
y +1/2/59+ y
Problème 1 — Equations Différentielles Ordinaires (11.4 points)

On considère le problème de Cauchy suivant :
8
>>>>>><

>>>>>>:

y
0
1(t) = � 4

3y1(t) +
1
3y2(t) +

1
3e

4�t
, t 2 [0, 5],

y
0
2(t) = 3y1(t)� 4y2(t),

y1(0) = 8,

y2(0) = 1,

(1)

(a) Cocher les bonnes réponses parmi les choix proposés. (Bonne réponse 0.2 points, mauvaise �0.2, pas de
réponse 0.)
Méthode explicite implicite ordre 1 ordre 2 ordre 3 cond.

stable
incond.
stable

Heun
Euler Retrograde
Euler Progressif
Crank–Nicholson

(b) Ecrire le problème de Cauchy (1) sous forme vectorielle en introduisant la variable y(t) =

✓
y1(t)
y2(t)

◆
.

Réservé au correcteur

y y

y +1/3/58+ y
(c) On veut approcher la solution y(t) de (1) par la méthode d’Euler Rétrograde. Ecrire la méthode pour

un problème de Cauchy général ainsi que pour approcher la solution de (1). Indiquer quelles sont les
propriétés de cette méthode.

Réservé au correcteur

y y

y +1/4/57+ y
(d) Utiliser la fonction Matlab backwardEuler.m (sur votre ordinateur) pour dessiner une esquisse de

l’approximation de y1(t) et y2(t) pour h = 0.25. Reporter les commandes Matlab utilisées.

Réservé au correcteur

Dessiner ici les graphes des approximations de y1(t) et y2(t) obtenues, inclure la légende :

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

y1(0)

y2(0)

t

y
1
(t
)

y1(t)
y2(t)

y y

y +1/5/56+ y
(e) Déterminer, si nécessaire, pour quelles valeurs de h la condition de stabilité (contrôle des perturbations)

pour la méthode d’Euler Progressive est satisfaite. Vous pouvez utiliser Matlab. Vérifier si la méthode
est stable pour h = 0.25. Reporter aussi les éventuelles commandes Matlab utilisées.

Réservé au correcteur

(f) En sachant que y1(0.5) = 9.743790310568556 (voir aussi la fonction p1sol.m), calculer de façon approxi-
mative l’ordre de convergence, par rapport à la première composante y1(0.5) en t = 0.5 seulement, de la
méthode implémentée dans Hom.m. Reporter aussi les commandes Matlab utilisées.

Réservé au correcteur

y y

y +1/6/55+ y
Problème 2 — Equations Non-Linéaires (9 points)

Soit f :! R la fonction représentée dans le graphique suivant. On observe qu’elle a trois zéros ↵, � et �.
La fonction, sa première et sa deuxième dérivée peuvent être évaluées en Matlab à l’aide des fonctions p2f.m,
respectivement p2df.m et p2d2f.m (utiliser aussi la commande help).

-2 -1 0 1 2 3
-15

-10

-5

0

5

10

� � �

f(x)

(a) On veut utiliser la méthode de bissection pour calculer une approximation des zéros de f . Indiquer pour
quels sous-intervalles la méthode de bissection peut effectivement être utilisée. En chaque intervalle où il
est possible d’utiliser la méthode de bissection, estimer le nombre minimal d’itérations nécessaires pour
trouver un zéro avec une erreur inférieure à 10�6. (Bonne réponse 0.4 points, mauvaise 0.)

0-1 4-5 16-17 18-19 20-21 22-23 bisection
pas
utilis-
able

[�2, 3]
[�2,�0.5]
[1, 3]
[2.1, 2.2]
[�1, 1.5]

(b) Soit q 6= 0 un nombre réel. Pour calculer une approximation du zéro ↵ < 0 de f , on veut utiliser la
méthode de point fixe associée à la fonction �(x) = x � f(x)/q. Quelle est la condition sur q pour que
la méthode converge localement vers ↵ ? Y a-t-il un choix optimal ? Dans ce cas, quel est l’ordre de
convergence de la méthode ?

y y

y +1/7/54+ y
Justifiez vos réponses. Réservé au correcteur

Réservé au correcteur

y y

y +1/8/53+ y
(c) Calculer l’approximation de ↵ en utilisant la méthode de point fixe décrite précédemment avec une valeur

q de votre choix :

• Implémenter dans rootFinder.m la méthode de point fixe décrite pour trouver un zéro d’une fonction.
Ne pas oublier de mettre des commentaires dans le code.

