
Mock Exam 2025
Course: Numerical Analysis – EL/MX/CH
Lecturer: Prof. Michael Herbst
Date: Spring Session 2025 Duration: 3h 00

Mock exam disclaimer

• This mock exam gives you an example how the final exam will look like. Questions 1–4, 7,
& 8 have been taken from the 2024 exam, question 5 & 6 from the 2024 mock exam. As
the course has changed compared to last year, some questions may use terminology we did
not employ this year.

• In 2025, the final exam will only contain pen and paper questions, which moreover will
cover the contents of the entire class. Furthermore you can expect this year’s final exam
to be a little more involved than this mock exam.

Exam instructions

This exam has 8 exercises with in total 45 points. The material consists of two parts:

• This question sheet with the questions. All questions are pen and paper questions.

• A personalised answer sheet (with your name and sciper number).

Answering the questions

• For each question on this question sheet, provide the answers in the corresponding section
of the answer sheet. Do not write onto the question sheet itself. Only these answer
sheets will be marked.

• On the answer sheet only write within the black boxes. If you need extra space, additional
blank pages are given in the back. Clearly identify for which question you provide additional
answers. Also add a remark in the original answer box where you run out of space that
additional text can be found in the appendix.

• Please write with a pen (no pencil or erasable ballpen).

• For each of your answers, outline the reasoning and justify your answer.

• At the end of the exam both the question and answer sheet will be collected.

Authorised material

• You are allowed a two-sided handwritten A4 cheatsheet (hand-written on paper, no print-
outs).

• No other notes, sheets or books are allowed. No calculator, mobile phone, tablet, laptop or any
other electronic device.



Mock Exam 2025 Numerical Analysis – EL/MX/CH

Exercise 1 (7P) — exam 2024

Given a parameter θ ∈ R, consider the function

g(x) = x4 − 2θx3 + x.

(a) (2P) Show that the only fixed points of g are x∗,1 = 0 and x∗,2 = 2θ.

(b) (1P) Figure 1 depicts g(x) for θ = 1 together with its two fixed points x∗,1, x∗,2. By visual inspection
determine for which of the two fixed points x∗,1 and x∗,2 the fixed-point iterations x(k+1) = g(x(k))
converge, provided that a starting point x(0) sufficiently close to the respective fixed point has been
chosen. Justify your answer.

(c) (3P) We return to the general case where θ is a parameter of the problem.

(i) For which values of θ do fixed-point iterations converge to x∗,2 provided a good starting point
is chosen?

(ii) For which values of θ is the fastest convergence rate to x∗,2 achieved ?

(d) We consider the case where θ is chosen such that the fastest convergence rate in the fixed-point
iterations is achieved (the value you determined in (c) (ii)).
(1P) What is the convergence order of Newton’s method for these value(s) of θ? Does Newton
provide any advantage over fixed point iterations in this case?
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Mock Exam 2025 Numerical Analysis – EL/MX/CH

Solution.

(a) We find the fixed points by solving the equation g(x) = x.

g(x) = x ⇐⇒ x4 − 2θx3 + x = x

⇐⇒ x4 − 2θx3 = 0 ⇐⇒ x3(x − 2θ) = 0

There are thus two solutions: x∗,1 = 0 and x∗,2 = 2θ.

(b) The local convergence behaviour of the fixed point method is governed by the magnitude of the
derivative at the fixed point. In order for the requested convergence to happen, one must have
|g′(x∗,i)| < 1 (Theorem 1, Chapter 2 ). On the given plot, this is clearly violated for x∗,2, while the
situation seems to be borderline for x∗,1. We conclude that local convergence does not happen for
x∗,2, while it should just happen for x∗,1. (0.5 for correct answer, 0.5 for justification.)

(c) According to the explanation above convergence is achieved if |g′(x∗,2)| < 1 (0.5P). Here, we have
(0.5P)

g′(x) = 4x3 − 6θx2 + 1,

and so the condition for local convergence becomes (0.5P):

|g′(x∗,2)| < 1 ⇐⇒ |8θ3 + 1| < 1,

which is satisfied for θ ∈ (− 1
3√4

, 0) (0.5P).

According to (Theorem 1, Chapter 2 ), the convergence rate is given by |g′(x∗,i)| (0.5P). In this case,
the derivative at x∗,2 vanishes for θ = −1/2, which thus provides the fastest convergence (0.5P).

