
Intégration numérique

Analyse Numérique SV

Intégration numérique

Simone Deparis

EPFL Lausanne – MATH

Printemps 2021

Copyright © 2000-2021 A. Quarteroni, Simone Deparis, EPFL

S. Deparis, SCI-SB-SC–EPFL Introduction 1 / 26



Intégration numérique

Exemples et motivations

L’intégration est un des problèmes les plus importants que l’on rencontre en analyse. Souvent
le calcul des intégrales par des méthodes analytiques s’avère très compliqué, voire impossible,
car il n’existe pas d’expression analytique de la primitive de la fonction à intégrer. Voici
quelques exemples :∫ 1

0
e−x

2
dx ,

∫ π/2

0

√
1 + cos2 x dx ,

∫ 1

0
cos x2 dx .

Dans ces cas, on peut appliquer des méthodes numériques pour évaluer la valeur de l’intégrale
donnée.
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Intégration numérique

Quelques propriétés de l’intégrale

Soient f , g : [a, b]→ R et λ ∈ R.∫ b

a

f (x) + λg(x)dx =

∫ b

a

f (x)dx + λ

∫ b

a

g(x)dx (linéarité) (1)∫ b

a

f (x)dx =

∫ 1

−1
f

(
a + b

2
+ t

b − a

2

)
b − a

2
dt (changement de variable) (2)∫ b

a

f (x)dx =

∫ x1

x0

f (x)dx + . . .+

∫ xN

xN−1

f (x)dx avec a = x0 < . . . < xN = b (3)

Comment utiliser ces propriétés pour définir une stratégie pour l’approximation d’un intégrale ?
1 Grâce à (2) on définit d’abord une stratégie pour l’approximation d’un intégrale sur

l’intervalle [−1, 1].
2 L’équation (3) permet de définir des formules composites.
3 La propriété (1) permet d’exploiter l’algèbre linéaire.
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Intégration numérique

Formule de quadrature sur [−1, 1] I

On cherche à approximer l’intégrale
∫ 1

−1
g(t)dt d’une fonction continue.

Rappel : Base de Lagrange :
n + 1 noeuds −1 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1.

n + 1 fonctions de base associées {ϕ0, . . . ϕn}

Interpolation de Lagrange : Πng(t) =
n∑

j=0

g(tj)ϕj(t)

∫ 1

−1
g(t)dt ≈

∫ 1

−1
Πng(t)dt =

∫ 1

−1

n∑
j=0

g(tj)ϕj(t)dt =
n∑

j=0

g(tj)

∫ 1

−1
ϕj(t)dt︸ ︷︷ ︸
ωj

On pose M = n + 1 et à l’aide de ces ingrédients on définit les formules de quadrature.
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Intégration numérique

Formule de quadrature sur [−1, 1] II

Définition

Une formule de quadrature J(·) permet d’approcher
∫ 1
−1 g(t)dt pour une fonction continue

g : [−1, 1]→ R. Étant donné M > 0,
M points d’intégration −1 ≤ t1 ≤ · · · ≤ tM ≤ 1,
M poids ω1, . . . , ωM ,

elle s’écrit

J(g) =
n∑

j=0

ωjg(tj).

Une formule de quadrature est linéaire (exercice) :

J(f + λg) = J(f ) + λJ(g)
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Intégration numérique

Degré d’exactitude I

Définition

Une formule de quadrature J est exacte de degré r si pour tout polynome p de degré ≤ r on a∫ 1
−1 p(t)dt = J(p).

Théorème (Poids de quadrature)

Soit J une formule de quadrature avec M noeuds.

J est exacte de degré M − 1 ⇐⇒ ωj =
∫ 1
−1 ϕj(t)dt, j = 1, . . . ,M,

où {ϕj , j = 1, . . . ,M} est la base de Lagrange associée aux noeuds de quadrature.
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Intégration numérique

Degré d’exactitude II

Démonstration.

Soient ωj =
∫ 1
−1 ϕj(t)dt, j = 1, . . . ,M et p un polynôme de degré ≤ M − 1. On a que

p(t) =
∑M

j=1 p(tj)ϕj(t) (interpolation de Lagrange) et que

∫ 1

−1
p(t)dt =

∫ 1

−1

M∑
j=1

p(tj)ϕj(t) =
M∑
j=1

p(tj)

∫ 1

−1
ϕj(t) =

M∑
j=1

p(tj)ωj = J(p).

