

Mock Exam 2025			
EPFL	Course: Numerical Analysis – EL/MX/CH	Lecturer: Prof. Michael Herbst	Date: Spring Session 2025 Duration: 3h 00

Mock exam disclaimer

- This mock exam gives you an example how the final exam will look like. Questions 1–4, 7, & 8 have been taken from the **2024 exam**, question 5 & 6 from the **2024 mock exam**. As the course has changed compared to last year, some questions may use terminology we did not employ this year.
- In 2025, the final exam will only contain **pen and paper** questions, which moreover will cover the contents of **the entire class**. Furthermore you can expect this year's **final exam** to be a little **more involved** than this mock exam.

Exam instructions

This exam has **8 exercises** with in total **45 points**. The material consists of **two** parts:

- This **question sheet** with the questions. All questions are pen and paper questions.
- A personalised **answer sheet** (with your name and sciper number).

Answering the questions

- For each question on this question sheet, provide the **answers in the corresponding section** of the **answer sheet**. **Do not write onto the question sheet itself**. Only these answer sheets will be marked.
- On the **answer sheet** only **write within the black boxes**. If you need extra space, additional blank pages are given in the back. **Clearly identify for which question** you provide additional answers. **Also add a remark in the original answer box** where you run out of space that additional text can be found in the appendix.
- **Please write with a pen (no pencil or erasable ballpen)**.
- For each of your answers, **outline the reasoning** and **justify your answer**.
- At the end of the exam both the question and answer sheet will be collected.

Authorised material

- You are allowed a **two-sided handwritten A4 cheatsheet** (hand-written on paper, no print-outs).
- No other notes, sheets or books are allowed. No calculator, mobile phone, tablet, laptop or any other electronic device.

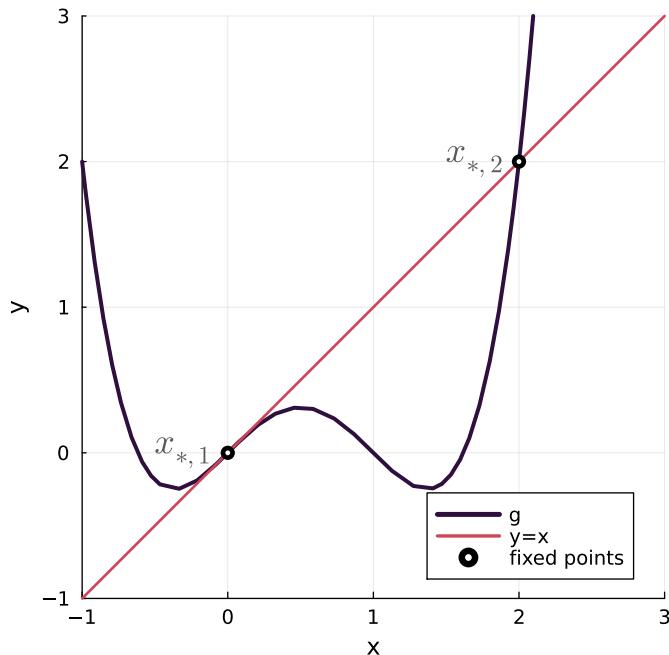
Exercise 1 (7P) — exam 2024

Given a parameter $\theta \in \mathbb{R}$, consider the function

$$g(x) = x^4 - 2\theta x^3 + x.$$

(a) **(2P)** Show that the only fixed points of g are $x_{*,1} = 0$ and $x_{*,2} = 2\theta$.

(b) **(1P)** Figure 1 depicts $g(x)$ for $\theta = 1$ together with its two fixed points $x_{*,1}, x_{*,2}$. By visual inspection determine for which of the two fixed points $x_{*,1}$ and $x_{*,2}$ the fixed-point iterations $x^{(k+1)} = g(x^{(k)})$ converge, provided that a starting point $x^{(0)}$ sufficiently close to the respective fixed point has been chosen. Justify your answer.