(d) According to (Theorem 4, Chapter 2), the convergence of Newton is only linear when g′(x∗) = 0. So
that in the case of (c) the convergence order is identical to fixed point iterations.
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Exercise 2 (8P) — exam 2024

(a) (1.5P) We are given n + 1 nodes x1, . . . , xn+1 ∈ R. Define the Lagrange basis associated to
x1, . . . , xn+1 and specify how this basis can be used to find the n-th degree interpolating polynomial
through the data points (x1, y1), (x2, y2), . . . (xn+1, yn+1).

(b) (1.5P) Using the Lagrange basis, find the interpolating polynomial through the points (x1 = −1, y1 = −2),
(x2 = 1, y2 = 0), (x3 = 4, y3 = 6).

For polynomial interpolation with equally spaced nodes, the interpolation error is governed by the
following theorem:

Theorem. For a Cn+1 function f : [a, b] → R and a = x1 < x2 < · · · < xn+1 = b equally
distributed nodes in [a, b] the n-th degree polynomial interpolant pn of the data (xi, f(xi))
with i = 1, 2, . . . , n + 1 satisfies the following bound on the interpolation error

max
x∈[a,b]

|f(x) − pn(x)| ≤ 1
4(n + 1)

(
b − a

n

)n+1
max

x∈[a,b]

∣∣∣f (n+1)(x)
∣∣∣ . (1)

We consider polynomial interpolation with n + 1 equally distributed nodes over the interval [−1, 1] for the
functions f1(x) = sin(x) and f2(x) = 1

1+20x2 .

(c) (3P) Show that for f1 the interpolation error goes to 0 as n → ∞.

(d) (2P) For f2 we have maxx∈[0,1]

∣∣∣f (n+1)
2 (x)

∣∣∣ ≈ 20nn! such that the right-hand side of (1) grows to
infinity as n → ∞. What happens to the polynomial interpolation in this case? What needs to
be changed in the polynomial interpolation procedure to achieve exponential convergence for such
functions f2?
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Solution.

(a) The Lagrange basis for the given set of nodes is (Chapter 3, eq. (5)) is made of the n+1 polynomials

Li(x) =
n+1∏
j=1
j ̸=i

x − xj

xi − xj
, i = 1, . . . , n + 1.

Due to the cardinality condition (0.5 P bonus) this basis allows the n-th degree interpolating
polynomial of the provided data to be directly written as:

pn(x) =
n+1∑
i=1

yiLi(x).

(b) For the given points, we find:

p2(x) = −2x − 1
−2

x − 4
−5 + 0x + 1

2
x − 4

3 + 6x + 1
5

x − 1
3

= −1
5(x − 1)(x − 4) + 2

5(x + 1)(x − 1)

= 1
5x2 + x − 6

5 .

(c) We begin by computing its n + 1-th derivative (1.5P):

f
(n+1)
1 (x) =

{
(−1)n/2 cos(x) n + 1 odd
(−1)(n+1)/2 sin(5x) n + 1 even.

Therefore maxx∈[a,b] |f (n+1)(x)| = 1. Inserting this into the theorem we obtain (1P)

max
x∈[a,b]

|f1(x) − pn(x)| ≤ lim
n→∞

1
4(n + 1)

( 2
n

)n+1
= lim

n→∞
2n+1

4nn+2 = 0,

i.e. the interpolation error goes to zero as n → ∞ (0.5P).

(d) In the case of f2 we run into Runge’s phenomenon, i.e. that the interpolation error grows with larger
polynomial degree n. A way to avoid this is to employ Chebyshev nodal points xk = − cos

(
kπ
n

)
for

k = 0, 1, . . . n, which leads to exponential convergence (Theorem 3, Chapter 3).
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Exercise 3 (7P) — exam 2024

We consider the matrix
A =

(
1 α
α 1

)
for α > 0 and an associated linear system

Ax = b with b =
(

1
1

)
(2)

where we seek the solution x ∈ R2.

When representing (2) on a computer we assume that the available floating-point precision is unable
to represent b exactly introducing a small error ε > 0: the computer is only able to solve the approximate
linear system

Ax̃ = b̃ with b̃ =
(

1 + ε
1 − ε

)
(3)

and thus only able to obtain an approximate solution x̃ ∈ R2.

(a) (2P) For a general square and invertible matrix M ∈ Rn×n define the condition number κ(M)
in terms of matrix norms. Also provide an expression to compute the condition number using
eigenvalues of appropriate matrices.

(b) (2P) Show that the condition number of A is

κ(A) =
∣∣∣∣1 + α

1 − α

∣∣∣∣ . (4)

You may use that a matrix ( a c
c b ) ∈ R2×2 has eigenvalues

a + b

2 −

√
(a − b)2

4 + c2 and a + b

2 +

√
(a − b)2

4 + c2.

