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Équations non linéaires

Newton (Série 1, Ex. 2, partie 3)

Soit f : [1, 3] → R, f(x) = x3 − 2x− 5. On observe que :

f(1) = −6 < 0 et f(3) = 16 > 0 .

On a sûrement au moins un zéro x∗ ∈ [1, 3].
1 Montrer l’unicité du zéro x∗ ∈ [1, 3].
2 Écrire la méthode de Newton pour la fonction f .
3 En interprétant cette méthode comme une méthode de point fixe, montrer

qu’elle est d’ordre 2. (Cette partie sera à faire après avoir vu la section 1.4
des vidéos)
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Équations non linéaires

Newton (Ex. 2, partie 3) I

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 3 / 19



Équations non linéaires

Point fixe (Ex. 1)

On considère le problème de calculer
√
2.

Vérifier que α =
√
2 est un point fixe de la fonction

ϕ(x) = −1

4
x2 + x+

1

2
.

Ensuite, prouver que pour x(0) ∈ [1, 2], il existe une constante K > 0 telle que

|x(k) − α| ≤ Kk|x(0) − α|, ∀k ≥ 0.

Quel est le comportement de la suite {x(k)} lorsque k → ∞ ? Combien
d’itérations de la méthode de point fixe sont nécessaires pour trouver une valeur
approchée de

√
2 qui soit exacte jusqu’au dixième chiffre après la virgule ?

(Suggestion : il faut avoir une estimation de la constante K).
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Équations non linéaires

Convergence de la méthode de point fixe, rappel

Théorème (Convergence globale)

Supposons que ϕ(x) est continue sur [a, b] et telle que ϕ(x) ∈ [a, b] pour tout
x ∈ [a, b]. Alors

il existe au moins un point fixe α ∈ [a, b] de ϕ.

Si, de plus, il existe un L < 1 tel que |ϕ(x1)− ϕ(x2)| ≤ L|x1 − x2|
∀x1, x2 ∈ [a, b],
alors

ϕ admet un unique point fixe α ∈ [a, b],
la suite définie par x(k+1) = ϕ(x(k)), k ≥ 0, converge vers α pour toute
donnée initiale x(0) dans [a, b].

Si ϕ(x) est différentiable sur [a, b] et ∃K < 1 tel que |ϕ′(x)| ≤ K ∀x ∈ [a, b],
alors la deuxième condition de la proposition (1) est satisfaite.
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Point fixe (Ex. 1) I
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Équations non linéaires

Point fixe (Ex. 1), solution I

Les points fixes de ϕ(x) = −1

4
x2 + x+

1

2
sont les racines de

x = −1

4
x2 + x+

1

2
⇒ x2 = 2,

donc α =
√
2 est bien un point fixe de ϕ.
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Équations non linéaires

Point fixe (Ex. 1), solution II

le graphe de la fonction −1

4
x2 + x+

1

2
= −1

4
(x− 2)2 +

3

2
c’est une parabole,

qui atteint son maximum en x = 2.
Cette parabole est donc croissante sur [1, 2], ce qui peut être vérifié aussi en
calculant la dérivée ϕ′(x) :

ϕ′(x) =
2− x

2
≥ 0 si x ∈ [1, 2].

Donc on aura
ϕ(1) =

5

4
≤ ϕ(x) ≤ ϕ(2) =

3

2
∀x ∈ [1, 2],

ce qui montre que l’hypothèse H1 est satisfaite (l’image de [1, 2] selon ϕ est
[5/4, 3/2] qui est un sous-ensemble de [1, 2]).

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 8 / 19



Équations non linéaires

Point fixe (Ex. 1), solution III
De plus, on a que :

x ∈ [1, 2] ⇒ |ϕ′(x)| ≤ 1

2
,

donc H2 est satisfaite avec K = 1/2.
Il est clair que l’on peut appliquer l’inégalité |x(k) − α| ≤ K|x(k−1) − α| en
récurrence. On obtient

|x(k) − α| ≤ K|x(k−1) − α| ≤ K2|x(k−2) − α| ≤ . . . ≤ Kk|x(0) − α|.

Comme 0 < K < 1, on a Kk → 0 lorsque k → ∞, donc

lim
k→∞

|x(k) − α| = 0

c’est-à-dire
lim
k→∞

x(k) = α.
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Équations non linéaires

Remarque

Calculer
√
2 revient aussi à trouver le zéro positif α =

√
2 de la fonction

f(x) = x2 − 2,

c’est-à-dire à résoudre une équation non linéaire.
Quelles méthodes connaissez-vous pour approcher

√
2 ?

Quels sont les avantages et les inconvénients ?
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Équations non linéaires

Point fixe (Ex. 2)

On considère la fonction ϕ(x) = ax(1− x2), a étant un paramètre réel.

1 Montrer que ϕ : [0, 1] → [0, 1] si 0 ≤ a ≤ 3
√
3

2
.

