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EXEMPLES ET MOTIVATIONS

EXEMPLE

On considére un test mécanique pour établir le lien entre contraintes (MPa = 100N /cm?) et
déformations relatives (cm/cm) d'un échantillon de tissu biologique (disque intervertébral,
selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, J. Valenta

ed., Elsevier).
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F
o=FfA
test i | contrainte o | déformation € e=AL/L

1 0.00 0.00

2 0.06 0.08

3 0.14 0.14 D

4 0.25 0.20 AL L

5 0.31 0.23

6 0.47 0.25

7 0.60 0.28

8 0.70 0.29

A partir de ces données, on veut estimer la déformation correspondant a un effort o = 0.9 MPa.

S. DEeparis, SCI-SB-SC-EPFL INTRODUCTION



INTERPOLATION
0O00@0000000000000O0O0O0O00000000

Par la méthode des moindres carrés, on obtient que la droite qui approche le mieux ces
données est p(x) = 0.3938t — 0.0629. On peut utiliser cette droite (dite de régression) pour
estimer € lorsque o = 0.9 MPa : on trouve p(0.9) ~ 0.4.
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EXEMPLE

Les résultats des recensements de la population suisse entre 1900 et 2010 sont (en milliers
d’habitants) :

année 1900 1910 1920 1930 1941 1950
population 3315 3753 3830 4066 4266 4715
année 1960 1970 1980 1990 2000 2010

population 5429 6270 6366 6874 7288 7783

o Peut-on estimer le nombre d'habitants de la Suisse pendant les années ou il n'y a pas eu
de recensement, par exemple en 1945 et en 19757

o Peut-on envisager un modéle pour prédire la taille de la population en 20207
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Le polynéme de degré deux (parabole) qui approche ces données au sens des moindres carrés
est p(x) = 0.15t2 — 549.9¢ + 501600.
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POSITION DU PROBLEME

(JupyTER NOTEBOOK)

Soit n > 0 un nombre entier. Etant donnés n + 1 noeuds distincts xg, x1,... X, et n+ 1 valeurs
Y0, Y1,--- Yn, on cherche un polynéme p de degré n (ou plus petit), tel que
‘p(xj):yj pour Ogjgn.‘ (1)
Si ce polynéme existe, on note p = I, et on appelle I1,, le polynéme d'interpolation des valeurs
yj aux noeuds x;, j =0,...,n.
5F o q 5 q (n = 4)
af o 4 ar |_|n
Yo Yo
Yn
Yn
X0 Xn X0 Xn
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Soit f € CO(1) et xo,

.., Xp € 1. Sion prend y; = f(x;), 0 < j < n, alors le polynéme
d'interpolation IM,(x) est noté M,f(x) et est appelé I'interpolant de f aux noeuds xg,... X,.
| (n=4)
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UNICITE

Si le polynéme I, défini en (2) existe, alors il est le seul polynéme de degré n (ou plus petit)
interpolant les données y; aux nceuds x;.

En effet, soit Q,(x) un autre polynéme d'interpolation de degré n. Alors, on a
Qn(x) — Na(x;) = 0, j=0,...,n

Donc, Qn(x) — My(x) est un polynéme de degré n qui s'annule en n + 1 points distincts; mais
un polynéme non-nul de degré n (ou plus petit) a au maximum n racines. Il s’ensuit que
@, — M, =0 (polynéme nul) et Q, = MN,, d'ou 'unicité du polynéme interpolant.

Existe-il toujours un polynéme interpolant ? Comment le calculer?

-SB-SC-EPFL INTRODUCTION



INTERPOLATION
000000000 e0000000000O00000000

MATRICE DE VANDERMONDE

Il est possible d'écrire un systéme d’'équations et de trouver les coefficients de maniére directe.
Nous cherchons les coefficients du polynéme p(x) = ag + a1 x + ... + a,x" qui satisfont les
(n+ 1) équations p(xk) = yk, k =0, ..., n, c'est-a-dire

aotaxk+...+anx{ =vk, k=0,...,n

Ce systéme s'écrit sous forme matricielle

1 xp xg o Xg ao Yo
2 n
1 x, x5 -+ X an VYn

Ce n'est pas toujours la meilleure solution. Une méthode plus efficace est de passer par une
base polynomiale particuliére appelée base de Lagrange.