(c) (1P) The solution to the perturbed system (3) is given by

x̃ = 1
1 + α

(
1
1

)
+ ε

1 − α

(
1

−1

)

and similarly x = 1
1+α ( 1

1 ). Compute the relative error in the solution ∥x̃−x∥
∥x∥ as well as the relative

error in the right-hand side
∥∥b̃−b

∥∥
∥b∥ .

(d) (2P) Describe in one sentence what the condition number measures for a linear system (2). Use this
to explain your results in (c).
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Solution.

(a) The condition is the quantity

κ(M) =
∥∥∥M−1

∥∥∥ ∥M∥ =

√
λmax(MT M)√
λmin(MT M)

where λmax(MT M) is the largest eigenvalue of MT M and λmin(MT M) is the smallest eigenvalue of
MT M. Award (1P) for each of the expressions.

(b) We need to determine the eigenvalues of (0.5P)

AT A =
(

1 α
α 1

)(
1 α
α 1

)
=
(

1 + α2 2α
2α 1 + α2

)
.

Using the provided formula we determine the eigenvalues as (0.5P)

1 + α2 ± 2α

and thus the condition number as (1P)

κ(A) =

√
1 + α2 + 2α

1 + α2 − 2α
=
∣∣∣∣1 + α

1 − α

∣∣∣∣
x = 1

1 + α

(
1
1

)

(c) Since

∥x − x̃∥ =
∥∥∥∥∥ ε

1 − α

(
1

−1

)∥∥∥∥∥ =
√

2 ε

|1 − α|
and ∥x∥ =

∥∥∥∥∥ 1
1 + α

(
1
1

)∥∥∥∥∥ =
√

2
|1 + α|

we obtain
∥x̃ − x∥

∥x∥
= |1 + α|

|1 − α|
ε

Moreover we compute ∥∥∥b − b̃
∥∥∥

∥b∥
= ε.

In general:

• 0.5 points for the relative error of x, but they do not get these if they forget the absolute values.
• 0.5 points for that of b !

(d) Examples for the one-sentence answer:

• The condition number measures how much the solution x is changed on a perturbation of the
RHS b. (0.5P)

• A more precise answer: The condition number relates the relative error in the right-hand side
b to the relative error in the solution x (1P).
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In (c) we observe the condition number to appear in the expression of the relative error of the
solution (0.5P), i.e.

∥x̃ − x∥
∥x∥

= κ(A)ε = κ(A)

∥∥∥b − b̃
∥∥∥

∥b∥
thus agreeing perfectly with the expectation from theory (0.5P). (ii, 1 pt total) If ∥x̃ − x∥/∥x∥ =
κ(A)ε is written, either in (c) or (d), they get 0.5/1. If the relation with explicitly made with theory
/ point (i), they get the full point.
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Exercise 4 (5P) — exam 2024

Consider the algorithm for LU factorization given below.

Algorithm (LU factorisation).
Input: A ∈ Rn×n,
Output: U ∈ Rn×n, L ∈ Rn×n

1. A(1) = A
2. for k = 1, . . . , n − 1 (algorithm steps)

1. Lkk = 1
2. for i = k + 1, . . . , n (Loop over rows)

1. Lik = A
(k)
ik

A
(k)
kk

2. for j = k + 1, . . . n (Loop over columns)
1. A

(k+1)
ij = A

(k)
ij − LikA

(k)
kj

3. U = A(n)

(a) (1.5P) Making reference to the algorithm explain why LU factorisation is said to have a computa-
tional cost of O(n3).

(b) (1.5P) Let A ∈ Rn×n be an n by n square matrix. If A has no special structure what is the
memory usage for storing A? What is the memory usage for storing the L and U factors once LU
factorisation has been performed? Specify your answer using big O notation.

(c) Now assume that A is sparse.

• (1P) If we only store the non-zero elements of the matrix explicitly, what is the memory cost
of A in this case?

• (1P) Explain the phaenomenon called fill-in and its consequences for the memory cost of the
L and U factors of sparse matrices.
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Solution.

(a) We need to understand the cost of the innermost instruction and how many times it is executed.
The innermost for LU factorisation is

A
(k+1)
ij = A

(k)
ij − LikA

(k)
kj ,

which contains a multiplication and a subtraction, two elementary operations (0.5 P). This instruc-
tion is inside 3 nested loops (on k, i and j respectively) with the indexes going from 1 to n (1 P).
The total number of elementary operations is thus of the order of n3. Then, the computational cost
of the LU factorization of a full matrix is O(n3).

