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EQUATIONS NON LINEAIRES

Objectif : trouver les zéros de fonctions non linéaires, c.-a-d. les valeurs o € R
telles que f(a) = 0.

f(x)

(o)
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METHODE DE DICHOTOMIE OU BISSECTION

Soit f : [a, b] — R une fonction continue qui change de signe entre a et b,
c.-a-d. f(a)f(b) < 0. Alors, il existe un zéro « € [a, b] tel que f(a) = 0.

La méthode de dichotomie construit une suite x(©, x() ... x(¥) | telle que
lim gy oo x(K) = a
On pose x(® = 22 (point milieu),

si f(x(9) =0, alors a = x(©)

si f(x(9)f(a) <0 alors a € [a, x(]
— on définit at) = 2 et p(1) = x(©)

si f(xO)f(b) <0 alors a € [xO) b]
— on définit a) = x(© et p() = p

: . 0 b—a
-04 -02 00 02 04 06 08 10 On voit bien que ‘X( ) — Oé‘ < 2

X

1_
On recommence avec [a!), b()] et on aura |x(Y) — | < b )2a _
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ALGORITHME DE BISSECTION

On pose al® = a, b©® = p. Pour k =0, 1, ...
o X(k) _ a(k)ng(k)
O si f(xW) =0, alors x(¥ est le zéro cherché. Autrement :

@ soit f(x(K)f(a(k)) <0, alors le zéro a € [a(¥), x(¥)].
On pose alkt1) = a(k) et plkt1) — (k)

@ soit f(x(K)f(b(K)) < 0, alors le zéro o € [x(9), p(K)].
On pose alkt1) = x(k) gt plk+1) = p(k)
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CRITERE D'’ARRET ET ERREUR

Le point x(¥) se trouve au milieu de [a(¥), b(¥)], dont la longueur est 2;2

. Donc
on a l|'estimation suivante pour |'erreur d approximation :

b—a
€] = ¢ —al < 22,

Si on désire une erreur plus petite d'une tolérance to/ > 0 donnée, combien
d'itérations faudra-t-il faire?

a b—a b—a b—a
< tol & — 2 <2kl o — ) <k+le k> -1
2k+1 — o< tol — < 108, tol S ktlerzlog tol
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EXEMPLE
On veut trouver le zéro de la fonction f(x) = sin(2x) — 1 + x.
On trace le graphe de la fonction f
» (x) = sin(2x) - 1 + x
# fonction to interpolate il
def f(x):
return np.sin(x*2) — 1 0 -
+ X
[a,b] = [—2,2] -
# points for plot Ll
z = np.linspace(a, b, 100)
plt.plot(z, f(z),'—") -3
o 2 = 0 1 2 3
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Si on applique la méthode de dichotomie dans l'intervalle [—1, 1] avec une
tolérance de 1078 et un numéro maximum d'itérations k.., = 1000
zero, esterr = bisection(a,b,f,1e—8,1000)
On trouve la valeur o = 0.352288462 aprés 27 itérations.

» ‘ ‘ ) = sm(?x) “14x ‘ ‘

| ]

0

TS i

_ob i

3t i

e 2 o 0 1 2 3
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METHODE DE NEWTON

Soit f : R — R une fonction différentiable.
Soit x(%) un point donné. On considére I'équation de la droite y(x) qui passe par
le point (x(), £(x(K))) et qui a comme pente f/(x(K) :
Dev. de Taylor : f(x) = +f(x")) + f/(x"))(x — x¥)) + O(x — x))
Droite par (x99, f(x(9)) : y = F(x1)) + £/ (xK)(x — x(¥))

On définit x(*t1) comme étant le point ou cette droite intersecte I'axe x, c.-a-d.
le x pour lequel y = 0. On en déduit que : f/(x(K))(x — x(K)) = —F(x(¥),

(k) _ f(X(k))
f/(x(k))

 k=0,1,2.... (1)
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METHODE DE NEWTON

En partant du point x(9, la suite {x(¥)} converge vers le zéro de
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CONVERGENCE DE LA METHODE DE NEWTON

Est-ce que cette méthode converge ?

o Cela dépend des propriétés de la fonction;

o Cela dépend du point initial.
y y

/ K@ xM x© (M O

f(x) f(x)
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METHODE DE POINT FIXE

Un procédé général pour trouver les racines d'une équation non linéaire f(x) =0
consiste a la transformer en un probléme équivalent x = ¢(x), ou la fonction
auxiliaire ¢ : [a, b] — R doit avoir la propriété suivante :

o(a) =« si et seulement si f(a) =0.

