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Intégration numérique

Formule de quadrature sur [−1, 1]

Définition
Une formule de quadrature J(·) permet d’approcher

∫ 1

−1
g(t)dt pour une fonction

continue g : [−1, 1] → R. Étant donné M > 0,
M points d’intégration −1 ≤ t1 < · · · < tM ≤ 1,
M poids ω1, . . . , ωM ,

elle s’écrit

J(g) =
n∑

j=0

ωjg(tj).

Une formule de quadrature est linéaire (exercice) :

J(f + λg) = J(f) + λJ(g)

S. Deparis, SCI-SB-SC–EPFL Introduction 2 / 28



Intégration numérique

Degré d’exactitude

Définition
Une formule de quadrature J est exacte de degré r si pour tout polynome p de
degré ≤ r on a

∫ 1

−1
p(t)dt = J(p).

Théorème (Poids de quadrature)

Soit J une formule de quadrature avec M noeuds.

J est exacte de degré M − 1 ⇐⇒ ωj =
∫ 1

−1
φj(t)dt, j = 1, . . . ,M ,

où {φj, j = 1, . . . ,M} est la base de Lagrange associée aux noeuds de
quadrature.
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Intégration numérique

Formule de quadrature composite sur [a, b]

Définition
La formule de quadrature composite associée à la formule de quadrature J est
définie par

LH(f) =
H

2

N−1∑
k=0

J(gk) où gk(t) = f

(
xk +

H

2
(t+ 1)

)
.

Par conséquent on a que

LH(f) =
H

2

N−1∑
k=0

M∑
j=1

gk(tj)ωj =
H

2

N−1∑
k=0

M∑
j=1

ωj f

(
xk +

H

2
(tj + 1)

)
.
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Intégration numérique

Quelques rappels I

Considérons la formule de quadrature définie par J(g) =
∑M

j=1 ωjg(tj), les poids
étant calculés avec la formule du théorème. Que vaut la somme des poids

M∑
j=1

ωj?

A 0
B 0.5
C 1
D 1.5
E 2
F 2.5
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Intégration numérique

Quelques rappels II
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Intégration numérique

Quelques rappels III

Soit −1 ≤ t1 < t2 < t3 ≤ 1 trois points d’intégration, on considère la formule de
quadrature J(g) = ω1g(t1) + ω2g(t2) + ω3g(t3), où les poids ωj =

∫ 1

−1
φj(t)dt,

j = 1, 2, 3. D’après le théorème, la formule de quadrature est exacte pour les
polynômes de degré 2. Soit p3 ∈ P3, on peut écrire p3(t) = p2(t) + at3, où
p2 ∈ P2 et a ∈ R. On a :

A

∫ 1

−1

p2(t)dt = J(p2)

B

∫ 1

−1

p3(t)dt = J(p3)

C

∫ 1

−1

p3(t)dt =

∫ 1

−1

p2(t)dt+ a

∫ 1

−1

t3dt

D

(∫ 1

−1

p3(t)dt = J(p3)

)
⇔

(∫ 1

−1

t3dt = J(t3)

)
.
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Intégration numérique

Quelques rappels IV
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Intégration numérique

Quelques rappels V

Soit −1 ≤ t1 < t2 < ... < tM ≤ 1, M points d’intégration, on considère la
formule de quadrature J(g) =

∑M
j=1 ωjg(tj), où les poids ωj =

∫ 1

−1
φj(t)dt,

j = 1, ...,M . D’après le théorème 3.2, la formule de quadrature est exacte pour
les polynômes de degré M − 1. Soit pM ∈ PM , on peut écrire
pM(t) = pM−1(t) + atM , où pM−1 ∈ PM−1 et a ∈ R. On a :

A

∫ 1

−1

pM−1(t)dt = J(pM−1)

B

∫ 1

−1

pM(t)dt = J(pM)

C

∫ 1

−1

pM(t)dt =

∫ 1

−1

pM−1(t)dt+ a

∫ 1

−1

tMdt

D

(∫ 1

−1

pM(t)dt = J(pM)

)
⇔

(∫ 1

−1

tMdt = J(tM)

)
.
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Intégration numérique

Quelques rappels VI
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Intégration numérique

Quelques rappels VII

Soit 0 < α ≤ 1, on pose t1 = −α, t2 = α et on considère la formule de
quadrature J(g) = ω1g(t1) + ω2g(t2). On pose ωj =

∫ 1

−1
φj(t)dt, j = 1, 2, où

φ1, φ2 est la base de Lagrange de P1 associée à t1, t2. On a :
A ω1 = ω2 = 1

B J(p) =

∫ 1

−1

p(t)dt,∀p ∈ P1.

C J(p) =

∫ 1

−1

p(t)dt,∀p ∈ P2,∀0 < α ≤ 1.

D

(
J(p) =

∫ 1

−1

p(t)dt,∀p ∈ P2

)
⇔

(
α = 1/

√
3
)
.

E Si α = 1/
√
3 alors J(p) =

∫ 1

−1

p(t)dt,∀p ∈ P3.
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Quelques rappels VIII
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Intégration numérique

Erreur d’intégration I

Théorème
Soit J une formule de quadrature exacte de degré r ≥ 0 et [a, b] un intervalle.
Alors il existe une constante K > 0 telle que pour tout N ∈ N et toute
f ∈ Cr+1([a, b]) on a∣∣∣∣∫ b

a

f(x)dx− LH(f)

∣∣∣∣ ≤ KHr+1 max
x∈[a,b]

∣∣f (r+1)(x)
∣∣ où H =

b− a

N
.