• Choisir x
(0)
↵ = �2 comme valeur initiale pour rootFinder avec une valeur q de votre choix et

approximer ↵ en utilisant respectivement 3, 4 et 5 itérations.

Réporter les commandes Matlab utilisées, les résultats obtenus, puis les commenter.
Réporter ici la fonction rootFinder, avec les commentaires opportuns.

Réservé au correcteur
function [x, r] = rootFinder(F, q, x0, niter)

% [x,r] = rootFinder(F, q, x0, niter)

% rootFinder cherche le zero d une equation non�lineaire.
%

% Fonction Matlab qui cherche le zero X de la

% fonction continue F le plus proche de x0 en

% utilisant un nombre d iterations egal a niter.

%

% INPUT:

% � F: fonction du probleme

% � q: nombre reel different de zero

% � x0: approximation initiale du zero

% � niter: nombre d iterations

%

% OUTPUT:

% � x: zero calule de la methode

% � r: residue, evalue comme abs(F(x));

%

% EXEMPLE:

% [x, r] = rootFinder(@p2f , 1, 2, 3);

y y

y +1/9/52+ y
Réporter les commandes Matlab utilisées et commenter les résultats obtenus.

Réservé au correcteur

y y

y +1/10/51+ y
Problème 3 — Systèmes Linéaires (11 points)

On considère les matrices suivantes :

A =

0

BB@

3 1 �2 0.5
1 4 0 0.5
�2 0 7 1
0.5 0.5 1 2.5

1

CCA B =

0

BB@

3 1 �2 0.5
1 0 0 0.5
�2 0 7 1
0.5 0.5 1 2.5

1

CCA C =

0

BB@

3 0 0 0
1 4 0 0
�2 0 7 0
0.5 0.5 1 2.5

1

CCA D =

0

BB@

3 1 0 0
1 4 0 0
0 0 7 1
0 0 1 2.5

1

CCA

Pour un vecteur quelconque b 2 R4, on aimerait résoudre Ax = b, Bx = b, etc. Pour ce faire, on se pose
la question d’inversibilité des matrices, si elles sont symétriques positives définies, ou si différentes méthodes
itératives vont converger vers la solution pour tout choix initial x(0) (ou pas).

(a) A cette fin, remplissez le tableau suivant. Vous pouvez utiliser Matlab, il ne faut pas reporter les com-
mandes. (Bonne réponse 0.2 points, mauvaise 0.)

la matrice est
inversible

symétrique
définie posi-
tive

Jacobi
converge1

Gauss-Seidel
converge1

la méthode
du Gradient
converge1

oui non oui non oui non oui non oui non
A

B

C

D

1 Selon un critère connu.

(b) Ecrire la matrice d’itération de la méthode de Richardson préconditionnée stationnaire pour résoudre le
système linéaire Ax = b pour b 2 R4 en utilisant le préconditionneur P = D et ↵k = ↵opt. Dire si la
méthode converge et justifier la réponse en faisant un lien avec la théorie.
Si vous utilisez Matlab, reportez aussi les commandes.

Réservé au correcteur

Réservé au correcteur

y y

y +1/11/50+ y

(c) Suite aux résultats obtenus au point précédent et en supposant que kx(0) � xkA ⇡ 1.4, quel est le nombre
d’itérations théoriques attendues afin d’obtenir une erreur dans la même norme inférieure à 10�6 ? Que
peut-on dire de la méthode de Jacobi appliquée au même problème (si kx(0) � xk ⇡ 1.7) ?

Réservé au correcteur

y y

y +1/12/49+ y
Problème 4 — Interpolation (10 points)

(a) Expliquer avec vos propres mots l’interpolation quadratique par morceaux d’une fonction f : [a, b] ! R.

Réservé au correcteur

(b) On veut implémenter l’interpolation quadratique par morceaux pour une fonction f : [a, b] ! R. Une
partie de l’implémentation est faite dans interp_morceaux_2.m, cf. help. Elle fait appel à une fonction
supplémentaire lagrange_interp_2.m dont la structure est donnée ci-dessous. Compléter le code de cette
fonction sans oublier de commenter le code.
(voir page suivante)

y y

y +1/13/48+ y
Reporter la fonction lagrange_interp_2.m ici.