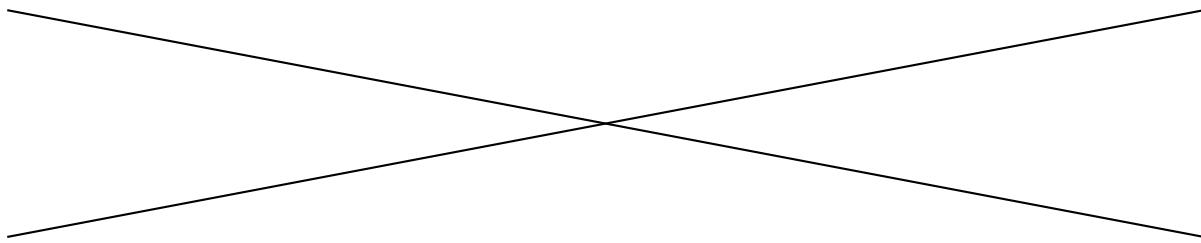


(c) **(3P)** We return to the general case where θ is a parameter of the problem.

- For which values of θ do fixed-point iterations converge to $x_{*,2}$ provided a good starting point is chosen?
- For which values of θ is the fastest convergence rate to $x_{*,2}$ achieved?

(d) We consider the case where θ is chosen such that the fastest convergence rate in the fixed-point iterations is achieved (the value you determined in (c) (ii)).

(1P) What is the convergence order of Newton's method for these value(s) of θ ? Does Newton provide any advantage over fixed point iterations in this case?



Exercise 2 (8P) — exam 2024

(a) **(1.5P)** We are given $n + 1$ nodes $x_1, \dots, x_{n+1} \in \mathbb{R}$. Define the Lagrange basis associated to x_1, \dots, x_{n+1} and specify how this basis can be used to find the n -th degree interpolating polynomial through the data points $(x_1, y_1), (x_2, y_2), \dots, (x_{n+1}, y_{n+1})$.

(b) **(1.5P)** Using the Lagrange basis, find the interpolating polynomial through the points $(x_1 = -1, y_1 = -2)$, $(x_2 = 1, y_2 = 0)$, $(x_3 = 4, y_3 = 6)$.

For polynomial interpolation with equally spaced nodes, the interpolation error is governed by the following theorem:

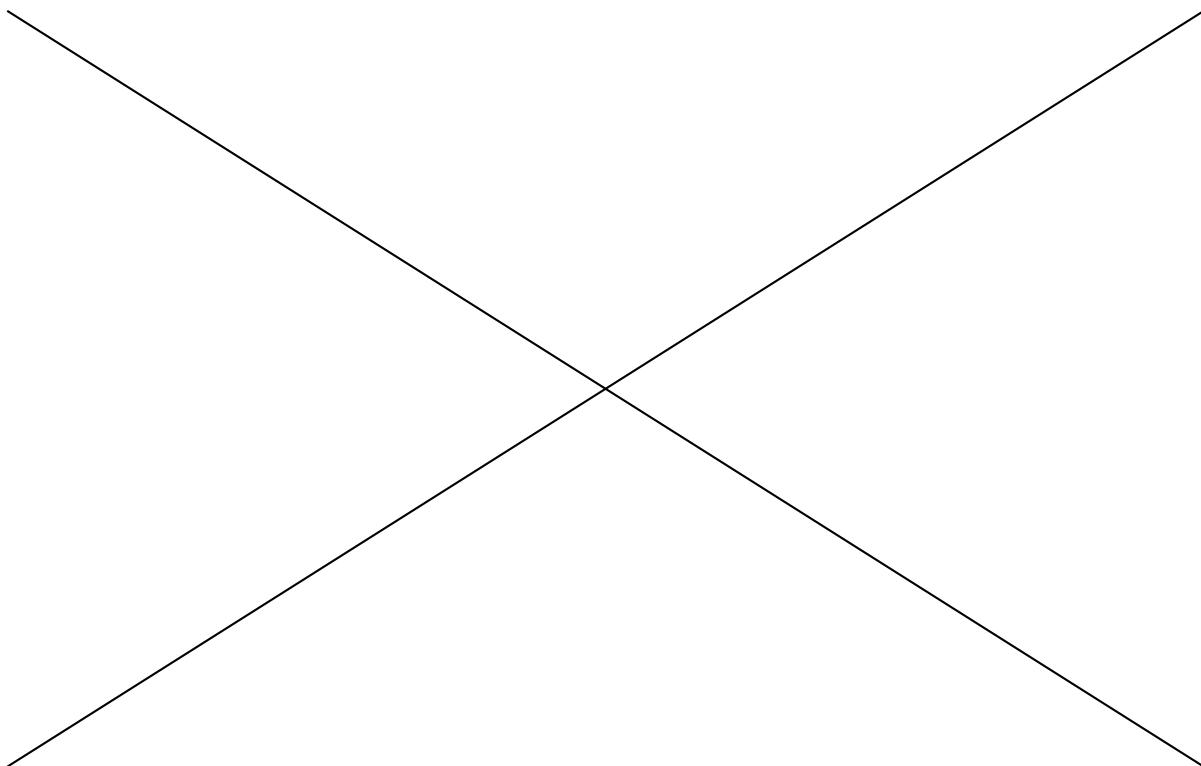
Theorem. For a C^{n+1} function $f : [a, b] \rightarrow \mathbb{R}$ and $a = x_1 < x_2 < \dots < x_{n+1} = b$ equally distributed nodes in $[a, b]$ the n -th degree polynomial interpolant p_n of the data $(x_i, f(x_i))$ with $i = 1, 2, \dots, n + 1$ satisfies the following bound on the interpolation error

