou PTA = LU

Une fois calculée la factorisation LU de A avec pivoting (coût O(n3)), on peut
résoudre le système linéaire Ax = b (⇔ PTAx = PTb) par les étapes

1 Ly = PTb
2 Ux = y

dont le coût est O(n2).
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D’autres factorisations

Factorisation de Choleski
Factorisation QR

Factorisation SVD

Diagonalisation
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La factorisation de Cholesky

Dans le cas où A est une matrice n × n symétrique et définie positive, il existe
une unique matrice triangulaire inférieure H avec les éléments diagonaux positifs
telle que

A = HHT .

Cette factorisation s’appelle la factorisation de Cholesky. Dans scipy.linalg, on
peut utiliser la commande

# lower : r e tu rns lower−t r i a ngu l a r matrix , A = H H^T
H = cholesky(A, lower=True)

Critère de Sylvester : une matrice symétrique A ∈ Rn×n est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 28 / 39



Systèmes linéaires

Exemple

On considère le calcul des déformations d’une structure soumise à des forces
données. La discrétisation par la méthode des éléments finis donne une matrice K
de taille 150× 150. (La même matrice dérive également de l’approximation du
potentiel d’un champ électrique.) Cette matrice est symétrique définie positive.
Le nombre d’éléments non nuls de K est égal à 964 et donc beaucoup plus petit
que (150)2 = 22500. Il s’agit, dans ce cas, d’une matrice creuse.
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La figure de gauche montre la disposition des éléments non nuls de K , tandis que
la figure de droite montre celle de la matrice HT .
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On remarque que le nombre d’éléments non nuls de HT est beaucoup plus grand
que celui de K (phénomène du fill-in). Ceci entraîne une occupation mémoire
importante.
Pour réduire le phénomène de remplissage, on peut réordonner de façon
intelligente les lignes et les colonnes de la matrice K ; on appelle cette procédure
réordonnancement de la matrice. Il y a plusieurs algorithmes qui permettent de
faire cela.
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Par exemple la figure ci-dessous à gauche, montre un réordonnancement possible
de la matrice K , tandis qu’à droite, on a affiché la disposition des éléments non
nuls de la factorisation de Cholesky de la matrice K réordonnée.

0 50 100 150

0

50

100

150

i

Nombre d’ éléments non nuls : 964

j

0 50 100 150

0

50

100

150

i

Nombre d’ éléments non nuls : 1583

j
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Problèmes de précision : la matrice d’Hilbert I

Les erreurs d’arrondis peuvent causer des différences importantes entre la
solution calculée par la méthode d’élimination de Gauss (MEG) et la solution
exacte. Cela arrive si le conditionnement de la matrice du système est très grand.

La matrice de Hilbert de taille n × n est une matrice symétrique, définie par

Aij =
1

i + j − 1
, i , j = 1, . . . , n

Dans scipy.linalg, on peut construire une matrice de Hilbert de taille n
quelconque en utilisant la commande A = hilbert(n). Par exemple, pour n = 4,
on a :

A =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


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Problèmes de précision : la matrice d’Hilbert II

On considère les systèmes linéaires Anxn = bn ou An est la matrice de Hilbert de
taille n avec n = 4, 6, 8, 10, 12, 14, . . . tandis que bn est choisi de sorte que la
solution exacte soit xn = (1, 1, · · · , 1)T .

Pour chaque n, on calcule le conditionnement de la matrice, on résout le système
linéaire par la factorisation LU et on note xLUn la solution calculée. Le
conditionnement obtenu ainsi que l’erreur ‖xn − xLUn ‖/‖xn‖ (où ‖ · ‖ est la norme
euclidienne d’un vecteur, ‖x‖ =

√
xT · x) sont montrés ci-dessous.
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Problèmes de précision : la matrice d’Hilbert III
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LU

−x||/||x||

n 
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Considérations sur la précision

Les méthodes qu’on a vu jusqu’à maintenant sont des méthodes qui permettent
de trouver la solution d’un système linéaire en un nombre fini d’opérations. C’est
pourquoi on les appelle méthodes directes. Toutefois, il y a des cas où ces
méthodes ne fonctionnent pas de manière satisfaisante.

Définition
On définit le conditionnement d’une matrice M symétrique définie positive
comme le rapport entre la valeur maximale et minimale de ses valeurs propres, i.e.

K (M) =
λmax(M)

λmin(M)
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On peut montrer que plus le conditionnement de la matrice est grand, plus la
solution du système linéaire obtenue par une méthode directe peut être mauvaise.
Par exemple, considérons un système linéaire Ax = b.
Si on résout ce système avec un ordinateur, à cause des erreurs d’arrondis, on ne
trouve pas la solution exacte mais une solution approchée x̂. On peut montrer la
relation suivante :

‖x− x̂‖
‖x‖

≤ K (A)
‖r‖
‖b‖

(6)

où r est le résidu r = b− Ax̂ ; on désigne par ‖v‖ = (
∑n

k=1 v
2
k )

1/2 la norme
euclidienne d’un vecteur v.
On remarque que, si le conditionnement de A est grand, la distance ‖x− x̂‖ entre
la solution exacte et celle calculée numériquement peut être très grande même si
le résidu est très petit.
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Preuve de (6) : A étant symétrique définie positive, on peut considérer les n
valeurs propres λi > 0 et les vecteurs propres unitaires associés {vi},
i = 1, . . . , n. Ces derniers forment une base orthonormé de Rn, c’est-à-dire
vTi vj = δij pour i , j = 1, . . . , n. Soit w ∈ Rn quelconque. Si on l’exprime comme

w =
n∑

i=1

wivi ,

on a

‖Aw‖2 = (Aw)T (Aw)

= (λ1w1vT1 + . . . λnwnvTn )(λ1w1v1 + . . . λnwnvn)

=
n∑

i ,j=1

λiλjwiwjvTi vj =
n∑

i ,j=1

λiλjwiwjδij =
n∑

i=1

λ2i w
2
i .
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Or, comme ‖w‖2 =
∑n

i=1 w
2
i , on obtient ‖Aw‖2 ≤ λ2max‖w‖2, c.à d.

‖Aw‖ ≤ λmax‖w‖ où λmax est la plus grande valeur propre de A.

Comme les valeurs propres de A−1 sont 1/λi , de la même façon on trouve
‖A−1w‖ ≤ 1

λmin
‖w‖ ∀w ∈ Rn, où λmin est la plus petite valeur propre de A.

Donc, on a

‖x− x̂‖ = ‖A−1r‖ ≤ 1
λmin
‖r‖,

‖b‖ = ‖Ax‖ ≤ λmax‖x‖,

d’où on trouve directement l’inégalité (6). �

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 39 / 39


	4.1 – Systèmes linéaires – méthodes directes