Soit J exacte de degré M − 1. Chaque fonction de la base de Lagrange a degré ≤ M − 1, donc
pour ` = 1, . . . ,M on a∫ 1

−1
ϕ`(t)dt = J(ϕ`) =

M∑
j=1

ϕ`(tj)ωj =
M∑
j=1

δj`ωj = ω`.
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Intégration numérique

Formule de quadrature composite sur [a, b] I

On cherche à approximer l’intégrale
∫ b

a
f (x)dt d’une fonction continue sur [a, b] en utilisant

une partition en N sous-intervalles de taille H = b−a
N . Avec xk = a + kH, k = 0, . . . ,N on

obtient ∫ b

a

f (x)dx =

∫ x1

x0

f (x)dx + . . .+

∫ xN

xN−1

f (x)dx =
N−1∑
k=0

∫ xk+1

xk

f (x)dx

le changement de variable∫ xk+1

xk

f (x)dx =

∫ 1

−1
f

(
xk + xk+1

2
+ t

xk+1 − xk
2

)
xk+1 − xk

2
dt =∫ 1

−1
f

(
xk + xk+1

2
+

H

2
t

)
H

2
dt =

H

2

∫ 1

−1
f

(
xk +

H

2
(t + 1)

)
dt
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Intégration numérique

Formule de quadrature composite sur [a, b] II

Définition

La formule de quadrature composite associée à la formule de quadrature J est définie par

LH(f ) =
H

2

N−1∑
k=0

J(gk) où gk(t) = f

(
xk +

H

2
(t + 1)

)
.

Par conséquent on a que

LH(f ) =
H

2

N−1∑
k=0

M∑
j=1

gk(tj)ωj =
H

2

N−1∑
k=0

M∑
j=1

ωj f

(
xk +

H

2
(tj + 1)

)
.
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Intégration numérique

Formule du point milieu

Jpm(g) = 2g (0)

g
Π0g

0−1 1
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Intégration numérique

Formule composite du point milieu

Cette formule est obtenue en remplaçant, sur chaque sous-intervalle Ik , la fonction f par un
polynôme constant Π0f égal à la valeur de f au milieu de Ik (voir figure suivante) : on obtient
la formule composite du point milieu

I cpm(f ) = H
N−1∑
k=0

f (xk),

où
xk =

xk + xk+1

2
= a + kH +

H

2
.

S. Deparis, SCI-SB-SC–EPFL Introduction 11 / 26



Intégration numérique
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Intégration numérique

Formule du trapèze

J t(g) = 2
g(−1) + g(−1)

2

xk1 xk 

g

Π0g

0−1 1
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Intégration numérique

Formule composite du trapèze

Si, sur chaque sous-intervalle Ik , on remplace f par le polynôme d’interpolation Π1f (x) de
degré 1 aux nœuds xk et xk+1, on obtient la formule composite du trapèze :

I ct (f ) =
H

2

N−1∑
k=0

[f (xk) + f (xk+1)] =
H

2
[f (a) + f (b)] + H

N−1∑
k=1

f (xk).
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Intégration numérique
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Intégration numérique

Formule de Simpson

Js(g) =
H

6
[g(−1) + 4g (0) + g(1)]

g

Π2g

−1 10
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Intégration numérique

Formule composite de Simpson

La formule de Simpson est obtenue en remplaçant f par son polynôme interpolant composite
ΠH
2 f (x) de degré 2. En particulier, ΠH

2 f (x) est une fonction continue par morceaux qui, sur
chaque sous-intervalle [xk , xk+1], est obtenue comme le polynôme interpolant f aux nœuds

xk , xk =
xk + xk+1

2
et xk+1 (voir figure suivante).

On obtient donc la formule composite de Simpson :

I cs (f ) =
H

6

N−1∑
k=0

[f (xk) + 4f (xk) + f (xk+1)] .
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Intégration numérique
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Intégration numérique

Exemple

On considère I (f ) =
∫ 1
0 f (x)dx où f (x) = cos(x2) : la figure suivante montre l’erreur

d’intégration |I cpm(f )− I (f )| (formule composite du point milieu) et |I ct (f )− I (f )| , (formule
composite du trapèze) en fonction du nombre de sous-intervalles N.