$$\max_{x \in [a, b]} |f(x) - p_n(x)| \leq \frac{1}{4(n+1)} \left(\frac{b-a}{n} \right)^{n+1} \max_{x \in [a, b]} |f^{(n+1)}(x)|. \quad (1)$$

We consider polynomial interpolation with $n + 1$ equally distributed nodes over the interval $[-1, 1]$ for the functions $f_1(x) = \sin(x)$ and $f_2(x) = \frac{1}{1+20x^2}$.

(c) **(3P)** Show that for f_1 the interpolation error goes to 0 as $n \rightarrow \infty$.

(d) **(2P)** For f_2 we have $\max_{x \in [0, 1]} |f_2^{(n+1)}(x)| \approx 20^n n!$ such that the right-hand side of (1) grows to infinity as $n \rightarrow \infty$. What happens to the polynomial interpolation in this case? What needs to be changed in the polynomial interpolation procedure to achieve exponential convergence for such functions f_2 ?



Exercise 3 (7P) — exam 2024

We consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}$$

for $\alpha > 0$ and an associated linear system

$$\mathbf{Ax} = \mathbf{b} \quad \text{with} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (2)$$

where we seek the solution $\mathbf{x} \in \mathbb{R}^2$.

When representing (2) on a computer we assume that the available floating-point precision is unable to represent \mathbf{b} exactly introducing a small error $\varepsilon > 0$: the computer is only able to solve the approximate linear system

$$\mathbf{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}} \quad \text{with} \quad \tilde{\mathbf{b}} = \begin{pmatrix} 1 + \varepsilon \\ 1 - \varepsilon \end{pmatrix} \quad (3)$$

and thus only able to obtain an approximate solution $\tilde{\mathbf{x}} \in \mathbb{R}^2$.

(a) **(2P)** For a *general* square and invertible matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ define the condition number $\kappa(\mathbf{M})$ in terms of matrix norms. Also provide an expression to compute the condition number using eigenvalues of appropriate matrices.

(b) **(2P)** Show that the condition number of \mathbf{A} is

$$\kappa(\mathbf{A}) = \left| \frac{1 + \alpha}{1 - \alpha} \right|. \quad (4)$$

You may use that a matrix $\begin{pmatrix} a & c \\ c & b \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ has eigenvalues

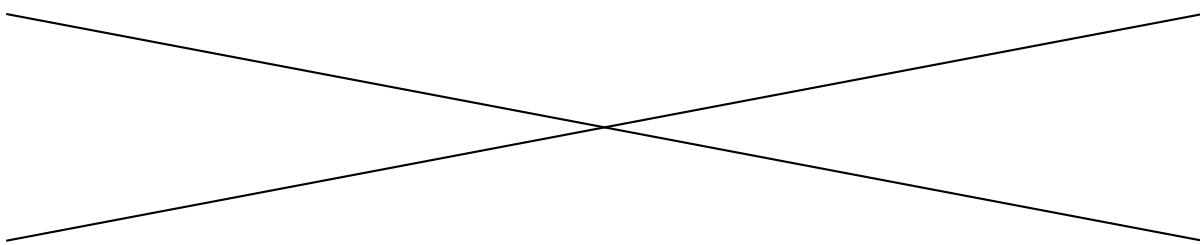
$$\frac{a + b}{2} - \sqrt{\frac{(a - b)^2}{4} + c^2} \quad \text{and} \quad \frac{a + b}{2} + \sqrt{\frac{(a - b)^2}{4} + c^2}.$$

