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Interpolation

Exemples et motivations

Exemple

On considère un test mécanique pour établir le lien entre contraintes (MPa = 100N/cm2
) et

déformations relatives (cm/cm) d’un échantillon de tissu biologique (disque intervertébral,

selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, J. Valenta

ed., Elsevier).
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Interpolation

test i contrainte � déformation ✏
1 0.00 0.00

2 0.06 0.08

3 0.14 0.14

4 0.25 0.20

5 0.31 0.23

6 0.47 0.25

7 0.60 0.28

8 0.70 0.29

A partir de ces données, on veut estimer la déformation correspondant à un effort � = 0.9 MPa.
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Interpolation

Par la méthode des moindres carrés, on obtient que la droite qui approche le mieux ces

données est p(x) = 0.3938t � 0.0629. On peut utiliser cette droite (dite de régression) pour

estimer ✏ lorsque � = 0.9 MPa : on trouve p(0.9) ' 0.4.
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Interpolation

Exemple

Les résultats des recensements de la population suisse entre 1900 et 2010 sont (en milliers

d’habitants) :

année 1900 1910 1920 1930 1941 1950

population 3315 3753 3880 4066 4266 4715

année 1960 1970 1980 1990 2000 2010

population 5429 6270 6366 6874 7288 7783

Peut-on estimer le nombre d’habitants de la Suisse pendant les années où il n’y a pas eu

de recensement, par exemple en 1945 et en 1975 ?

Peut-on envisager un modèle pour prédire la taille de la population en 2020 ?
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Interpolation

Le polynôme de degré deux (parabole) qui approche ces données au sens des moindres carrés

est p(x) = 0.15t
2 � 549.9t + 501600.

années
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Interpolation

Position du problème

Soit n � 0 un nombre entier. Etant donnés n+ 1 noeuds distincts x0, x1,. . . xn et n+ 1 valeurs

y0, y1,. . . yn, on cherche un polynôme p de degré n (ou plus petit), tel que

p(xj) = yj pour 0  j  n. (1)

Si ce polynôme existe, on note ⇧n = p et on appelle ⇧n le polynôme d’interpolation des valeurs

yj aux noeuds xj , j = 0, . . . , n.
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Interpolation

Soit f 2 C
0(I ) et x0, . . . , xn 2 I . Si on prend yj = f (xj), 0  j  n, alors le polynôme

d’interpolation ⇧n(x) est noté ⇧nf (x) et est appelé l’interpolant de f aux noeuds x0,. . . xn.
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Interpolation

Unicité
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Interpolation

Matrice de Vandermonde
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Interpolation

Base de Lagrange
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Interpolation

La figure qui suit montre deux polynômes de Lagrange de degré n = 6 relatifs aux noeuds

d’interpolation x0 = �1, x1 = �2/3,. . . ,x5 = 2/3, et x6 = 1.
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Interpolation

Exemple
Pour n = 2, x0 = �1, x1 = 0, x2 = 1, les polynômes de la base de Lagrange sont

'0(x) =
(x � x1)(x � x2)

(x0 � x1)(x0 � x2)
=

1

2
t(x � 1),

'1(x) =
(x � x0)(x � x2)

(x1 � x0)(x1 � x2)
= �(x + 1)(x � 1),

'2(x) =
(x � x0)(x � x1)

(x2 � x0)(x2 � x1)
=

1

2
t(x + 1).
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Interpolation

Polynôme d’interpolation
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Interpolation

Interpolation d’une fonction régulière
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Interpolation

Exemple

Polynômes d’interpolation ⇧i f pour i = 1, 2, 3, 6 et f (x) =
t + 1

5
sin(x), avec des noeuds

équirépartis sur [0, 6].
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Interpolation

Comportement pour n grand

Remarque
Le fait que

lim
n!1

1

4(n + 1)

✓
b � a

n

◆n+1

= 0

n’implique pas forcément que maxt2I |Enf (x)| tende vers zéro quand n ! 1.

Exemple

(Runge) Soit f (x) =
1

1 + t2
, t 2 [�5, 5]. Si on l’interpole dans des noeuds équirépartis,

l’interpolant présente des oscillations au voisinage des extrémités de l’intervalle, comme on

peut le voir sur la figure suivante.
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Interpolation

Fonction de Runge et oscillations des polynômes interpolants dans des noeuds équirépartis.
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Interpolation

Interpolation de Chebyshev

Alternatives : Interpolation de Chebyshev, interpolation par morceaux, ou encore approximation

polynomiale.

Pour chaque entier positif n � 1, pour i = 0, . . . n, on note t̂i = � cos(⇡i/n) 2 [�1, 1] les
nœuds de Chebyshev-Gauss-Lobatto ou de Clenshaw-Curtis et on définit

xi =
a+ b

2
+

b � a

2
t̂i 2 [a, b],

pour un intervalle arbitraire [a, b]. Pour une fonction continue f 2 C
1([a, b]), le polynôme

d’interpolation ⇧nf de degré n aux noeuds {xi , i = 0, . . . , n} converge uniformément vers f

quand n ! 1.
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Interpolation

5 (suite) On reprend le même exemple mais on interpole la fonction de Runge dans les points

de Chebyshev. La figure montre les polynômes de Chebyshev de degré n = 5 et n = 10. On

remarque que les oscillations diminuent lorsqu’on augmente le degré du polynôme.
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Interpolation

Interpolation linéaire par morceaux
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Interpolation

5 (suite) On considère les polynômes par morceaux de degré n = 1 interpolant la fonction de

Runge pour 5 et 10 sous-intervalles de [�5, 5].
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1
f et ⇧H2

1
f pour H1 = 2.5 et H2 = 1.0.
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Interpolation

Convergence I
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Interpolation

Convergence II
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Interpolation

5 (suite) On considère la fonction de Runge f (x) sur [�5, 5], on prend un nombre K croissant

de sous-intervalles K = 20, 40, 80, 160 et on estime l’erreur d’interpolation commise en

évaluant |EH

1
f (x)| sur une grille très fine :

Erreur d’interpolation maxx2I | EH

n
f (x) | de la fonction de Runge par le polynôme composite

⇧H

1
en fonction de H.

L’erreur maxx2I | EH

n
f (x) | pour l’interpolation linéaire par morceaux se comporte comme

CH
2

: ce résultat est en accord avec le théorème 1. De plus, si on calcule les rapports

maxx2I | EH

n
f (x) | /H2

, on peut estimer la constante C .
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Interpolation

La méthode des moindres carrés I
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Interpolation

La méthode des moindres carrés II
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Interpolation

La méthode des moindres carrés III

S. Deparis, SCI-SB-SC–EPFL Introduction 28 / 28

/HH 50 N , + N 5:(: <$% .2HL57 /'(%3+9HH+<,1)

Z0 N 5) >$2+ + N Z: >P @ #5 V@�++ =L

%1,l!l!!!1!%!V!1S5@#
Sn+)H:,)'

=
n-PQ
OO

= X-PQ
OO

: GL E P' # 5 321 975321 GL5)G21 <$2 '2 1#1;2:
10%; %)G0:/5;%i'2

\) /2$; 2115#27 32 272105352 ';29$3%5 S-- 5$ 1221321
z0%)3021 G0:21



Interpolation

La méthode des moindres carrés III
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