Définition
On dit qu’une telle formule de quadrature composite LH est d’ordre d = r + 1
(par rapport à la longueur H des sous-intervalles),

Preuve : (pas faite, Exercice) □
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Intégration numérique

Erreur d’intégration II

Formule composite du point milieu. Si f est dans C2([a, b]), alors

|I(f)− Icpm(f)| ≤
b− a

24
H2 max

x∈[a,b]
|f ′′(x)| ⇒ degré exact 1, ordre 2

Formule composite du trapèze. Si f est dans C2([a, b]), alors

|I(f)− Ict (f)| ≤
b− a

12
H2 max

x∈[a,b]
|f ′′(x)| ⇒ degré exact 1, ordre 2

Formule composite de Simpson. Si f est dans C4([a, b]), alors

|I(f)− Ics(f)| ≤
b− a

180 · 16
H4 max

x∈[a,b]
|f (4)(x)| ⇒ degré exact 3, ordre 4
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Intégration numérique

Exercice 1 I

On veut approximer l’intégrale ∫ +∞

3

e−x2

dx,

en sachant que
∫ +∞
−∞ e−x2

dx =
√
π.

a) Calculer une valeur approchée de cette intégrale en utilisant la formule
simple du trapèze sur l’intervalle [0, 3].
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Intégration numérique

Exercice 1 II
b) Pour avoir plus de précision, on divise l’intervalle [0, 3] en N sous-intervalles

égaux Ik = [xk−1, xk] de longueur H = xk − xk−1 = 3/N , k = 1, . . . , N ,
avec x0 = 0 et xN = 3, et on considère la formule composite du trapèze.
On peut montrer que l’erreur commise par la formule simple du trapèze

It,(k)(f) =
H

2
(f(xk−1) + f(xk)) sur l’intervalle Ik est

Et
(k) =

∣∣∣∣∫
Ik

f(x) dx− Ict,(k)(f)

∣∣∣∣ ≤ H3

12
max
ξ∈Ik

|f ′′(ξ)| si f ∈ C2.

Estimer, en fonction du nombre N de sous-intervalles, l’erreur globale

Ec
t =

∣∣∣∣∫ 1

0

f(x) dx− Ict (f)

∣∣∣∣
introduite par la formule composite du trapèze Ict (f) =

∑N
k=1 It,(k)(f) sur

l’intervalle [0, 3].
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Intégration numérique

Exercice 1 III

c) Trouver le nombre minimal N de sous-intervalles afin que l’erreur globale
soit plus petite que 10−4.

S. Deparis, SCI-SB-SC–EPFL Introduction 17 / 28



Intégration numérique

Exercice 1 IV
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Intégration numérique

Exercice 1, solution
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Intégration numérique

Exercice 2 I

On considère une fonction f ∈ C2([a, b]).
a) Soient p1, p2 ∈ [a, b], p1 < p2 ; à l’aide de l’expansion de Taylor autour du

point p = (p1 + p2)/2, c’est-à-dire :

f(x) = f(p) + (x− p)f ′(p) +
1

2
(x− p)2f ′′(η(x)),

où η(x) est compris entre x et p, montrer l’estimation suivante :∣∣∣∣∫ p2

p1

f(x)dx− (p2 − p1)f(p)

∣∣∣∣ ≤ (p2 − p1)
3

24
max

x∈[p1,p2]
|f ′′(x)| .
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Intégration numérique

Exercice 2 II

b) Considérer la subdivision de I = [a, b] en M sous-intervalles équirepartis
Ik = [xk−1, xk] de longeur H = (b− a)/M , où xk = a+ kH, k = 1, . . . ,M .
Soit

Icmp(f) = H
M∑
k=1

f(xk),

la valeur approchée de l’intégrale de f sur I par la formule composite du
point milieu, où xk = (xk−1 + xk)/2. En appliquant le résultat du point a) à
chaque sous-intervalle Ik montrer l’estimation de l’erreur suivante :∣∣∣∣∫ b

a

f(x)dx− Icmp(f)

∣∣∣∣ ≤ b− a

24
H2 max

x∈[a,b]
|f ′′(x)| .
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Intégration numérique

Exercice 2 III

c) Soit f(x) = ex
2 ; on veut calculer

∫ 1

0
f(x)dx. Calculer le nombre de

sous-intervalles nécessaires pour obtenir une valeur approchée de l’intégrale
avec une erreur de 10−6 avec la formule composite du point milieu.
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Exercice 2 IV
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Intégration numérique

Exercice 2, solution
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Intégration numérique

Exercice 3 I

On veut calculer numériquement l’intégrale de la fonction f(x) = e−x/5 sur
l’intervalle [0, 5]. Pour cela, on divise l’intervalle [0, 5] en m sous-intervalles égaux
et on considère les formules composites du trapèze et de Simpson.
a) En sachant que l’erreur commise par la formule du trapèze ITi sur un

intervalle [xi, xi + h] de longueur h est

ET
i =

∣∣∣∣∫ xi+h

xi

f(t) dt− ITi (f)

∣∣∣∣ ≤ h3

12
max

ξ∈[xi,xi+h]
|f (2)(ξ)|

et que l’erreur commise par celle de Simpson est

ES
i =

∣∣∣∣∫ xi+h

xi

f(t) dt− ISi (f)

∣∣∣∣ ≤ h5

90
max

ξ∈[xi,xi+h]
|f (4)(ξ)| ,
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Intégration numérique

Exercice 3 II

où f est une fonction suffisamment régulière, calculer les erreurs globales
ET

h et ES
h introduites par les deux formules composites correspondantes ITh

et ISh en fonction du nombre de sous-intervalles.

b) Trouver le nombre minimal m de sous-intervalles pour que l’erreur globale
soit ≤ 10−4 dans les deux cas.
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Exercice 3 III
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Exercice 3, solution
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