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Intégration numérique

Formule de quadrature sur [—1, 1]

Définition
Une formule de quadrature’J(~) permet d'approcher fjl g(t)dt pour une fonction
continue g : [—-1,1] — R. Etant donné M > 0,

m M points d'intégration —1 <ty < --- <ty <1,

m M poids wy, ..., war,

elle s'écrit

J(g) = ijg(tj)-

Une formule de quadrature est linéaire (exercice) :

J(f+Ag) = J(f) + A (g)
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Intégration numérique

Degré d'exactitude

Une formule de quadrature .J est exacte de degré r si pour tout polynome p de
degré < r on a f_ll p(t)dt = J(p).

Théoreme (Poids de quadrature)
Soit J une formule de quadrature avec M noeuds.
J est exacte de degré M — 1 <= w,; = fjl pit)dt, j=1,..., M,

ou{pj,j=1,..., M} est la base de Lagrange associée aux noeuds de
quadrature.
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Intégration numérique

Formule de quadrature composite sur [a, b]

La formule de quadrature composite associée a la formule de quadrature J est
définie par

N—

H

g J(gk) ou gi(t) = f($k+g(t+1))'

k=0

Par conséquent on a que

igk(tj)wj = g i%’ f (xk + g(tj + 1)) :

k=0 j=1 0 j=1

1
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Intégration numérique

Quelques rappels |

Considérons la formule de quadrature définie par J(g) = Zj\il w;g(t;), les poids

étant calculés avec la formule du théoréme. Que vaut la somme des poids
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Intégration numérique

Quelques rappels Il
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Intégration numérique

Quelques rappels Il

Soit —1 <t <ty < t3 < 1 trois points d'intégration, on considére la formule de
quadrature J(g) = wig(t1) + w2g(t2) + wsg(ts), ou les poids w; = f_ll ©;(t)dt
j=1,2,3. D'aprés le théoréme, la formule de quadrature est exacte pour les
polyndmes de degré 2. Soit p3 € P35, on peut écrire p3(t) = po(t) + at®, ou
pyEPyetaceR. Ona:

8 [ moa =)
/ J(ps)
e i
([ pioie=son) = (f ar= )
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Intégration numérique

Quelques rappels IV
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Intégration numérique

Quelques rappels V

Soit —1 <t] <ty < .. <ty <1, M points d'intégration, on considére la
formule de quadrature J(g) = Zj\il w;g(t;), ou les poids w; = f_ll w;(t)dt
j=1,...,M. D'apres le théoréeme 3.2, la formule de quadrature est exacte pour
les polynémes de degré M — 1. Soit py; € Py, on peut écrire

pu(t) = py1(t) +atM, ot ppy s EPy 1 eta € R. Ona:

/ pr—1(t)dt = J(par—1)

pu(t J(par)

/
/ pu(t /_l pM_l(t)dt—i—a/l tMat

1 -1

D </1pM J(pM))@(/_lltht:J(tM)).
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Intégration numérique

Quelques rappels VI
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Intégration numérique

Quelques rappels VI

Soit 0 < a <1, on pose t; = —a, ty = « et on con5|dere la formule de
quadrature J(g) = wig(t1) + w2g(t2). On pose w; = f Lpi(t)dt, j=1,2, o
©1, P2 est la base de Lagrange de P, associée a t1,t3. On a :

BAuw=w=1

B J(p) = /_1 p(t)dt,Vp € Py.

1

1
J(p):/ p(t)dt,¥p € Py, V0 < av < 1.

1

D (J(p) - / 11 p(t)dt,Vp € IPQ) o (a - 1/\/§).

Si a =1/+/3 alors J(p) = / p(t)dt,Vp € Ps.

1
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Intégration numérique

Quelques rappels VIII
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Intégration numérique

Erreur d'intégration |

Théoréme

Soit J une formule de quadrature exacte de degré r > 0 et [a,b] un intervalle.
Alors il existe une constante K > 0 telle que pour tout N € N et toute
f € C™(la,b]) on a

b—a

/bf(x)dx — Ly(f)| < K H™ max [f"(z)| oo H =

z€[a,b]

Définition
On dit qu'une telle formule de quadrature composite Ly est d'ordre d = r + 1
(par rapport a la longueur H des sous-intervalles),

Preuve : (pas faite, Exercice) O
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Intégration numérique