Le point « est dit alors point fixe de la fonction ¢. On peut donc soit chercher
les zéros de f ou déterminer les points fixes de ¢.

Idée : On va construire des suites qui vérifient x(“*1) = ¢(x(K), k > 0. En effet,
si xtK) — o et si ¢ est continue dans [a, b], alors la limite « satisfait ¢(a) = .
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En partant du point x(9, la suite {x(¥)} converge vers le point fixe o

____________________________ -
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Quelques exemples sur comment la valeur de | ¢/(«) | influence la convergence.
Cas convergents :
0<¢(a) <1, -1 < ¢(a) <0.

y ’ y=x

y=0 (x)

y=0 (x)

xO  x® X
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Cas divergents :

x@




Equa;

& L XEMPLE
1 (suite) On considére toujours I'équation f(x) = sin(2x) — 1+ x = 0. On
peut construire deux problémes équivalents

x = ¢1(x) = 1 —sin(2x)

1
X = ¢o(x) = Earcsin(l—x)7 0<x<1
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CONVERGENCE DE LA METHODE DE POINT FIXE

THEOREME (CONVERGENCE GLOBALE)

Supposons que ¢(x) est continue sur [a, b] et telle que ¢(x) € [a, b] pour tout
x € [a, b]. Alors

e il existe au moins un point fixe a € [a, b] de ¢.
Si, de plus, il existe un L < 1 tel que |p(x1) — ¢(x2)| < L|x1 — x2| Vx1, x2 € [a, b],
alors

@ ¢ admet un unique point fixe o € [a, b],

o /a suite définie par x***1) = ¢(x(¥)), k > 0, converge vers o pour toute
donnée initiale x°) dans [a, b].
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DEMONSTRATION.

1. g est continue, donc g(x) = ¢(x) — x est aussi continue. Par I"hypothése sur

I'image de ¢, on a que g(a), g(b) € [a, b], donc g(a) = ¢(a) —a >0 et

g(b) = ¢(b) — b < 0. On sait alors qu'il existe au moins un zéro « € [a, b] de g,
g(a) =0 = ¢(a) — o, donc il existe au moins un point fixe o de ¢ dans [a, b] :

o(a) = a € [a, b

2. Soient a1, a; € [a, b] deux points fixes différents. On a que
a1 — | = [@(c1) — d(a2)| < Ljar — o] < |1 — azl,

ce qui est absurde. Il existe donc un unique point fixe a de ¢ dans [a, b].
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3. Soient x(© € [a, b] et x(k+1) = ¢(x(K). On a que
0 < x5 —af = |p(x) — ()] < LIxW —a| < ... < LFFHxO —q,

Puisque L < 1, pour k — 00, on a que

lim [x*) —a| < lim [X|x® —a| =0
k—r00 k—o00

Donc, ¥x(© € [a, b], la suite {x(K)} définie par x(k*1) = ¢(x(K)), k > 0 converge
vers « lorsque k — 00.
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REMARQUE
Si ¢(x) est différentiable sur [a, b] et

dK < 1 tel que |¢'(x)| < K Vx € [a, b],

alors la deuxiéme condition de la proposition (3) est satisfaite (mais pas
nécessairement la premiére!). Cette hypothése est plus forte, mais elle est plus
souvent utilisée en pratique car elle est plus aisée a vérifier.
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ORDRE DE CONVERGENCE

DEFINITION

Pour une suite de nombres réels {x(X)} qui converge, x(*) — a, on dit que la
convergence vers « est linéaire s'il existe une constante C < 1 telle que, pour k
suffisamment grand,

| xHD) — < C I xW —a].