(c) **(1P)** The solution to the perturbed system (3) is given by

$$\tilde{\mathbf{x}} = \frac{1}{1 + \alpha} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{\varepsilon}{1 - \alpha} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

and similarly $\mathbf{x} = \frac{1}{1 + \alpha} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Compute the relative error in the solution $\frac{\|\tilde{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|}$ as well as the relative error in the right-hand side $\frac{\|\tilde{\mathbf{b}} - \mathbf{b}\|}{\|\mathbf{b}\|}$.

(d) **(2P)** Describe in one sentence what the condition number measures for a linear system (2). Use this to explain your results in (c).



Exercise 4 (5P) — exam 2024

Consider the algorithm for **LU factorization** given below.

Algorithm (LU factorisation).

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$,

Output: $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{L} \in \mathbb{R}^{n \times n}$

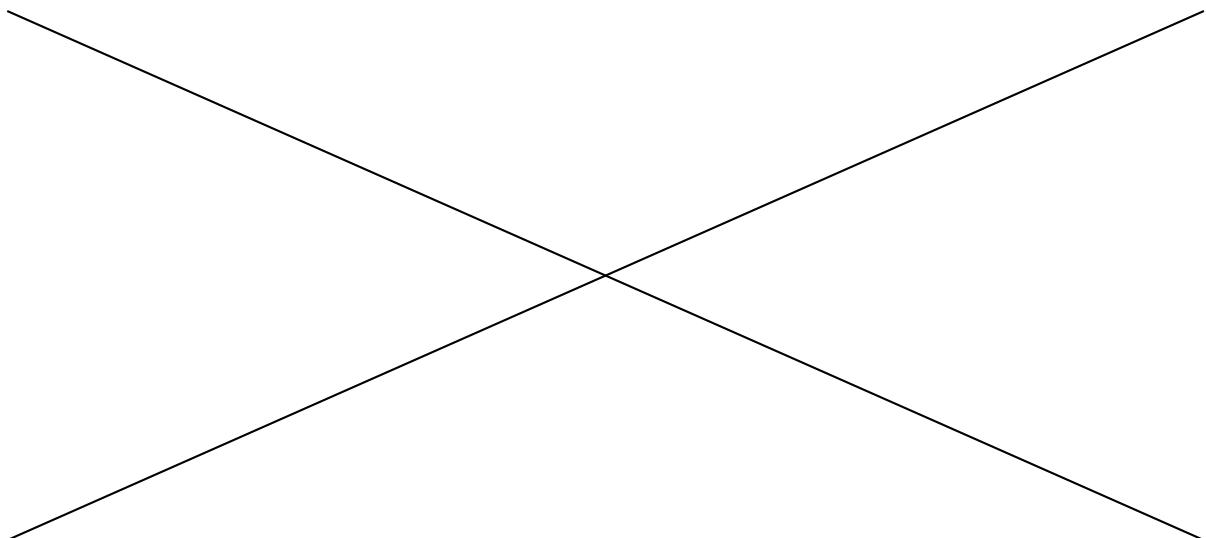
1. $\mathbf{A}^{(1)} = \mathbf{A}$
2. for $k = 1, \dots, n-1$ (*algorithm steps*)
 1. $L_{kk} = 1$
 2. for $i = k+1, \dots, n$ (*Loop over rows*)
 1. $L_{ik} = \frac{A_{ik}^{(k)}}{A_{kk}^{(k)}}$
 2. for $j = k+1, \dots, n$ (*Loop over columns*)
 1. $A_{ij}^{(k+1)} = A_{ij}^{(k)} - L_{ik}A_{kj}^{(k)}$
 3. $\mathbf{U} = \mathbf{A}^{(n)}$

(a) (1.5P) Making reference to the algorithm explain why LU factorisation is said to have a computational cost of $\mathcal{O}(n^3)$.

