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Équations non linéaires

Équations non linéaires

Objectif : trouver les zéros de fonctions non linéaires, c.-à-d. les valeurs α ∈ R
telles que f (α) = 0.
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Équations non linéaires

Méthode de dichotomie ou bissection

Soit f : [a, b]→ R une fonction continue qui change de signe entre a et b,
c.-à-d. f (a)f (b) < 0. Alors, il existe un zéro α ∈ [a, b] tel que f (α) = 0.

La méthode de dichotomie construit une suite x (0), x (1), . . . , x (k), telle que
limk→∞ x (k) = α.
On pose x (0) = a+b

2 (point milieu),

si f (x (0)) = 0, alors α = x (0)

si f (x (0))f (a) < 0 alors α ∈ [a, x (0)]
— on définit a(1) = a et b(1) = x (0)

si f (x (0))f (b) < 0 alors α ∈ [x (0), b]
— on définit a(1) = x (0) et b(1) = b

On voit bien que |x (0) − α| < b−a
2 .

On recommence avec [a(1), b(1)] et on aura |x (1) − α| < b(1)−a(1)
2 = b−a

4
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Équations non linéaires

Algorithme de bissection

On pose a(0) = a, b(0) = b. Pour k = 0, 1, ...

1 x (k) = a(k)+b(k)

2
2 si f (x (k)) = 0, alors x (k) est le zéro cherché. Autrement :

1 soit f (x (k))f (a(k)) < 0, alors le zéro α ∈ [a(k), x (k)].
On pose a(k+1) = a(k) et b(k+1) = x (k)

2 soit f (x (k))f (b(k)) < 0, alors le zéro α ∈ [x (k), b(k)].
On pose a(k+1) = x (k) et b(k+1) = b(k)
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Critère d’arrêt et erreur

Le point x (k) se trouve au milieu de [a(k), b(k)], dont la longueur est b−a
2k . Donc

on a l’estimation suivante pour l’erreur d’approximation :

|e(k)| = |x (k) − α| ≤ b − a

2k+1 ,

Si on désire une erreur plus petite d’une tolérance tol > 0 donnée, combien
d’itérations faudra-t-il faire ?

b − a

2k+1 ≤ tol ⇔ b − a

tol
≤ 2k+1 ⇔ log2

(
b − a

tol

)
≤ k+1⇔ k ≥ log2

(
b − a

tol

)
−1
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Exemple

On veut trouver le zéro de la fonction f (x) = sin(2x)− 1+ x .
On trace le graphe de la fonction f

# fonction to interpolate
def f(x):

return np.sin(x∗2) − 1

+ x

[a,b] = [−2,2]
# points for plot
z = np.linspace(a, b, 100)

plt.plot(z, f(z),’−’)

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2
f(x) = sin(2x) − 1 + x

a

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 6 / 31



Équations non linéaires

Si on applique la méthode de dichotomie dans l’intervalle [−1, 1] avec une
tolérance de 10−8 et un numéro maximum d’itérations kmax = 1000

zero, esterr = bisection(a,b,f,1e−8,1000)

On trouve la valeur α = 0.352288462 après 27 itérations.

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2
f(x) = sin(2x) − 1 + x

a

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 7 / 31



Équations non linéaires

Méthode de Newton

Soit f : R→ R une fonction différentiable.
Soit x (0) un point donné. On considère l’équation de la droite y(x) qui passe par
le point (x (k), f (x (k))) et qui a comme pente f ′(x (k)) :

Dev. de Taylor : f (x) = +f (x (k)) + f ′(x (k))(x − x (k)) + O(x − x (k))

Droite par (x (k), f (x (k)) : y = f (x (k)) + f ′(x (k))(x − x (k))

On définit x (k+1) comme étant le point où cette droite intersecte l’axe x , c.-à-d.
le x pour lequel y = 0. On en déduit que : f ′(x (k))(x − x (k)) = −f (x (k)),

x (k+1) = x (k) − f (x (k))

f ′(x (k))
, k = 0, 1, 2 . . . . (1)
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Équations non linéaires

Méthode de Newton

En partant du point x (0), la suite {x (k)} converge vers le zéro de f
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Convergence de la méthode de Newton
Est-ce que cette méthode converge ?