On dit que la convergence est quadratique, s'il existe une constante C > 0 telle
que l'inégalité

| xUHD) — o |< C | x —a|?.

En général, la convergence est d'ordre p, p > 1, s'il existe une constante C > 0
(avec C < 1 lorsque p = 1) telle que

| xHD) — o |< C | x —a|P.
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CONVERGENCE LOCALE

THEOREME (CONVERGENCE LOCALE)

Soient ¢ une fonction continue et différentiable sur [a, b] et « un point fixe de ¢.
Si| ¢'(a) |< 1, alors
o il existe un § > 0 tel que, pour tout x(©) € [a, b] avec | x©) —a |< 6, Ia
suite {x(K)} deéfinie par x**1) = ¢(x(¥)) converge vers a lorsque k — cc.

De plus, on a

(k+1) _

lim ——~—— = ¢'().

k—o00 X(k) [0

On remarque que, si 0 <| ¢'(«) |< 1, alors pour n'importe quelle constante C
telle que |¢'(«)| < C < 1, si k est suffisamment grand, on a :

]x(k“ ]<C\xk)—a|

c.a-d. la suite converge linéairement.
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THEOREME

Soient ¢ une fonction deux fois différentiable sur [a, b] et o un point fixe de ¢.
Soit x© dans I'intervalle de convergence (locale). Si ¢'(a)) = 0 et ¢"(a) # 0,
alors la méthode de point fixe associée a la fonction d'itération ¢ est d’ordre 2 et

x(k+1) _ o ¢//(a)
lim =
k—o0 (X(k) — Oé)2 2

DEMONSTRATION.
Le développement de Taylor de ¢ en x = o donne

K4 0 = 6(x) — p(a) = () — ) + TX () oy

oil 17 est entre x(k) et . Ainsi, on a

Xt —a L ¢"(n)  ¢"(a)
[im ———— = lim = .
k—o00 X(k) — 2 k—00 2 2
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EXEMPLE

1 (suite) On a appliqué la méthode de point fixe aux deux fonctions ¢; et ¢, a
partir de la valeur initiale x(©) = 0.7.

x = ¢1(x) = 1 —sin(2x)
1
X = ¢o(x) = Earcsin(l—x), 0<x<1
On remarque que la premiére méthode ne converge pas tandis que la deuxiéme

converge a la valeur o = 0.352288459558650 en 44 itérations.
En effet, on a ¢ () = —1.5237713 et ¢5() = —0.65626645.
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A PROPOS DE LA METHODE DE NEWTON

La méthode de Newton constitue une méthode de point fixe : x(*t1) = ¢(x(¥)

pour la fonction »
f(x
¢(X) =X= f./(X)'

Soit o un zéro de la fonction f, c.-a-d. tel que f(a) = 0. On remarque que si

f'(a) # 0,

e pla) =a— ;((Z)) = q,

° siqﬁ(ﬁ):ﬁalorsﬁ:ﬁ—%et f(p) =0,
oy 1 O = F()f"(x)

R TP

La méthode est donc convergente (Prop. 5).

On trouve aussi (exercice) que @ = ;’,((i)) Donc si f”(a)) # 0, on a une

convergence quadratique (Prop. 6), du fait que ¢'(a) = 0 et que ¢(«) # 0
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[l en suit le théoréme suivant :

THEOREME

Soint f deux fois différentiable et o t.q f(a)) = 0 et f'(«) # 0. Alors il existe
d > 0 tel que, si | x©0 — o |< 4§, la suite définie par la méthode de Newton
converge vers q.

De plus, la convergence est quadratique; plus précisément

xt) — o ()
lim = .
koo (x(K) — )2 2f'(«)

S. DEeparls, SCI-SB-SC-EPFL FQUATIONS NON LINEAIRES



EQUATIONS NON LINEAIRES

0000000000000 0000O00O0O00000e00000

DEFINITION

On dit qu'un zéro o de f est de multiplicité m, m € N si
fla)=...=f"N(a)=0 et f(M(a)#D0.
Un zéro de multiplicité m = 1 est appelé zéro simple.