Erreur d'intégration |

m Formule composite du point milieu. Si f est dans C?([a, b)), alors

b—
I(f) = L (f)] < TQHQ max | f”(z)| = degré exact 1, ordre 2

z€a,b]

m Formule composite du trapéze. Si f est dans C?([a, b]), alors

b—
I(f) —I;(f)] < TCLHQ zrg[%)é] |f"(z)| = degré exact 1, ordre 2

m Formule composite de Simpson. Si f est dans C*([a, b]), alors

b
©H* max | f@(x)| = degré exact 3, ordre 4

I(f) = I(f)] < H
() = LU < gy max
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Intégration numérique

Exercice 1 |

On veut approximer |'intégrale

+o0 )
/ e " dx,
3

en sachant que fj;o e dr = /7.

a) Calculer une valeur approchée de cette intégrale en utilisant la formule
simple du trapéze sur l'intervalle [0, 3].
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Intégration numérique

Exercice 1 1l

b) Pour avoir plus de précision, on divise I'intervalle [0, 3] en N sous-intervalles
égaux I = [zy_1, ] de longueur H = — x4 =3/N, k=1,..., N,
avec 1o = 0 et xy = 3, et on considére la formule composite du trapéze.
On peut montrer que I'erreur commise par la formule simple du trapéze

Ly (f) = E(f(xk_l) + f(xr)) sur l'intervalle I est
H3
By = | [ f e —15(0) < T3 maxl©] sifec

Estimer, en fonction du nombre N de sous-intervalles, I'erreur globale

E; =

o) de = (1)

introduite par la formule composite du trapéze I7(f) = Zgil I iy (f) sur
I'intervalle [0, 3].
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Intégration numérique

Exercice 1 |1l

c) Trouver le nombre minimal N de sous-intervalles afin que I'erreur globale
soit plus petite que 107%.
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Intégration numérique

Exercice 1 |V
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Intégration numérique

Exercice 1, solution
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Intégration numérique

Exercice 2 |

On considére une fonction f € C?([a, b]).

a) Soient py,p2 € [a,b], p1 < pa; a I'aide de I'expansion de Taylor autour du
point p = (p1 + p2)/2, c'est-a-dire :

ou 7n(x) est compris entre x et p, montrer |'estimation suivante :

/pzf(x)dl’—(m—pl)f(p) S(pr—pl)g max | f"(z)].

24 x€[p1,p2]
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Intégration numérique

Exercice 2 |l

b) Considérer la subdivision de I = [a, b] en M sous-intervalles équirepartis
Ity = [x)_1, 7)) de longeur H = (b—a)/M, o0 2y =a+kH, k=1,..., M.

Soit
M

() =HY_ [(T),
k=1
la valeur approchée de |'intégrale de f sur I par la formule composite du
point milieu, ot T, = (251 + z%)/2. En appliquant le résultat du point a) a
chaque sous-intervalle I, montrer |'estimation de |'erreur suivante :

b

b J—
[ e = 1,0)] < Lt o 0]
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Intégration numérique

Exercice 2 |l

: 2 1

c) Soit f(z) =€"" ; on veut calculer [ f(z)dz. Calculer le nombre de
sous-intervalles nécessaires pour obtenir une valeur approchée de |'intégrale
avec une erreur de 107 avec la formule composite du point milieu.
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Intégration numérique

Exercice 2 |V
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Intégration numérique

Exercice 2, solution
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Intégration numérique

Exercice 3 |

On veut calculer numériquement I'intégrale de la fonction f(x) = e™*/® sur

I'intervalle [0, 5]. Pour cela, on divise I'intervalle [0, 5] en m sous-intervalles égaux
et on considére les formules composites du trapéze et de Simpson.

a) En sachant que |'erreur commise par la formule du trapéze I sur un
intervalle [z;, z; + h] de longueur h est

3

z;+h h
[ ra- ) < 3y om0

B 12 €z xi+h]

ET —

(2

et que |'erreur commise par celle de Simpson est

ES = ’

)

max |,

% €[$¢,$¢+h}

Lfmﬂ>w—z%n\
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Intégration numérique

Exercice 3 |l

ol f est une fonction suffisamment réguliére, calculer les erreurs globales
ET et E} introduites par les deux formules composites correspondantes I}
et I? en fonction du nombre de sous-intervalles.

b) Trouver le nombre minimal m de sous-intervalles pour que I'erreur globale
soit < 10~ dans les deux cas.
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Intégration numérique

Exercice 3 |l
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Intégration numérique

Exercice 3, solution
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