-SB-SC-EPFL INTRODUCTION
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BASE DE LAGRANGE

(JupyTER NOTEBOOK)

On considére les polynémes oy, k = 0,...,n de degré n tels que
or(x) =0,  kj=0,....n,

ol §jx =1sij=ketdy=0sij# k. Explicitement, on a

n

er(x) = H o)

j=ojoak k= %9)

CI-SB-SC-EPFL
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La figure qui suit montre deux polynémes de Lagrange de degré n = 6 relatifs aux noeuds
d'interpolation xg = —1, x; = —2/3,...,x5 = 2/3, et x¢ = 1.

15
¢o(x) ¢3(x)
]
05 i
X1 X4 X6
o o— .
X0 X2 X3 X5
sk ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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EXEMPLE
Pourn=2,x=-1,x1=0, xo =1, les polynémes de la base de Lagrange sont
(X—X1 — x2) 1
o(X *t — 1),
2o(x) Rl (x—1)
X — Xo)\X — X2
1 -1
al) = o o e
(x = x0)(x — x1)
o(x) = x—+1
v ( ) (X2 - Xo)(X2 —X1 2 ( )
1 SDO @2
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POLYNOME D’INTERPOLATION

(JupyTER NOTEBOOK)

Le polyndéme d'interpolation I, des valeurs y; aux noeuds xj, j =0, ..., n, s'écrit

Ma(x) = Y yeeou(), ()

car il vérifie T,(x;) = >0 _o vkek(X) = yj-

Par conséquent, on aura

S. DEeparlis, SCI-SB-SC-EPFL
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INTERPOLATION D'UNE FONCTION REGULIERE

Théoréme (Erreur d’interpolation) Soient xg, x, ..

., Xn, N+ 1 noeuds équirépartis dans

I = [a, b] et soit f € C""1(/). Pour t € I, soit E,f(x) = f(x) — M,f(x). Alors, on a

Enf <
ey B0 < g

1

(n+1)

b— 3 n+1
(=)

ma
x€

x[FmD)l,

On remarque que |'erreur d'interpolation dépend de la dérivée n+ 1 de f.

I-SB-SC-EPFL
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EXEMPLE

t+1
5

Polynémes d'interpolation M;f pour i =1,2,3,6 et f(x) = sin(x), avec des noeuds

équirépartis sur [0, 6].

|_|3f__~
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COMPORTEMENT POUR n GRAND

REMARQUE
Le fait que

lim — b—a\"" 0
] —_— —_— =
n—oo 4(n+1) n

n'implique pas forcément que max.c; |E,f(x)| tende vers zéro quand n — cc.

EXEMPLE

. 1 . . L .
(Runge) Soit f(x) = iTe t € [-5,5]. Si on I'interpole dans des noeuds équirépartis,
I'interpolant présente des oscillations au voisinage des extrémités de |'intervalle, comme on

peut le voir sur la figure suivante.

CI-SB-SC-EPFL INTRODUCTION
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Fonction de Runge et oscillations des polyndmes interpolants dans des noeuds équirépartis. )
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INTERPOLATION DE CHEBYSHEV

Alternatives : Interpolation de Chebyshev, interpolation par morceaux, ou encore approximation
polynomiale.

Pour chaque entier positif n > 1, pour i =0,...n, on note t; = — cos(mi/n) € [-1,1] les
nceuds de Chebyshev-Gauss-Lobatto ou de Clenshaw-Curtis et on définit
a+b b-a

i = i:l' 7b7
X 5 + 5 € [a, b]

pour un intervalle arbitraire [a, b]. Pour une fonction continue f € C1(][a, b]), le polynome
d'interpolation MM,f de degré n aux noeuds {x;,i =0,...,n} converge uniformément vers f
quand n — oo.

CI-SB-SC-EPFL INTRODUCTION
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5 (suite) On reprend le méme exemple mais on interpole la fonction de Runge dans les points
de Chebyshev. La figure montre les polynémes de Chebyshev de degré n =5 et n = 10. On
remarque que les oscillations diminuent lorsqu'on augmente le degré du polynéme.
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INTERPOLATION LINEAIRE PAR MORCEAUX
(Sec. 3.4 du livre)

Soient xg = a < x; < --- < xy = b des noeuds qui divisent I'intervalle | = [a, b] en une réunion
d'intervalles [; = [x;, x;+1] de longueur H ou

b

a Xi—1 Xi Xi+1

Sur chaque sous-intervalle /;, on interpole fj;, par un polynéme de degré 1. Le polyndme par
morceaux (polynéme composite) qu’on obtient est noté M4f(x) et on a :

(X/+1) - f(Xi)

f‘
M0 = Fla) + == =) pourx e
i+1 Xi

INTRODUCTION
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5 (suite) On considére les polynémes par morceaux de degré n = 1 interpolant la fonction de
Runge pour 5 et 10 sous-intervalles de [—5, 5].