Cela dépend des propriétés de la fonction ;
Cela dépend du point initial.

y

f(x)

x

α

y

f(x)

x

α

x
(2)

(3) x x(0)x xx(1)(1) (0)
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Équations non linéaires

Méthode de point fixe

Un procédé général pour trouver les racines d’une équation non linéaire f (x) = 0
consiste à la transformer en un problème équivalent x = φ(x), où la fonction
auxiliaire φ : [a, b]→ R doit avoir la propriété suivante :

φ(α) = α si et seulement si f (α) = 0.

Le point α est dit alors point fixe de la fonction φ. On peut donc soit chercher
les zéros de f ou déterminer les points fixes de φ.

Idée : On va construire des suites qui vérifient x (k+1) = φ(x (k)), k ≥ 0. En effet,
si x (k) → α et si φ est continue dans [a, b], alors la limite α satisfait φ(α) = α.
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Équations non linéaires

En partant du point x (0), la suite {x (k)} converge vers le point fixe α
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Quelques exemples sur comment la valeur de | φ′(α) | influence la convergence.
Cas convergents :

0 < φ′(α) < 1, −1 < φ′(α) < 0.
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α

y=φ (x)

y

y=x
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x

y=x
y
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α
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Cas divergents :
φ′(α) > 1, φ′(α) < −1.

xx
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Équations non linéaires

Exemple
1 (suite) On considère toujours l’équation f (x) = sin(2x)− 1+ x = 0. On
peut construire deux problèmes équivalents

x = φ1(x) = 1− sin(2x)

x = φ2(x) =
1
2
arcsin(1− x), 0 ≤ x ≤ 1
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Convergence de la méthode de point fixe

Théorème (Convergence globale)

Supposons que φ(x) est continue sur [a, b] et telle que φ(x) ∈ [a, b] pour tout
x ∈ [a, b]. Alors

il existe au moins un point fixe α ∈ [a, b] de φ.

Si, de plus, il existe un L < 1 tel que |φ(x1)− φ(x2)| ≤ L|x1 − x2| ∀x1, x2 ∈ [a, b],
alors

φ admet un unique point fixe α ∈ [a, b],
la suite définie par x (k+1) = φ(x (k)), k ≥ 0, converge vers α pour toute
donnée initiale x (0) dans [a, b].
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Équations non linéaires

Démonstration.

1. g est continue, donc g(x) = φ(x)− x est aussi continue. Par l’hypothèse sur
l’image de φ, on a que g(a), g(b) ∈ [a, b], donc g(a) = φ(a)− a ≥ 0 et
g(b) = φ(b)− b ≤ 0. On sait alors qu’il existe au moins un zéro α ∈ [a, b] de g ,
g(α) = 0 = φ(α)− α, donc il existe au moins un point fixe α de φ dans [a, b] :
φ(α) = α ∈ [a, b]

2. Soient α1, α2 ∈ [a, b] deux points fixes différents. On a que

|α1 − α2| = |φ(α1)− φ(α2)| ≤ L|α1 − α2| < |α1 − α2|,

ce qui est absurde. Il existe donc un unique point fixe α de φ dans [a, b].
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3. Soient x (0) ∈ [a, b] et x (k+1) = φ(x (k)). On a que

0 ≤ |x (k+1) − α| = |φ(x (k))− φ(α)| ≤ L|x (k) − α| ≤ ... ≤ Lk+1|x (0) − α|,

Puisque L < 1, pour k →∞, on a que

lim
k→∞
|x (k) − α| ≤ lim

k→∞
Lk |x (0) − α| = 0

Donc, ∀x (0) ∈ [a, b], la suite {x (k)} définie par x (k+1) = φ(x (k)), k ≥ 0 converge
vers α lorsque k →∞.
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Remarque
Si φ(x) est différentiable sur [a, b] et

∃K < 1 tel que |φ′(x)| ≤ K ∀x ∈ [a, b],

alors la deuxième condition de la proposition (3) est satisfaite (mais pas
nécessairement la première !). Cette hypothèse est plus forte, mais elle est plus
souvent utilisée en pratique car elle est plus aisée à vérifier.
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Ordre de convergence

Définition

Pour une suite de nombres réels {x (k)} qui converge, x (k) → α, on dit que la
convergence vers α est linéaire s’il existe une constante C < 1 telle que, pour k
suffisamment grand,

| x (k+1) − α |≤ C | x (k) − α | .