(b) (1.5P) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an n by n square matrix. If \mathbf{A} has no special structure what is the memory usage for storing \mathbf{A} ? What is the memory usage for storing the \mathbf{L} and \mathbf{U} factors once LU factorisation has been performed? Specify your answer using big \mathcal{O} notation.

(c) Now assume that \mathbf{A} is sparse.

- (1P) If we only store the non-zero elements of the matrix explicitly, what is the memory cost of \mathbf{A} in this case?
- (1P) Explain the phenomenon called fill-in and its consequences for the memory cost of the \mathbf{L} and \mathbf{U} factors of sparse matrices.



Exercise 5 (7P) — mock 2024

Let $\mathbf{Ax} = \mathbf{b}$ be a linear system with given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$. We consider the fixed-point map

$$g(\mathbf{x}) = \mathbf{x} + \mathbf{P}^{-1}(\mathbf{b} - \mathbf{Ax}) \quad (5)$$

for a invertible preconditioner matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$. The iterative procedure $\mathbf{x}^{(k+1)} = g(\mathbf{x}^{(k)})$ starting from an initial vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$ is the Richardson iteration.

- (a) (1P) Show that if $\mathbf{x} \in \mathbb{R}^n$ is a fixed point of g than it is also a solution to the linear system $\mathbf{Ax} = \mathbf{b}$.
- (b) (2P) Show that if $\mathbf{x}^{(k+1)} = g(\mathbf{x}^{(k)})$ and if \mathbf{x} is a fixed point of g , then

$$(\mathbf{x}^{(k+1)} - \mathbf{x}) = (\mathbf{I} - \mathbf{P}^{-1}\mathbf{A})(\mathbf{x}^{(k)} - \mathbf{x}). \quad (6)$$

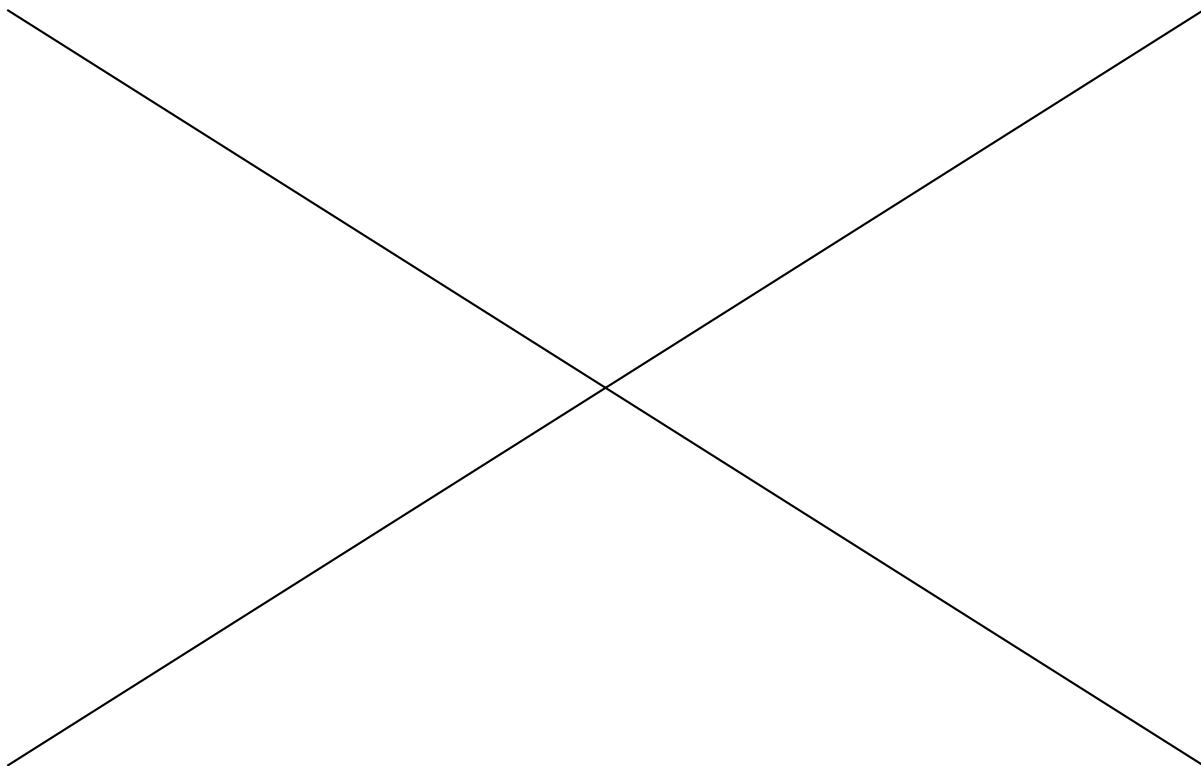
- (c) (1.5P) Based on (6) give the conditions for Richardson iterations $\mathbf{x}^{(k+1)} = g(\mathbf{x}^{(k)})$ to converge to a fixed point \mathbf{x} independent of the chosen initial vector $\mathbf{x}^{(0)}$ and right-hand side \mathbf{b} .