0 L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

La figure montre les polynomes N f et M2 pour H; = 2.5 et Hy = 1.0.
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CONVERGENCE [

Théoréme 1 (Prop. 3.3 du livre)
Si f € C%(1), (I = [x0,xn]) et on dénote Ef'f(x) = f(x) — N{f(x), alors

H?
H < " )
max | £;"f(x) |< —5- max|f7(x)]

DEMONSTRATION.
D’aprés la formule (3), sur chaque intervalle /;, on a

H?
EHf < f-// .
ey L ETO IS gy g 00

I-SB-SC-EPFL INTRODUCTION
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CONVERGENCE 11

DEFINITION

Soit py une approximation par morceaux de f : [a, b] — R sur des sous-intervalles de longueur
H. On dit que la convergence est d'ordre g s'il existe une constance C > 0 indépendante de H
telle que
sup |f(x) — pu(x)| < CHE.
x€|a,b]

REMARQUE

On peut montrer que, si I'on utilise un polynéme de degré n (> 1) et si l'on dénote
EMf(x) = f(x) — NHf(x), dans chaque sous-intervalle I;, on trouve

n+1
H < (1) ()|
Ty | EFC 1< gy mai ()l

S. DEPARIS INTRODUCTION
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5 (suite) On considére la fonction de Runge f(x) sur [—5,5], on prend un nombre K croissant
de sous-intervalles K = 20, 40, 80, 160 et on estime I'erreur d’interpolation commise en
évaluant |EJ'f(x)| sur une grille trés fine :

=l

10

10 . '4 ’100
Erreur d'interpolation max,¢; | EXf(x) | de la fonction de Runge par le polynéme composite
N4 en fonction de H.

L'erreur max,¢; | EFf(x) | pour I'interpolation linéaire par morceaux se comporte comme
CH? : ce résultat est en accord avec le théoréme 1. De plus, si on calcule les rapports
maxxe; | EFf(x) | /H?, on peut estimer la constante C.

INTRODU
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LA METHODE DES MOINDRES CARRES

(Sec. 3.6 du livre)

Supposons que I'on dispose de n+ 1 points xg, x1, ..., X, et n+ 1 valeurs yg, y1,...,¥,. On a
vu que, si le nombre de données est grand, le polynéme interpolant peut présenter des
oscillations importantes.

Pour avoir une meilleure représentation des données, on peut chercher un polynéme de degré
m < n qui approche “au mieux” les données.

-SB-SC-EPFL
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DEFINITION

On appelle polynéme aux moindres carrés de degré m fm(x) le polynéme de

degré m tel que

Z |y: - f XI < Z |y, - pm XI)|2 v,Dm(X) S ]P)m

(4)

REMARQUE

Lorsque y; = f(x;) (f étant une fonction continue) alors f,, est dit I'approximation de f au sens

des moindres carrés.

INTRODUCTION
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MATRICE DE VANDERMONDE

Nous cherchons les coefficients du polyndme p(x) = ag + a1 x + ... + amx™ qui satisfont les

(n+ 1) équations p(xx) = yk, k = 0,..., n, c'est-a-dire

ao—i—alxk—f—...—l—amx,f’:yk, k=0,...,n
Ce systéme s'écrit sous forme matricielle Ba'= y ou
1 x x3 - xI a
0“0 0 0 Yo
B= , a= et y=
1 x, x2 - x7 a v,
n n n m n

Puisque m < n, ce systéme est incompatible la plupart du temps.
Par contre, on peut le résoudre au sens des moindres carrés, en considérant :

B"Bi=B"y.

Ce systéme linéaire est dit systéme d’équations normales. Le polynéme définit par les
coefficients obtenus est exactement le polynéme aux moindres carrés de degré m (4).
INTRODUCTION
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