On dit que la convergence est quadratique, s’il existe une constante C > 0 telle
que l’inégalité

| x (k+1) − α |≤ C | x (k) − α |2 .

En général, la convergence est d’ordre p, p ≥ 1, s’il existe une constante C > 0
(avec C < 1 lorsque p = 1) telle que

| x (k+1) − α |≤ C | x (k) − α |p .
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Convergence locale

Théorème (Convergence locale)

Soient φ une fonction continue et différentiable sur [a, b] et α un point fixe de φ.
Si | φ′(α) |< 1, alors

il existe un δ > 0 tel que, pour tout x (0) ∈ [a, b] avec | x (0) − α |≤ δ, la
suite {x (k)} définie par x (k+1) = φ(x (k)) converge vers α lorsque k →∞.

De plus, on a

lim
k→∞

x (k+1) − α
x (k) − α

= φ′(α).

On remarque que, si 0 <| φ′(α) |< 1, alors pour n’importe quelle constante C
telle que |φ′(α)| < C < 1, si k est suffisamment grand, on a :

| x (k+1) − α |≤ C | x (k) − α |,
c.à-d. la suite converge linéairement.
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Théorème

Soient φ une fonction deux fois différentiable sur [a, b] et α un point fixe de φ.
Soit x (0) dans l’intervalle de convergence (locale). Si φ′(α) = 0 et φ′′(α) 6= 0,
alors la méthode de point fixe associée à la fonction d’itération φ est d’ordre 2 et

lim
k→∞

x (k+1) − α
(x (k) − α)2

=
φ′′(α)

2
.

Démonstration.
Le développement de Taylor de φ en x = α donne

x (k+1) − α = φ(x (k))− φ(α) = φ′(α)(x (k) − α) + φ′′(η)

2
(x (k) − α)2

où η est entre x (k) et α. Ainsi, on a

lim
k→∞

x (k+1) − α
(x (k) − α)2

= lim
k→∞

φ′′(η)

2
=
φ′′(α)

2
.
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Exemple
1 (suite) On a appliqué la méthode de point fixe aux deux fonctions φ1 et φ2 à
partir de la valeur initiale x (0) = 0.7.

x = φ1(x) = 1− sin(2x)

x = φ2(x) =
1
2
arcsin(1− x), 0 ≤ x ≤ 1

On remarque que la première méthode ne converge pas tandis que la deuxième
converge à la valeur α = 0.352288459558650 en 44 itérations.
En effet, on a φ′1(α) = −1.5237713 et φ′2(α) = −0.65626645.
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A propos de la méthode de Newton

La méthode de Newton constitue une méthode de point fixe : x (k+1) = φ(x (k))
pour la fonction

φ(x) = x − f (x)

f ′(x)
.

Soit α un zéro de la fonction f , c.-à-d. tel que f (α) = 0. On remarque que si
f ′(α) 6= 0,

φ(α) = α− f (α)

f ′(α)
= α,

si φ(β) = β alors β = β − f (β)

f ′(β)
et f (β) = 0,

φ′(x) = 1− [f ′(x)]2 − f (x)f ′′(x)

[f ′(x)]2
.

La méthode est donc convergente (Prop. 5).
On trouve aussi (exercice) que φ′′(α)

2 = f ′′(α)
2f ′(α) . Donc si f ′′(α) 6= 0, on a une

convergence quadratique (Prop. 6), du fait que φ′(α) = 0 et que φ(α) 6= 0
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Il en suit le théorème suivant :

Théorème
Soint f deux fois différentiable et α t.q f (α) = 0 et f ′(α) 6= 0. Alors il existe
δ > 0 tel que, si | x (0) − α |≤ δ, la suite définie par la méthode de Newton
converge vers α.
De plus, la convergence est quadratique ; plus précisément

lim
k→∞

x (k+1) − α
(x (k) − α)2

=
f ′′(α)

2f ′(α)
.
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Définition
On dit qu’un zéro α de f est de multiplicité m, m ∈ N si
f (α) = . . . = f (m−1)(α) = 0 et f (m)(α) 6= 0.
Un zéro de multiplicité m = 1 est appelé zéro simple.

Remarque
Si f ′(α) = 0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considère alors la méthode de Newton modifiée :

x (k+1) = x (k) −m
f (x (k))

f ′(x (k))
, k = 0, 1, 2 . . . . (2)

avec m la multiplicité de α. Cette méthode est d’ordre 2.

