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EQUATIONS NON LINEAIRES

Objectif : trouver les zéros de fonctions non linéaires, c-a-d les valeurs o € R
telles que f(a) = 0.

f(x)

(o)
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METHODE DE DICHOTOMIE OU BISSECTION I
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METHODE DE DICHOTOMIE OU BISSECTION II
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CRITERE D'’ARRET ET ERREUR
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|
- EXEMPLE

— On veut approcher le zéro de la fonction f(x) = sin(2x) — 1+ x sur l'intervalle |
— [-3,3] avec une erreur de 1073, Quelles sont les premiéres approximations ?
~ Combien d'itération faudra-t-il faire si on désire une précision de 10747

1) = sin(26) = 1+ x
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ZERO D'UNE FONCTION, METHODE DE NEWTON

Objectif : trouver les zéros de fonctions (ou systémes) non linéaires, c-a-d les
valeurs a € R telles que f(a) = 0.

— f
1_
X a
0_
x
Y _1_
—2 -
-3+, . . , ,
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METHODE DE NEWTON (OU NEWTON-RAPHSON)
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METHODE DE NEWTON

En partant du point x(9, la suite {x(K)} converge vers le zéro de
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CONVERGENCE DE LA METHODE DE NEWTON

Est-ce que cette méthode converge ?
o Cela dépend des propriétés de la fonction;;

o Cela dépend du point initial.
y y

/ @ xM x© XD O

f(x) f(x)
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METHODE DE POINT FIXE
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En partant du point x(9, la suite {x(¥)} converge vers le point fixe o

____________________________ -
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Quelques exemples sur comment la valeur de | ¢/(«) | influence la convergence.
Cas convergents :
0<¢(a) <1, -1 < ¢(a) <0.

y ’ y=x

y=0 (x)

y=0 (x)

xO  x® X
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Cas divergents :

¢'(a) > 1, ¢ (a) < —1.

y=0 (x)

0}

M q x x@
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CONVERGENCE DE LA METHODE DE POINT FIXE
L
-~ THEOREME (CONVERGENCE GLOBALE)
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REMARQUE
Si ¢(x) est différentiable sur [a, b] et

dK < 1 tel que |¢'(x)| < K Vx € [a, b],

alors la deuxiéme condition de la proposition (2) est satisfaite (mais pas
nécessairement la premiére!). Cette hypothése est plus forte, mais elle est plus
souvent utilisée en pratique car elle est plus aisée a vérifier.
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ORDRE DE CONVERGENCE

DEFINITION

Pour une suite de nombres réels {x(X)} qui converge, x(*) — a, on dit que la
convergence vers « est linéaire s'il existe une constante C < 1 telle que, pour k

suffisamment grand,

| x5t — < | xW —a .
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ORDRE DE CONVERGENCE

DEFINITION

Pour une suite de nombres réels {x(X)} qui converge, x(*) — a, on dit que la
convergence vers « est linéaire s'il existe une constante C < 1 telle que, pour k
suffisamment grand,

| xHD) — < C I xW —a].

On dit que la convergence est quadratique, s'il existe une constante C > 0 telle
que l'inégalité

| xUHD) — o |< C | x —a|?.
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ORDRE DE CONVERGENCE

DEFINITION

Pour une suite de nombres réels {x(X)} qui converge, x(*) — a, on dit que la
convergence vers « est linéaire s'il existe une constante C < 1 telle que, pour k
suffisamment grand,

| xHD) — < C I xW —a].

On dit que la convergence est quadratique, s'il existe une constante C > 0 telle
que l'inégalité

| xUHD) — o |< C | x —a|?.

En général, la convergence est d'ordre p, p > 1, s'il existe une constante C > 0
(avec C < 1 lorsque p = 1) telle que

| xUHD) — o |< C | x —a|P.
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CONVERGENCE LOCALE

THEOREME (CONVERGENCE LOCALE)

Soient ¢ une fonction continue et différentiable sur [a, b] et o un point fixe de ¢.
Si| ¢'(a) |< 1, alors

o il existe un § > 0 tel que, pour tout x© € [a, b] avec | X0 —a |< 6, Ja
suite {x)} définie par x(k+1) = ¢(x(K)) converge vers o lorsque k — oc.

De plus, on a

lim —— = ¢'(a).

k—oo x(K) —
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THEOREME

Soient ¢ une fonction deux fois différentiable sur [a, b] et a un point fixe de ¢. On
considére x(©) dans I'ensemble de convergence locale. Si ¢'(a)) = 0 et ¢"(a) # 0,
alors la méthode de point fixe associée a la fonction d'itération ¢ est d'ordre 2 et

xk+1) _ gb”(a)
lim =
koo (x0 —a)2 2

DEMONSTRATION.
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A PROPOS DE LA METHODE DE NEWTON 1
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A PROPOS DE LA METHODE DE NEWTON 11
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DEFINITION
On dit qu'un zéro o de f est de multiplicité m, m € N si
fla)=...=fmD(a)=0 et f("(a)#£D0.

Un zéro de multiplicité m = 1 est appelé zéro simple.

REMARQUE

Si f'(a) = 0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considére alors la méthode de Newton modifiée :

f(x(k))
ky _ A\ ) _
mf/(x(k))’ k=0,1,2.... (1)

k1)

avec m la multiplicité de .. Cette méthode est d’ordre 2.
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DEFINITION

On dit qu'un zéro o de f est de multiplicité m, m € N si
fla)=...=f"N(a)=0 et f(M(a)#D0.
Un zéro de multiplicité m = 1 est appelé zéro simple.

REMARQUE

Si f'(a) = 0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considére alors la méthode de Newton modifiée :

£(x(k)
) o T

k=0,1,2.... (1)

avec m la multiplicité de .. Cette méthode est d’ordre 2.

Si la multiplicité m de « n’est pas connue, il y a d'autres méthodes, des méthodes
adaptatives, qui permettent de récupérer |'ordre quadratique de la convergence.
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CRITERES D’ARRET POUR LE POINT FIXE I
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CRITERES D’ARRET POUR LE POINT FIXE II

S. DEpaRris, SC EQUATIONS NON LINEAIRES



E(’ ATIONS NON LINE RES
000000000000 00000O00OO0O00000e

CRITERES D’ARRET POUR NEWTON
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