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EXEMPLES ET MOTIVATIONS

EXEMPLE

On considére un test mécanique pour établir le lien entre contraintes (MPa = 100N /cm?) et
déformations relatives (cm/cm) d'un échantillon de tissu biologique (disque intervertébral,
selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, J. Valenta

ed., Elsevier).
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F
oc=F/A
test i | contrainte o | déformation € e=AL/L

1 0.00 0.00

2 0.06 0.08

3 0.14 0.14 < s>

4 0.25 0.20 AL L

5 0.31 0.23

6 0.47 0.25

7 0.60 0.28

8 0.70 0.29

A partir de ces données, on veut estimer la déformation correspondant a un effort o = 0.9 MPa.
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Par la méthode des moindres carrés, on obtient que la droite qui approche le mieux ces
données est p(x) = 0.3938t — 0.0629. On peut utiliser cette droite (dite de régression) pour
estimer € lorsque o = 0.9 MPa : on trouve p(0.9) ~ 0.4.
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EXEMPLE

Les résultats des recensements de la population suisse entre 1900 et 2010 sont (en milliers
d’habitants) :

année 1900 1910 1920 1930 1941 1950
population 3315 3753 3830 4066 4266 4715
année 1960 1970 1980 1990 2000 2010

population 5429 6270 6366 6874 7288 7783

o Peut-on estimer le nombre d'habitants de la Suisse pendant les années ou il n'y a pas eu
de recensement, par exemple en 1945 et en 19757

o Peut-on envisager un modéle pour prédire la taille de la population en 2020 ?
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Le polynéme de degré deux (parabole) qui approche ces données au sens des moindres carrés
est p(x) = 0.15t2 — 549.9¢ + 501600.
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POSITION DU PROBLEME

Soit n > 0 un nombre entier. Etant donnés n + 1 noeuds distincts xg, x1,... x, et n+ 1 valeurs
Y0, Y1,--- Yn, on cherche un polynéme p de degré n (ou plus petit), tel que
‘p(xj):yj pour 0§j§n.‘ (1)

Si ce polynéme existe, on note 1, = p et on appelle I1,, le polynéme d'interpolation des valeurs

yj aux noeuds x;, j =0,...,n.
: (n=4)
st Y, 7 |_|4?
Yo
Yn
1—\5‘_’_—
e g
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Soit f € CO(1) et xg,...,x, € I. Si on prend y; = f(x;), 0 < j < n, alors le polynéme
d'interpolation IM,(x) est noté M,f(x) et est appelé I'interpolant de f aux noeuds xg,... X,.

1 (n=4)

3.,"3@ T - —F <7 ] My?
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BASE DE LAGRANGE
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La figure qui suit montre deux polynémes de Lagrange de degré n = 6 relatifs aux noeuds

d'interpolation xg = —1, x; = —2/3,...

15

0.5

X5 = 2/3, et xg = 1.

¢o(x) ¢3(x)
X1 X4 X6
|- F
X0 X2 X3 X5
1 08 -06 -04 02 0 02 04 06 08

alka) >

Q2l9)V=0 I77
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EXEMPLE

Pour n =2, xg

Po(x) =
e1(x)

Pa(x)

(X —x1)(x — x2)

O_Xl 0_X2
X—XO X—X2

X1—X0 X1—X2
(x = x0)(x — Xl)

(x2 — x0)(x2 — x1)

flex_

=-1,x=0,x=1,les polynémes de la base de Lagrange sont

Se(x - 1),
X =+ 1)(X - 1)7
1

= HMx+1).

oo e o~
Voare Xo= ./(/
)95‘-’—0

- A

CI-SB-SC-EPFL

S. DEPARIS,

INTRODUCTION




INTERPOLATION
0000000000000 @00000000000000

POLYNOME D’INTERPOLATION
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INTERPOLATION D'UNE FONCTION REGULIERE

N
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EXEMPLE

X+1

Polynémes d'interpolation M;f pour i =1,2,3,6 et f(x) = 3

sin(x), avec des noeuds

) (“\M borne
pour xe@a

équirépartis sur [0, 6].

-0.5
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COMPORTEMENT POUR n GRAND

REMARQUE
Le fait que

lim — b—a\"" 0
] —_— —_— =
n—oo 4(n+1) n

n'implique pas forcément que max;c; |E,f(x)| tende vers zéro quand n — cc.

EXEMPLE

. 1 . . . .
(Runge) Soit f(x) = iTe t € [-5,5]. Si on I'interpole dans des noeuds équirépartis,
I'interpolant présente des oscillations au voisinage des extrémités de l'intervalle, comme on

peut le voir sur la figure suivante.
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Fonction de Runge et oscillations des polyndmes interpolants dans des noeuds équirépartis. )
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INTERPOLATION DE CHEBYSHEV

Alternatives : Interpolation de Chebyshev, interpolation par morceaux, ou encore approximation
polynomiale.

Pour chaque entier positif n > 1, pour i =0,...n, on note t; = — cos(mi/n) € [-1,1] les
nceuds de Chebyshev-Gauss-Lobatto ou de Clenshaw-Curtis et on définit

pour un intervalle arbitraire [a, b]. Pour une fonction continue f € C1({[a, b]), le polynome
d'interpolation MM,f de degré n aux noeuds {x;,i =0, ..., n} converge uniformément vers f
quand n — oo.
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5 (suite) On reprend le méme exemple mais on interpole la fonction de Runge dans les points
de Chebyshev. La figure montre les polynémes de Chebyshev de degré n =5 et n = 10. On
remarque que les oscillations diminuent lorsqu'on augmente le degré du polynéme.
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INTERPOLATION LINEAIRE PAR MORCEAUX
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5 (suite) On considére les polynémes par morceaux de degré n = 1 interpolant la fonction de
Runge pour 5 et 10 sous-intervalles de [—5, 5].

0 L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

La figure montre les polynomes M f et M2 f pour H; = 2.5 et Hy = 1.0.
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CONVERGENCE [
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CONVERGENCE 11
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5 (suite) On considére la fonction de Runge f(x) sur [—5,5], on prend un nombre K croissant
de sous-intervalles K = 20, 40, 80, 160 et on estime I'erreur d’interpolation commise en
évaluant |Ef'f(x)| sur une grille trés fine :

=l

10

4 i : R
107 107 10
H

Erreur d'interpolation maxxe; | E}'f(x) | de la fonction de Runge par le polynéme composite
N en fonction de H.

L'erreur max,¢; | EFf(x) | pour I'interpolation linéaire par morceaux se comporte comme
CH? : ce résultat est en accord avec le théoréme 1. De plus, si on calcule les rapports
maxxe; | EXf(x) | /H?, on peut estimer la constante C.

0
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LA METHODE DES MOINDRES CARRES I
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LA METHODE DES MOINDRES CARRES II
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LA METHODE DES MOINDRES CARRES III
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LA METHODE DES MOINDRES CARRES III
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