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Équations non linéaires

Équations non linéaires

Objectif : trouver les zéros de fonctions non linéaires, c-à-d les valeurs α ∈ R
telles que f (α) = 0.
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Méthode de dichotomie ou bissection I
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Méthode de dichotomie ou bissection II
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Critère d’arrêt et erreur
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Exemple

On veut approcher le zéro de la fonction f (x) = sin(2x)− 1+ x sur l’intervalle
[−3, 3] avec une erreur de 10−3. Quelles sont les premières approximations ?
Combien d’itération faudra-t-il faire si on désire une précision de 10−4 ?
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Équations non linéaires

Zéro d’une fonction, Méthode de Newton

Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les
valeurs α ∈ R telles que f (α) = 0.
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Méthode de Newton (ou Newton-Raphson)
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Méthode de Newton

En partant du point x (0), la suite {x (k)} converge vers le zéro de f
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Convergence de la méthode de Newton
Est-ce que cette méthode converge ?

Cela dépend des propriétés de la fonction ;
Cela dépend du point initial.
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Méthode de point fixe
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En partant du point x (0), la suite {x (k)} converge vers le point fixe α
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Équations non linéaires

Quelques exemples sur comment la valeur de | φ′(α) | influence la convergence.
Cas convergents :

0 < φ′(α) < 1, −1 < φ′(α) < 0.
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Cas divergents :
φ′(α) > 1, φ′(α) < −1.
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Convergence de la méthode de point fixe

Théorème (Convergence globale)
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Équations non linéaires

Remarque
Si φ(x) est différentiable sur [a, b] et

∃K < 1 tel que |φ′(x)| ≤ K ∀x ∈ [a, b],

alors la deuxième condition de la proposition (2) est satisfaite (mais pas
nécessairement la première !). Cette hypothèse est plus forte, mais elle est plus
souvent utilisée en pratique car elle est plus aisée à vérifier.
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Équations non linéaires

Ordre de convergence

Définition

Pour une suite de nombres réels {x (k)} qui converge, x (k) → α, on dit que la
convergence vers α est linéaire s’il existe une constante C < 1 telle que, pour k
suffisamment grand,

| x (k+1) − α |≤ C | x (k) − α | .

On dit que la convergence est quadratique, s’il existe une constante C > 0 telle
que l’inégalité

| x (k+1) − α |≤ C | x (k) − α |2 .

En général, la convergence est d’ordre p, p ≥ 1, s’il existe une constante C > 0
(avec C < 1 lorsque p = 1) telle que

| x (k+1) − α |≤ C | x (k) − α |p .
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Équations non linéaires

Convergence locale

Théorème (Convergence locale)

Soient φ une fonction continue et différentiable sur [a, b] et α un point fixe de φ.
Si | φ′(α) |< 1, alors

il existe un δ > 0 tel que, pour tout x (0) ∈ [a, b] avec | x (0) − α |≤ δ, la
suite {x (k)} définie par x (k+1) = φ(x (k)) converge vers α lorsque k →∞.

De plus, on a

lim
k→∞

x (k+1) − α
x (k) − α

= φ′(α).
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Équations non linéaires

Théorème

Soient φ une fonction deux fois différentiable sur [a, b] et α un point fixe de φ. On
considère x (0) dans l’ensemble de convergence locale. Si φ′(α) = 0 et φ′′(α) 6= 0,
alors la méthode de point fixe associée à la fonction d’itération φ est d’ordre 2 et

lim
k→∞

x (k+1) − α
(x (k) − α)2

=
φ′′(α)

2
.

Démonstration.
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A propos de la méthode de Newton I
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A propos de la méthode de Newton II
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Équations non linéaires

Définition
On dit qu’un zéro α de f est de multiplicité m, m ∈ N si
f (α) = . . . = f (m−1)(α) = 0 et f (m)(α) 6= 0.
Un zéro de multiplicité m = 1 est appelé zéro simple.

Remarque
Si f ′(α) = 0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considère alors la méthode de Newton modifiée :

x (k+1) = x (k) −m
f (x (k))

f ′(x (k))
, k = 0, 1, 2 . . . . (1)

avec m la multiplicité de α. Cette méthode est d’ordre 2.

Si la multiplicité m de α n’est pas connue, il y a d’autres méthodes, des méthodes
adaptatives, qui permettent de récupérer l’ordre quadratique de la convergence.
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Critères d’arrêt pour le point fixe I
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Critères d’arrêt pour le point fixe II
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Critères d’arrêt pour Newton

S. Deparis, SCI-SB-SC–EPFL Équations non linéaires 29 / 29


	1 – Équations non linéaires