(b) The storage cost of an n × n matrix, assuming no underlying structure, is O(n2) (0.5 P). In general,
LU factorization does result in two matrices L and U, which both store O(n2) non-zero elements
giving again rise to a cost of O(n2) (1 P). Overall the storage cost does not increase.

(c) • We defined a sparse matrix as one that has only O(n) non-zero elements. Hence, if only those
are stored, we end up with O(n) storage cost.

• If A is sparse, but has no other structure, then in general its LU factorization will not be sparse.
So even for sparse matrices we will have a storage cost of O(n2) for L and U.
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Exercise 5 (7P) — mock 2024

Let Ax = b be a linear system with given A ∈ Rn×n and b ∈ Rn. We consider the fixed-point map

g(x) = x + P−1 (b − Ax) (5)

for a invertible preconditioner matrix P ∈ Rn×n. The iterative procedure x(k+1) = g(x(k)) starting from
an initial vector x(0) ∈ Rn is the Richardson iteration.

(a) (1P) Show that if x ∈ Rn is a fixed point of g than it is also a solution to the linear system Ax = b.

(b) (2P) Show that if x(k+1) = g(x(k)) and if x is a fixed point of g, then

(x(k+1) − x) = (I − P−1A)(x(k) − x). (6)

(c) (1.5P) Based on (6) give the conditions for Richardson iterations x(k+1) = g(x(k)) to converge to a
fixed point x independent of the chosen initial vector x(0) and right-hand side b.

Consider the case

A =
(

2 0
0 α

)
P =

(
β 0
0 1

)
b =

(
1
1

)
x(0) =

(
0
0

)

where α ∈ R and β ∈ R and consider the fixed-point iterations x(k+1) = g(x(k)) for k = 0, 1, . . ..

(d) (1.5P) For which choice of α and β do the fixed-point iterations converge.

(e) (1P) For which choice of α and β do the fixed-point iterations converge at the fastest possible rate.
How may iteration steps are at most needed for convergence ?
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Solution.

(a) If x is a fixed point of g, then x = g(x) (0.5P), which implies

x = x + P−1 (b − Ax) ⇔ 0 = P−1 (b − Ax) ⇔ b = Ax

as required (0.5P).

(b) Since x(k+1) = g(x(k)) we have

x(k+1) − x = g(x(k)) − x
= x(k) + P−1(b − Ax(k)) − x

Similarly expanding on the right we find

(I − P−1A)(x(k) − x) = x(k) − x − P−1Ax(k) + P−1Ax

Substracting both equations leads to

0 = P−1b − P−1Ax

which is true since b = Ax.

(c) The LHS of (6) is the error in the k + 1-st iteration and the RHS is the error in the k-th iteration.
Therefore if the matrix norm of I − P−1A is less than 1, Richardson iterations converge independent
of the starting vector x(0).

(d) First we compute

I − P−1A =
(

1 − 2/β 0
0 1 − α

)
This matrix is symmetric, hence it has matrix norm less than 1 iff its eigenvalues are less than
1 in magnitude. Since this is a diagonal matrix, its diagonal are the eigenvalues. We obtain the
conditions

−1 < 1 − 2/β < 1 and − 1 < 1 − α < 1.

This is satisfied exactly if 0 < β < 1 and 0 < α < 2.

(e) Fastest convergence is obtained for the smallest matrix norm. The choice α = 1 an β = 2 leads to a
matrix norm of zero (0.5P) (which is the smallest, since the matrix norm is non-negative), i.e. the
iterations converge in a single step. (0.5P)
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Exercise 6 (5P) — mock 2024

Consider b ∈ R2 and the following 2 × 2 matrix

A =
(

1 −β
−1

2 1

)
,

for a real number β ∈ R. Consider Jacobi’s method to solve the linear system Ax = b.

(a) (2.5P) State the conditions for Jacobi’s method to converge for any right-hand side b and initial
vector x(0).

(b) (2.5P) Deduce conditions for the parameter β, which ensure convergence for any right-hand side b
and initial vector x(0).
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Solution.

(a) Jacobi’s method converges provided that the matrix norm of the iteration matrix is strictly smaller
than 1 (this is a special case of Richardson’s iterations). Mathematically, this means that Jacobi’s
method converges for the matrix A, for any right-hand side b and any starting vector x(0) if and
only if: ∥∥∥I − P−1A

∥∥∥ < 1,

where P is the matrix containing the diagonal of A on the diagonal and 0 elsewhere (preconditioner
for Jacobi’s method).