Consider the case

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & \alpha \end{pmatrix} \quad \mathbf{P} = \begin{pmatrix} \beta & 0 \\ 0 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathbf{x}^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ and consider the fixed-point iterations $\mathbf{x}^{(k+1)} = g(\mathbf{x}^{(k)})$ for $k = 0, 1, \dots$

- (d) (1.5P) For which choice of α and β do the fixed-point iterations converge.
- (e) (1P) For which choice of α and β do the fixed-point iterations converge at the fastest possible rate. How many iteration steps are at most needed for convergence ?



Exercise 6 (5P) — mock 2024

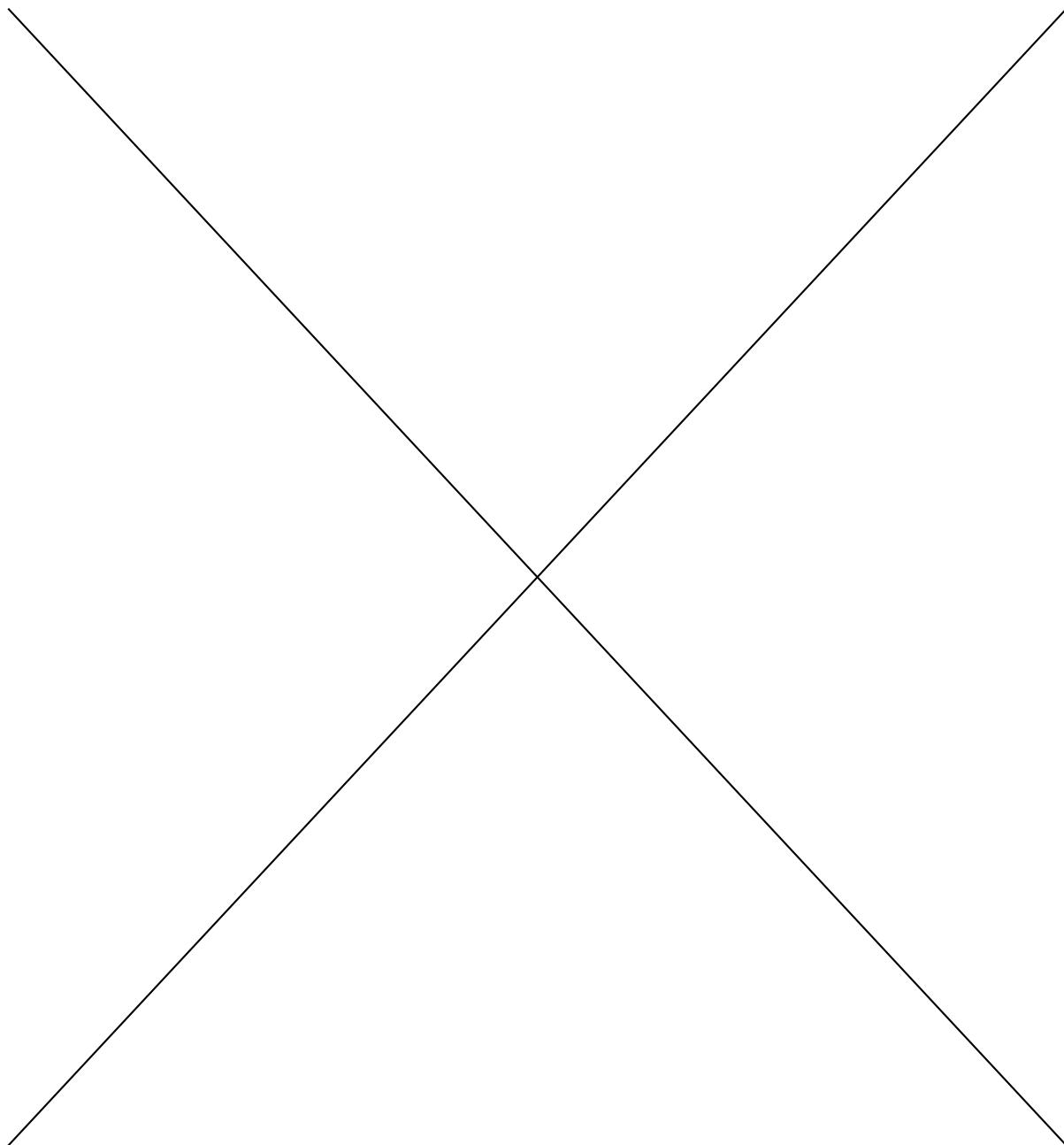
Consider $\mathbf{b} \in \mathbb{R}^2$ and the following 2×2 matrix

