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Equations non linéaires

Newton (Série 1, Ex. 2, partie 3)

Soit f: [1,3] = R, f(x) =23 — 2z — 5. On observe que :
F1)=—6<0 et f(3)=16>0.

On a siirement au moins un zéro z* € [1, 3].
Montrer ['unicité du zéro z* € [1, 3].
Ecrire la méthode de Newton pour la fonction f.

En interprétant cette méthode comme une méthode de point fixe, montrer
qu'elle est d'ordre 2. (Cette partie sera a faire aprés avoir vu la section 1.4
des vidéos)
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Equations non linéaires

Newton (Ex. 2, partie 3) |
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Equations non linéaires

Point fixe (Ex. 1)

On considére le probléme de calculer /2.
Vérifier que av = /2 est un point fixe de la fonction

1 1
p(x) = —;ﬁz trts.

Ensuite, prouver que pour z(?) € [1,2], il existe une constante K > 0 telle que
2™ — | < K¥2@ —al, Vk>0.

Quel est le comportement de la suite {2*)} lorsque k¥ — oo ? Combien
d'itérations de la méthode de point fixe sont nécessaires pour trouver une valeur
approchée de v/2 qui soit exacte jusqu'au dixiéme chiffre aprés la virgule ?
(Suggestion : il faut avoir une estimation de la constante K).

S. Deparis, SCI-SB-SC-EPFL Equations non linéaires 4 /19



Equations non linéaires

Convergence de la méthode de point fixe, rappel

Théoreme (Convergence globale)
Supposons que ¢(z) est continue sur [a,b] et telle que ¢(x) € [a,b] pour tout
x € [a,b]. Alors
m i/ existe au moins un point fixe a € [a,b] de ¢.
Si, de plus, il existe un L < 1 tel que |p(x1) — ¢(x2)| < Ll|zy — 29

V1, x9 € [a,b],
alors

m ¢ admet un unique point fixe o € |a, b],

m /a suite définie par x*+Y) = (™)), k > 0, converge vers a pour toute
donnée initiale (°) dans [a, b].

Si ¢(x) est différentiable sur [a,b] et 3K < 1 tel que |¢/(z)| < K Vz € [a,b],
alors la deuxiéme condition de la proposition (1) est satisfaite.
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Equations non linéaires

Point fixe (Ex. 1) |
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Equations non linéaires

Point fixe (Ex. 1), solution |

. 1 .
Les points fixes de ¢(z) = —Z:ﬁ +x+ B sont les racines de

12+ +1 = 22=2
rT=——x"+T+ - o=
4 2 ’

donc o = v/2 est bien un point fixe de ¢.
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Equations non linéaires

Point fixe (Ex. 1), solution I

i 1 1 3,
le graphe de la fonction —ZxQ trt g = —Z(a: —2)% + 5 Cest une parabole,
qui atteint son maximum en xr = 2.

Cette parabole est donc croissante sur [1,2], ce qui peut &tre vérifié aussi en
calculant la dérivée ¢'(z) :

_2—x
2

¢'(x)

>0 si zell2].
Donc on aura .
ol1) = 5 < 6(x) < 6(2) =

ce qui montre que I'hypothése H1 est satisfaite
[5/4,3/2] qui est un sous-ensemble de [1,2]).

Ve [1,2],

— N W

I'image de [1, 2] selon ¢ est
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Equations non linéaires

Point fixe (Ex. 1), solution Il

De plus, on a que :
ve([L2] = [¢)]<

Y

DN | —

donc H2 est satisfaite avec K = 1/2.
Il est clair que I'on peut appliquer I'inégalité |2*) — a| < K|z*~Y — af en
récurrence. On obtient

lz®) —a| < K|z® ) —a| < KYaz®2 —qa| < ... < K2 —ql.
Comme 0 < K <1, on a K* — 0 lorsque k — oo, donc

lim |z —a| =0
k—oo
c'est-a-dire

lim z® = q.
k—oo
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Equations non linéaires

Remarque

Calculer v/2 revient aussi a trouver le zéro positif o = v/2 de la fonction

f(flf):l'Q—Q,

c'est-a-dire a résoudre une équation non linéaire.
m Quelles méthodes connaissez-vous pour approcher /27

m Quels sont les avantages et les inconvénients ?
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Equations non linéaires

Point fixe (Ex. 2)

On considére la fonction ¢(x) = az(1 — x?), a étant un paramétre réel.

33

B Montrer que ¢ : [0,1] — [0, 1] S|0<a<—

Trouver les valeurs positives de a telles que | itération de point fixe
2D = gxW), k>0 (1)

puisse approcher le point fixe a; = 0.