(b) In our case, calling the iteration matrix B,

B = I − P−1A =
(

0 β
1
2 0

)
,

and since this matrix is not symmetric we need to use the general formula for the matrix norm

∥B∥ =
√

λmax(BT B).

The matrix BT B is given by

BT B =
(

0 1
2

β 0

)(
0 β
1
2 0

)
=
(

1
4 0
0 β2

)
,

whose eigenvalues are 1
4 and β2.

Hence ∥B∥ = max(1
2 , |β|), and Jacobi’s method converges for β ∈ (−1, 1).
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Exercise 7 (6P) — exam 2024

We consider the family of triangular matrices

A =

λ1 1 1
0 λ2 1
0 0 λ3


where λ1 ≥ λ2 ≥ λ3 ≥ 0.

(a) (3P) We consider the power iterations on the matrix A starting from an initial guess x(0) =
( 1

1
1

)
.

State conditions on the parameters λ1, λ2 and λ3 for the power iterations to converge. To which
eigenvalue will they converge? Specify the convergence order and provide the convergence rate in
terms of λ1, λ2 and λ3.

(b) (1P) Prove for a general matrix M ∈ Rn×n:

If (α, x) is an eigenpair of M, i.e. Mx = αx, and M is invertible, then
(

1
α , x

)
is an

eigenpair of M−1.

(c) (2P) Consider the matrix

B =

5 1 1
0 2 1
0 0 1

 ,

which is a special case of A for λ1 = 5, λ2 = 2, λ3 = 1. We perform shifted inverse iterations with
shift σ = 4. Which eigenvalue λexact is targeted? Which of the following four plots is obtained?
Justify your choice making reference to the discussion in the previous parts of the exercise.
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Solution.

(a) The power iteration converges if the largest eigenvalue is a single eigenvalue (0.5P), i.e. if λ1 > λ2
(0.5P). All values of λ3 can be employed since the condition λ1 ≥ λ2 ≥ λ3 ≥ 0 ensures that λ1 is
dominating independent of λ3 (0.5P). The iterations will then converge to λ1 (dominant eigenvalue)
(0.5P). Convergence is linear (0.5P) and the rate is |λ2/λ1| (0.5P).

(b) We multiply
Mx = αx

on the left by M−1 to observe
x = αM−1x ⇔ 1

α
x = M−1x.

This shows that ( 1
α , x) is an eigenpair of M−1. Note: If students mention that one can divide by α

since M is invertible, hence α ̸= 0, then they get (1P bonus)

(c) When the shift is σ = 4, the eigenvalues of (B − σ)−1 are 1, −1
2 and −1

3 . Hence the iterations
converge to λexact = 5 (0.5P) with rate 1/2 (1P). The correct plot is thus (4) (0.5P).
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Exercise 8 (4P) — exam 2024

Let f : [a, b] → R be a real-valued function with 0 < a < b. We consider a numerical integration formula

Q(f) = h
n∑

i=0
wif(ti)

with n + 1 equispaced quadrature nodes

ti = a + ih for i = 0, . . . , n and h = b − a

n

as well as weights wi for i = 0, . . . , n. Q(f) approximates
∫ b

a f(x) dx.

(a) (0.5P) Define the degree of exactness of Q.

(b) (1P) State the trapezoid formula for computing
∫ b

a f(x)dx and provide its degree of exactness.

(c) (2.5P) In the lecture we discussed

Theorem. If a numerical integration formula Q has a degree of exactness r then the
formula is of order r + 1, i.e. ∣∣∣∣∣

∫ b

a
f(x) dx − Q(f)

∣∣∣∣∣ ≤ C hr+1

where C is a constant independent of h.

Inspect the following convergence graphs and apply this theorem to determine the degree of exactness
of the two quadrature formulae (Formula A and Formula B). Which of the two formulae behaves
like the trapezoid method?
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Solution.

(a) The formula Q( · ) has degree of exactness r if it integrates every polynomial with degree ≤ r exactly,
but not a (r + 1)-the degree polynomial. If the “not a (r + 1)-the degree polynomial” is missing
award (0P).

(b) The trapezoid formula computes (0.5P)

T (f) = h

2 f(a) + h
n−1∑
i=1

f(ti) + h

2 f(b).

It has degree of exactness 1 (0.5P).

(c) Formula A converges with order 2, thus has degree of exactness 1 (1P) while Formula B converges
with order 4, thus has degree of exactness 3 (1P). The trapezoidal formula is thus Formula A
(0.5P).
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