Si la multiplicité m de α n’est pas connue, il y a d’autres méthodes, des méthodes
adaptatives, qui permettent de récupérer l’ordre quadratique de la convergence.
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Critères d’arrêt pour le point fixe I

Méthode de point fixe : α = φ(α), x (0), et x (k+1) = φ(x (k)). k = 0, 1, ....
Quand s’arrêter ? L’erreur à l’itération k est e(k) = α− x (k).

e(k+1) = α− x (k+1) = φ(α)− φ(x (k)) = φ′(ξ(k))e(k),

avec ξ(k) entre x (k) et α. On regarde maintenant l’incrément :

x (k+1)−x (k) = x (k+1)−α+α−x (k) = e(k)−e(k+1) =
(
1− φ′(ξ(k))

)
e(k). (dév. Taylor)

(3)
Si φ′(ξ(k)) 6= 1 (d’ailleurs c’est le cas si |φ′| < 1) on peut écrire :

e(k) =
x (k+1) − x (k)

1− φ′(ξ(k))
Si x (k) est proche de α et φ′ est continu, on peut approximer φ′(ξ(k)) par

φ′(x (k)) ou φ′(α)
[
ou φ(x(k))−φ(x(k−1))

x(k)−x(k−1) = x(k+1)−x(k)
x(k)−x(k−1)

]
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Critères d’arrêt pour le point fixe II

On a obtenu l’estimation

e(k) =
x (k+1) − x (k)

(1− φ′(ξ(k)))
. = γ(φ′(ξ(k)))(x (k+1)−x (k))

On cherche à obtenir |e(k)| ≈ ε (une tolérance
choisie).
On trace un graphe de la fonction γ(t) = 1

1−t

Si t < 0, γ(t) ∈ [12 , 1]
Si t ≈ 0, γ(t) ≈ 1

}
|e(k)| . |x (k+1) − x (k)| crit : |x (k+1) − x (k)| < ε

Si t → 1, γ(t)→∞ φ′(ξ(k)) ≈ φ′(x (k)) |x (k+1) − x (k)| < ε(1− φ′(x (k)))[
e(k) ≈ 1

1− t̃
(x (k+1) − x (k)) ≈ ε⇒ x (k+1) − x (k) ≈ ε(1− t̃)

]
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Un critère d’arrêt pour Newton

Pour Newton on a φ(x) = x − f (x)
f ′(x)

Si f ′(α) 6= 0 alors φ′(α) = 0, φ”(α) 6= 0 et la convergence est quadratique.

Pour φ′(α) = 0 le critère contrôle de l’incrément est le critère d’arrêt optimal

|x (k+1) − x (k)| < ε (4)

où ε est une tolérance sur l’erreur.
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Exemple : Dynamique des populations
[Quarteroni, Saleri, Gervasio, Calcul scientifique, 2010, page 44]

La dynamique d’une population est définie par un processus itératif, à partir d’un
état initial donné (x (0)),

x (k+1) = φ(x (k)), k ≥ 0,

où x (k) représente le nombre d’individus k générations après l’état initial.
De plus, les états stationnaires (d’équilibre) x∗ de la population considérée sont
identifiés par le problème suivant,

x∗ = φ(x∗), (5)

ou de façon équivalente,

x∗ = x∗R(x∗), c.à.d R(x∗) = 1. (6)

Dans les deux cas, on a besoin de résoudre un problème non linéaire.
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Plusieurs modèles sont disponibles pour R(x) :
Le modèle de Malthus (Thomas Malthus 1766-1834),

x+ = φ1(x) = xR1(x) avec R1(x) = r , où r est une constante positive

Le modèle de croissance avec ressources limitées (Pierre-François Verhulst,
1804-1849),

x+ = φ2(x) = xR2(x) avec R2(x) = r/(1+ x/K ), r > 0,K > 0

qui améliore le modèle de Malthus en tenant compte du fait que la
croissance d’une population est limitée par les ressources à disposition.
Le modèle de proie-prédateur avec saturation

x+ = φ3(x) = xR3(x) avec R3(x) = rx/(1+ (x/K )2)

qui représente l’évolution du modèle de Verhulst en présence d’une
population antagoniste.
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