Trouver la condition sous laquelle un deuxiéme point fixe ap, > 0 existe
(dans I'intervalle [0, 1]) et déterminer les valeurs de a telles que
I'itération (1) puisse approcher .

Pour quelle valeur de a I'itération (1) peut-on approcher a avec un ordre de
convergence quadratique ?
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Equations non linéaires
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Equations non linéaires

Point fixe (Ex. 2), solution |

Poura=0, $ =0 € [0,1]. Si a > 0, ¢ est une fonction strictement positive
sur l'intervalle (0,1) et qui vaut zéro en z = 0 et = 1. Pour trouver le
point de maximum de ¢ en (0, 1), on calcule

(b,(l') :a(1—31'2> =0 = x= 1

3
1
Si on impose ¢ <\/;) <1, on trouve a < ¥
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Equations non linéaires

Point fixe (Ex. 2), solution I

D’abord il faut contréler que o = 0 est un point fixe pour ¢. En effet
»(0)=0 Ya.
Puis, on calcule la dérivée premiére de ¢
|¢/(2)| = a(l - 32%)
On peut approcher le point fixe a; = 0 si

' (0)] <1 — a<l.
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Equations non linéaires

Point fixe (Ex. 2), solution Il

On cherche maintenant si il existe un point 0 < as < 1 tel que

ay = P(az).

9 1
ag =ams(l—a3) — ag=1/1——=>0.
a

Si on impose la condition ap, < 1, on a

/ 1 3V3
l--<1 — a>1 avectoujoursag%—
a

Il faut aussi montrer que la dérivée de ¢, en ay est inférieure a 1 en valeur
absolue ([A écrirel])

On trouve
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Equations non linéaires

Point fixe (Ex. 2), solution IV

S. Deparis, SCI-SB-SC-EPFL Equations non linéaires 16 / 19



Equations non linéaires

Point fixe (Ex. 2), solution V

On a que l'iteration
20D (200

peut approcher ay avec ordre 2 si |¢'(az)| = 0. On a donc que

3

Ce point fixe est atteint en correspondance de

0=[¢(az)] =al(1-3a3)l, a>0

l=a(l—(a)?) —a= g
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Equations non linéaires

Newton (Ex. 3)

Soit «v une racine double de la fonction f, c'est-a-dire f(a) = f'(a) =0

En tenant compte du fait qu'on peut écrire la fonction f comme

fl@) = (z—a)f’h(z) ot h(a)#0,

vérifier que la méthode de Newton pour |'approximation de la racine « est
seulement d'ordre 1. [Conseil : écrire la méthode sous la forme de point fixe
et calculer ®'(«)]

On considére la méthode de Newton modifiée suivante :

(*)
L) _ o) _ o J@)

f'(a®)

Vérifier que cette méthode est au moins d'ordre 2 si I'on veut approcher a.
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Equations non linéaires

Newton (Ex. 3) |

On regarde la méthode de Newton comme une méthode de point fixe :

k
2® D = p(p®)) = 2 ®) fa™®)

F(®)

Si 0 < |¢'(a)] <1 la méthode est d'ordre 1, tandis que si ¢'(a) = 0 elle est
au moins d'ordre 2. On a
f'(@)? = f@)f"(x) _ f)f"(z)

gb/(l‘) =1- f/(x)z - f’(x)2

ol

F#) = (& — a)*h(a)
(@) = (z — a) 2h(z) + (z — a)l'(v)]
f"(x) = 2h(z) + 4(z — )W (2) + (v — a)?h(2).
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Newton (Ex.

Equ

ations non linéaires

et la méthode est d'ordre 1.

S. Deparis,

SCI-SB-SC-EPFL

3) 1
_ f@)f"(@) _ (@ —a)*h(z) 2h(x) + Az — )l (z) + (2 — a)*h"(2)]
f'(x)? (z — @)? 2h(x) + (x — a)W/(z))? 7
_ h(z) [2h(z) + 4(x — @)W (z) + (z — a)?h"(x)]
2h(z) + (z — o)/ (x)]? 7
b Rh)] 1
ooy = M



Equations non linéaires

Newton (Ex. 3) Il

Pour la méthode de Newton modifiée, on a

)
oy 1o @ = @) (=) o f@)f(x)
d(x)=1-2 Fi(2)? =—-1+2 F(2)?

On vient de calculer le terme f(x)f”(x)/f'(x)* et on a vu qu'il converge
vers 1/2 si x — «; on a finalement

¢’(a)=—1+2-%=0.

La méthode est donc au moins d'ordre 2.
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