0 100 200 300 400 500 600 700 800 900 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
rr

e
u

r

t

pm

N

S. Deparis, SCI-SB-SC–EPFL Introduction 19 / 26



Intégration numérique

Erreur d’intégration I

Théorème

Soit J une formule de quadrature exacte de degré r ≥ 0 et [a, b] un intervalle. Alors il existe
une constante K > 0 telle que pour tout N ∈ N et toute f ∈ C r+1([a, b]) on a∣∣∣∣∣

∫ b

a

f (x)dx − LH(f )

∣∣∣∣∣ ≤ K H r+1 max
x∈[a,b]

∣∣f r+1(x)
∣∣ où H =

b − a

N
.

Définition

On dit qu’une telle formule de quadrature composite LH est d’ordre d = n + 1 (par rapport à
la longueur H des sous-intervalles),

Démonstration.

(pas faite)
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Intégration numérique

Erreur d’intégration II

Formule composite du point milieu. Si f est dans C 2([a, b]), alors

|I (f )− I cpm(f )| ≤ b − a

24
H2 max

x∈[a,b]
|f ′′(x)| ⇒ degré exact 1, ordre 2

Formule composite du trapèze. Si f est dans C 2([a, b]), alors

|I (f )− I ct (f )| ≤ b − a

12
H2 max

x∈[a,b]
|f ′′(x)| ⇒ degré exact 1, ordre 2

Formule composite de Simpson. Si f est dans C 4([a, b]), alors

|I (f )− I cs (f )| ≤ b − a

180 · 16
H4 max

x∈[a,b]
|f ′′′′(x)| ⇒ degré exact 3, ordre 4
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Intégration numérique

Démontrons l’estimation pour la formule du point milieu. D’abord, grâce à un développement
de Taylor sur l’intervalle Ik = [xk−1, xk ] autour de x̄k = (xk−1 + xk)/2, on a∫

Ik

[f (x)− f (x̄k)] dx =

∫
Ik

f ′(x̄k)(x − x̄k)dx +
1
2

∫
Ik

f ′′(ξ(x))(x − x̄k)2dx ,

où ξ(x) ∈ Ik . Par ailleurs, on a ∫
Ik

f ′(x̄k)(x − x̄k)dx = 0,

et, par le théorème de la moyenne pour les intégrales, ∃ξk ∈ Ik :∫
Ik

f ′′(ξ(x))(x − x̄k)2dx = f ′′(ξk)

∫
Ik

(x − x̄k)2dx =
H3

12
f ′′(ξk).

Donc : ∫
Ik

[f (x)− f (x̄k)] dx =
H3

24
f ′′(ξk).
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Intégration numérique

Par conséquent, comme ΠH
0 f (x) = f (x̄k)∀x ∈ Ik , on déduit

|I (f )− I cpm(f )| =

∣∣∣∣∣
∫ b

a

[
f (x)− ΠH

0 f (x)
]
dx

∣∣∣∣∣ =

∣∣∣∣∣
N∑

k=1

∫
Ik

[
f (x)− ΠH

0 f (x)
]
dx

∣∣∣∣∣
=

∣∣∣∣∣
N∑

k=1

∫
Ik

[f (x)− f (x̄k)] dx

∣∣∣∣∣ ≤
N∑

k=1

H3

24
|f ′′(ξk)|.

Donc :

|I (f )− I cpm(f )| ≤

(
N−1∑
k=0

H3

24

)
max
x∈[a,b]

|f ′′(x)|

= M
H3

24
max
x∈[a,b]

|f ′′(x)| = (b − a)
H2

24
max
x∈[a,b]

|f ′′(x)|,

car H =
b − a

M
; c’est bien l’estimation qu’il fallait prouver.
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Formule du point milieu
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Formule du trapèze
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Formule de Simpson
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Formules d’ordres élevés

Formules de quadrature de Gauss-Legendre.
Degré d’exactitude 2M − 1, ordre par rapport à H : 2M

M tj ωj

Formules de quadrature de Gauss-Legendre-Lobatto.
Degré d’exactitude 2M − 3, ordre par rapport à H : 2M − 2

M tj ωj

[Quarteroni, Saleri, Gervasio, Scientific computing]
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