$$\mathbf{A} = \begin{pmatrix} 1 & -\beta \\ -\frac{1}{2} & 1 \end{pmatrix},$$

for a real number $\beta \in \mathbb{R}$. Consider Jacobi's method to solve the linear system $\mathbf{Ax} = \mathbf{b}$.

(a) **(2.5P)** State the conditions for Jacobi's method to converge for any right-hand side \mathbf{b} and initial vector $\mathbf{x}^{(0)}$.

(b) **(2.5P)** Deduce conditions for the parameter β , which ensure convergence for any right-hand side \mathbf{b} and initial vector $\mathbf{x}^{(0)}$.



Exercise 7 (6P) — exam 2024

We consider the family of triangular matrices

$$\mathbf{A} = \begin{pmatrix} \lambda_1 & 1 & 1 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

where $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0$.

(a) (3P) We consider the power iterations on the matrix \mathbf{A} starting from an initial guess $\mathbf{x}^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. State conditions on the parameters λ_1 , λ_2 and λ_3 for the power iterations to converge. To which eigenvalue will they converge? Specify the convergence order and provide the convergence rate in terms of λ_1 , λ_2 and λ_3 .

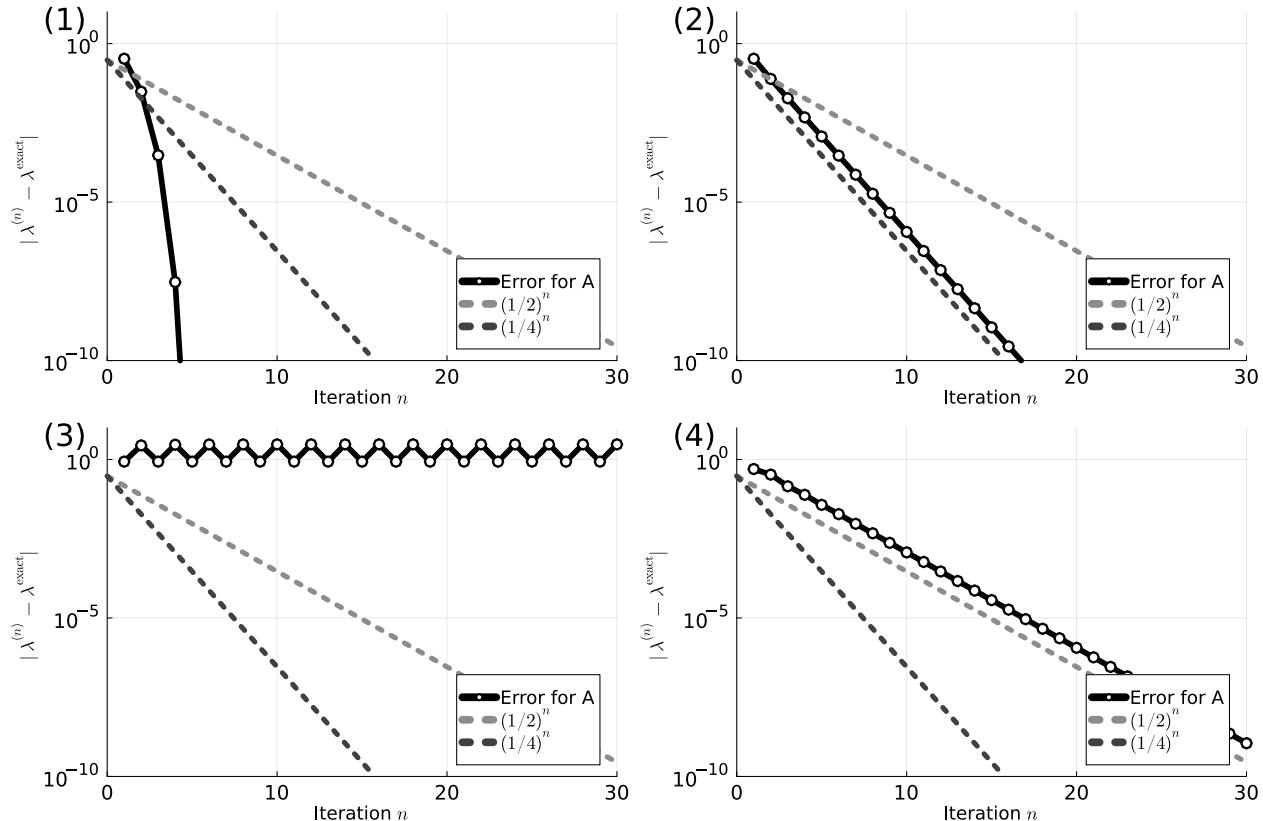
(b) (1P) Prove for a general matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$:

If (α, \mathbf{x}) is an eigenpair of \mathbf{M} , i.e. $\mathbf{M}\mathbf{x} = \alpha\mathbf{x}$, and \mathbf{M} is invertible, then $\left(\frac{1}{\alpha}, \mathbf{x}\right)$ is an eigenpair of \mathbf{M}^{-1} .

(c) (2P) Consider the matrix