Réservé au correcteur

function [y] = lagrange_interp_2(nodes, f, x)

% y = lagrange_interp_2(nodes, f, x)

% Fonction Matlab qui implemente l interpolation

% de Lagrange de degre 2 aux noeuds nodes d une fonction f

% au(x) point(s) x.

%

% Input:

% � nodes: vecteur ligne avec les valeurs des

% 3 noeuds d interpolation dans l intervalle

% � f: fonction que l on veut interpoler

% � x: point ou vecteur de points ou l on veut evaluer

% le polynome d interpolation

% Output:

% � y: evaluation du polynome d interpolation de

% Lagrange de degre 2 de f au(x) point(s) x

%

% EXEMPLE

% nodes = [0.1 0.2 0.3];

% f = @(x) cos(pi⇤x);
% x = 0.25;

% y = lagrange_interp_2(nodes, f, x)

% Dans cet exemple, le resultat devrait etre y=0.7083

y y

y +1/14/47+ y
(c) On considère l’interpolation quadratique par morceaux de deux fonctions f et g sur l’intervalle [0, 2⇡]

avec 10 sous-intervalles de même longueur. Les erreurs d’interpolation sont alors bornées par : (cocher la
valeur la plus restrictive, bonne réponse 1 point, mauvaise 0.)

0 1 ⇡ 3 0.018 0.707 0.875 2 ⇡
2

4
⇡
3

96
⇡
4

24

Si f(x) = sin

✓
3x

⇡

◆
,

Si g(x) = 3x2�2x+1,

(d) On considère les mesures suivantes :

x 2.01 2.16 2.34 2.45 2.56 2.67 2.81 2.94
f(x) 1.48 1.1 0.81 0.61 0.53 0.43 0.28 0.26

Des biologistes présument que le procédé est réglé par une loi de type f(x) = C e
�ax.

Déterminer les valeurs des constantes C et a à l’aide de la fonction Matlab leastSquares.m donnée qui
implémente la méthode des moindres carrés (voir aussi le help de la fonction).

Un autre biologiste propose un modèle plus complet de type g(x) = C e
�ax

e
bx

2

. Vérifier aussi cette
hypothèse et commenter le résultat.
Reporter aussi vos commandes Matlab.

Réservé au correcteur

y y

y +1/15/46+ y
(Espace supplémentaire. Indiquer clairement quand un exercice continue ici.)

y y

y +1/16/45+ y
Nom: Abbet Marie SCIPER: 227392

ODE

��max  @f

@x
(t, x)  ��min

h <
2

maxj=1,...,p |�j |
=

2

⇢(A)
,

8n = 0, . . . , Nh |un � y(tn)|  C(h)

|y(tn)� un| 
e
Ltn � 1

2L
max
t2[0,T]

|y00(t)|h,

Lemma Soit En une suite de nombres positifs telle
que E0 = 0 et En+1  (1 + �)En + K avec � > 0 et
K > 0. Alors

En  e
�n � 1

�
K

Lemma Soit En une suite de nombres positifs telle
que E0 = 0 et (1 � �)En+1  (1 + �)En + K avec
0 < � <

1
2 , K > 0. Alors

En  e
4�n � 1

2�
K.

un+1 � un =
h

2
[f(tn, un) + f(tn+1, un+1)]

... =
h

2
[f(tn, un) + f(tn+1, un + hf(tn, un))]

Linear Systems
B = P

�1(P �A) = I � P
�1

A , g = P
�1b.

P (x(k+1) � x(k)) = ↵kr
(k)

↵k = ↵opt =
2

�min(P�1A) + �max(P�1A)

Pz(k) = r(k)

↵k =
(z(k))T r(k)

(z(k))TAz(k)

x(k+1) = x(k) + ↵kz
(k)

r(k+1) = r(k) � ↵kAz(k)

kx(k) � xkA 
✓
K(P�1

A)� 1

K(P�1A) + 1

◆k

kx(0) � xkA

kx(k) � xk
kxk  K(P�1

A)
kP�1r(k)k
kP�1bk

Interpolation

'k(x) =
nY

j=0,j 6=k

(x� xj)

(xk � xj)
.

max
x2I

|Enf(x)| 
1

4(n+ 1)
(h)n+1 max

x2I

|f (n+1)(x)|,

max
x2I

| EH

1 f(x) | H
2

8
max
x2I

|f 00(x)|.

max
x2I

| EH

n
f(x) | H

n+1

4(n+ 1)
max
x2I

|f (n+1)(x)| .

y y