2 Trouver les valeurs positives de a telles que l’itération de point fixe

x(k+1) = ϕ(x(k)), k ≥ 0 (1)

puisse approcher le point fixe α1 = 0.
3 Trouver la condition sous laquelle un deuxième point fixe α2 > 0 existe

(dans l’intervalle [0, 1]) et déterminer les valeurs de a telles que
l’itération (1) puisse approcher α2.

4 Pour quelle valeur de a l’itération (1) peut-on approcher α2 avec un ordre de
convergence quadratique ?
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Équations non linéaires

Point fixe (Ex. 2), solution I

1 Pour a = 0, ϕ ≡ 0 ∈ [0, 1]. Si a > 0, ϕ est une fonction strictement positive
sur l’intervalle (0, 1) et qui vaut zéro en x = 0 et x = 1. Pour trouver le
point de maximum de ϕ en (0, 1), on calcule

ϕ′(x) = a(1− 3x2) = 0 → x =

√
1

3
.

Si on impose ϕ

(√
1

3

)
≤ 1, on trouve a ≤ 3

√
3

2
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Équations non linéaires

Point fixe (Ex. 2), solution II

2 D’abord il faut contrôler que α = 0 est un point fixe pour ϕ. En effet

ϕ(0) = 0 ∀a.

Puis, on calcule la dérivée première de ϕ

|ϕ′(x)| = a(1− 3x2)

On peut approcher le point fixe α1 = 0 si

|ϕ′(0)| < 1 → a < 1.
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Équations non linéaires

Point fixe (Ex. 2), solution III

3 On cherche maintenant si il existe un point 0 < α2 ≤ 1 tel que

α2 = ϕ(α2).

On trouve

α2 = aα2(1− α2
2) → α2 =

√
1− 1

a
> 0.

Si on impose la condition α2 ≤ 1, on a√
1− 1

a
< 1 → a > 1

(
avec toujours a ≤ 3

√
3

2

)

Il faut aussi montrer que la dérivée de ϕ2 en α2 est inférieure à 1 en valeur
absolue ([A écrire !])
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Point fixe (Ex. 2), solution IV
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Point fixe (Ex. 2), solution V

4 On a que l’iteration
x(k+1) = ϕ(x(k))

peut approcher α2 avec ordre 2 si |ϕ′(α2)| = 0. On a donc que

0 = |ϕ′(α2)| = a|(1− 3α2
2)|, a > 0

si α∗
2 =

√
1

3
.

Ce point fixe est atteint en correspondance de

1 = a(1− (α∗
2)

2) → a =
3

2
.
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Équations non linéaires

Newton (Ex. 3)

Soit α une racine double de la fonction f , c’est-à-dire f(α) = f ′(α) = 0.
1 En tenant compte du fait qu’on peut écrire la fonction f comme

f(x) = (x− α)2h(x) où h(α) ̸= 0 ,

vérifier que la méthode de Newton pour l’approximation de la racine α est
seulement d’ordre 1. [Conseil : écrire la méthode sous la forme de point fixe
et calculer Φ′(α)]

2 On considère la méthode de Newton modifiée suivante :

x(k+1) = x(k) − 2
f(x(k))

f ′(x(k))
.

Vérifier que cette méthode est au moins d’ordre 2 si l’on veut approcher α.

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 18 / 19



Équations non linéaires

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 19 / 19



Équations non linéaires

Newton (Ex. 3) I

1 On regarde la méthode de Newton comme une méthode de point fixe :

x(k+1) = ϕ(x(k)) = x(k) − f(x(k))

f ′(x(k))

Si 0 < |ϕ′(α)| < 1 la méthode est d’ordre 1, tandis que si ϕ′(α) = 0 elle est
au moins d’ordre 2. On a

ϕ′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=

f(x)f ′′(x)

f ′(x)2

où

f(x) = (x− α)2h(x)

f ′(x) = (x− α) [2h(x) + (x− α)h′(x)]

f ′′(x) = 2h(x) + 4(x− α)h′(x) + (x− α)2h′′(x).
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Newton (Ex. 3) II

Donc

ϕ′(x) =
f(x)f ′′(x)

f ′(x)2
=

(x− α)2h(x) [2h(x) + 4(x− α)h′(x) + (x− α)2h′′(x)]

(x− α)2 [2h(x) + (x− α)h′(x)]2
,

=
h(x) [2h(x) + 4(x− α)h′(x) + (x− α)2h′′(x)]

[2h(x) + (x− α)h′(x)]2
,

ϕ′(α) =
h(α) [2h(α)]

[2h(α)]2
=

1

2
,

et la méthode est d’ordre 1.
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Newton (Ex. 3) III

2 Pour la méthode de Newton modifiée, on a

ϕ(x) = x− 2
f(x)

f ′(x)

ϕ′(x) = 1− 2
f ′(x)2 − f(x)f ′′(x)

f ′(x)2
= −1 + 2

f(x)f ′′(x)

f ′(x)2

On vient de calculer le terme f(x)f ′′(x)/f ′(x)2 et on a vu qu’il converge
vers 1/2 si x → α ; on a finalement

ϕ′(α) = −1 + 2 · 1
2
= 0.

La méthode est donc au moins d’ordre 2.
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