REMARQUE

Si f'(a) =0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considére alors la méthode de Newton modifiée :

kD) (R

k=0,1,2.... (2)

avec m la multiplicité de «. Cette méthode est d’ordre 2.

Si la multiplicité m de « n’est pas connue, il y a d'autres méthodes, des méthodes
adaptatives, qui permettent de récupérer I'ordre quadratique de la convergence.
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CRITERES D’ARRET POUR LE POINT FIXE I

Méthode de point fixe : a = ¢(a), x(9, et x(k*1) = ¢(x(K)). k =0,1, ....
Quand s'arréter ? L'erreur a l'itération k est e¥) = o — x(K).
k+1)

= a =X = g(a) = o(x1) = ¢/(£)e®

avec £ entre x(%) et . On regarde maintenant I'incrément :

el

xUHD 50 — x(k+D) _ o o—x () = (k) _elk+1) — (1- ¢'(§(k))) el (dév. Taylor]

(3)

Si ¢'(€()) £ 1 (d"ailleurs c'est le cas si |¢/| < 1) on peut écrire :

(k) _ M
— ¢/(§W)
Si x(%) est proche de « et ¢/ est continu, on peut apprOX|mer ¢' (%)) par
k) s (k+1) s (k)
Cb/( ) ou ¢’ () ou (X(kg_f((k—l) ) = X(k)Jr_X(k—l):|
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CRITERES D’ARRET POUR LE POINT FIXE II

On a obtenu |'estimation

SkH1) _ () , 5
el = A= aEemy ~ (@' (€H)) (x DX

On cherche a obtenir |e(¥)| ~ ¢ (une tolérance :
choisie). 0
On trace un graphe de la fonction y(t) = %=

1—t -10 -0.5 00 05 10

v(1-t)

4

0.1)
(-1,05)

Sit<0,(t)e[i 1] (0] < 1v(41) _ () -
Sit~0,7(t)~1 ™) < [x — x\9] crit :

Sit—1(f)voo  FEW)RI(W) [k - X0 < (1 - ¢(x9))

xUH1) — x| < €

[e(k) ~ L E(x(kﬂ) — xN) x e = x50 x (1 - F)
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UN CRITERE D’ARRET POUR NEWTON

Pour Newton on a ¢(x) = x — %

Si f'(a) # 0 alors ¢'(a) = 0, ¢" (o) # 0 et la convergence est quadratique.

Pour ¢/(a)) = 0 le critére contrdle de I'incrément est le critére d'arrét optimal
Ix(FD) — x| < ¢ (4)

ol € est une tolérance sur |'erreur.
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EXEMPLE : DYNAMIQUE DES POPULATIONS

[QUARTERONI, SALERI, GERVASIO, CALCUL SCIENTIFIQUE, 2010, PAGE 44]

La dynamique d'une population est définie par un processus itératif, a partir d'un
état initial donné (x(©),

X(k+1) — ¢(X(k)), k > 0,
ot x(k) représente le nombre d'individus k générations aprés |'état initial.

De plus, les états stationnaires (d'équilibre) x* de la population considérée sont
identifiés par le probléme suivant,

X" = ¢(x7), (5)
ou de facon équivalente,

X" =x"R(x*), cad R(x")=1. (6)

Dans les deux cas, on a besoin de résoudre un probléme non linéaire.
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Plusieurs modéles sont disponibles pour R(x) :
o Le modéle de Malthus (Thomas Malthus 1766-1834),

xT = ¢1(x) = xRy(x) avec Ry(x) =r, ou r est une constante positive

e Le modéle de croissance avec ressources limitées (Pierre-Frangois Verhulst,
1804-1849),

xT = ¢p(x) = xRa(x) avec Ro(x) =r/(L+x/K), r>0,K>0

qui améliore le modeéle de Malthus en tenant compte du fait que la
croissance d'une population est limitée par les ressources a disposition.

@ Le modéle de proie-prédateur avec saturation
xT = ¢3(x) = xRs(x) avec Ry(x) = rx/(1+ (x/K)?)

qui représente |'évolution du modéle de Verhulst en présence d'une
population antagoniste.
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