$$\mathbf{B} = \begin{pmatrix} 5 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

which is a special case of \mathbf{A} for $\lambda_1 = 5$, $\lambda_2 = 2$, $\lambda_3 = 1$. We perform *shifted inverse iterations* with shift $\sigma = 4$. Which eigenvalue λ_{exact} is targeted? Which of the following four plots is obtained? Justify your choice making reference to the discussion in the previous parts of the exercise.



Exercise 8 (4P) — exam 2024

Let $f : [a, b] \rightarrow \mathbb{R}$ be a real-valued function with $0 < a < b$. We consider a numerical integration formula

$$Q(f) = h \sum_{i=0}^n w_i f(t_i)$$

with $n + 1$ equispaced quadrature nodes

$$t_i = a + ih \quad \text{for } i = 0, \dots, n \quad \text{and} \quad h = \frac{b - a}{n}$$

as well as weights w_i for $i = 0, \dots, n$. $Q(f)$ approximates $\int_a^b f(x) dx$.

- (a) (0.5P) Define the **degree of exactness** of Q .
- (b) (1P) State the trapezoid formula for computing $\int_a^b f(x) dx$ and provide its degree of exactness.
- (c) (2.5P) In the lecture we discussed

Theorem. If a numerical integration formula Q has a degree of exactness r then the formula is of order $r + 1$, i.e.

$$\left| \int_a^b f(x) dx - Q(f) \right| \leq C h^{r+1}$$

where C is a constant independent of h .

Inspect the following convergence graphs and apply this theorem to determine the degree of exactness of the two quadrature formulae (**Formula A** and **Formula B**). Which of the two formulae behaves like the trapezoid method?

