

Numerical analysis for MX / EL / CH

Michael F. Herbst, Bruno Ploumhans

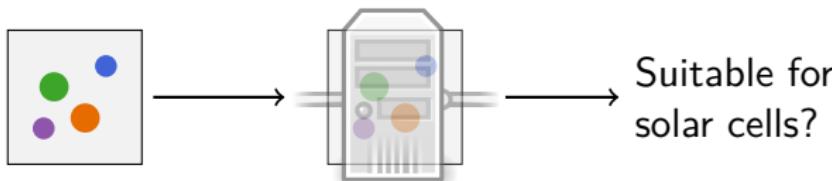
Mathematics for Materials Modelling (matmat.org), EPFL

Spring semester 2025

Leading thought

- Advanced numerical methods are everywhere in science
 - Data collection (Adaptive experimental instruments)
 - Data analysis
 - Visualisation
 - Simulation
 - ...

⇒ It's better if you understand how they work and when they fail


- Numerical analysis provides ...
 - **Mathematical formulation** of physical problems
 - **Numerical algorithms** to solve them
 - Mathematical analysis of **accuracy** and **errors**
 - Insight to **efficiency** and **reliability** of computations

We work on: Computational materials discovery

- Nowadays discover materials on a computer

$$\min_{\Psi} \langle \Psi, H\Psi \rangle$$

- $\simeq 30\%$ of supercomputer usage \Rightarrow Accurate & efficient numerics

Topics of this course

- In this course we won't go HPC, but we cover the basics:
 - Solving non-linear equations
 - Interpolation
 - Numerical differentiation and integration
 - Solving linear systems
 - Solving eigenvalue problems
 - Solving differential equations
- You're phone / computer / microscope / spectrometer / ... is using all these techniques *right now*
- (... and unfortunately does not always get it right)

Course organisation

- **Lecture: Tuesday, 10:15 - 12:00, CM 1 4**
- Exercise classes:
 - **Wednesday, 10:15 - 12:00, BC07 & 08**
 - Important: You need to **bring your own laptop**
 - You don't own one → Later slide
- **Moodle: <https://go.epfl.ch/numerical-analysis>**
 - ⇒ Single source for all information and material
- **<https://teaching.matmat.org/numerical-analysis/>**
 - ⇒ Online version of the **lecture notes**

Assistants

- Head teaching assistant
 - **Bruno Ploumhans**, bruno.ploumhans@epfl.ch, MA B1 457
- Teaching assistants
 - **Andrea Pintus** andrea.pintus@epfl.ch
 - **Alessio Siviglia**, alessio.siviglia@epfl.ch
 - **Divya Suman**, divya.suman@epfl.ch
 - **Leo Digonzelli**, leo.digonzelli@epfl.ch
 - **Lorenzo Piersante**, lorenzo.piersante@epfl.ch
 - **Théodore Decaux**, theodore.decaux@epfl.ch

Exercises

- Exercises: **Theoretical** and a **computational** component
 - (“numerical experiments”)
- **julia** programming language: Computational component
 - You **need to do these on your laptop**
 - Installation instructions on moodle
 - Introduction during the first exercise session
 - **From week 2** we will assume you have a working setup
 - This will be checked before the exercise session
- Exercises sheets: Available **Tuesday at 12:00** on Moodle
 - Sheets are generally *not graded* (except one → see later slide)
 - Master solution available one week later
 - Beginning of exercise session: **15mins** to ask questions on previous sheet
- **The exercises are a preparation for the exam**

A few words about Pluto and Julia

What a Julia notebook looks like

→ https://teaching.matmat.org/numerical-analysis/02_Julia.html

Obtaining a laptop

- A laptop is required for the coding exercises
 - This includes the graded sheet (see later)

If you do not have a laptop yet, make sure to order one as soon as possible.

● Financial support:

- Website on financing your studies:

<https://www.epfl.ch/education/studies/en/financing-study/>

- Need-based scholarships:

<https://www.epfl.ch/education/studies/en/support-scholarships/>

- Canton of Vaud scholarships:

<https://www.vd.ch/formation/aides-financieres-aux-etudes-et-a-la-formation-professionnelle-bourses-ou-prets/informations-principales/>

Course materials

- All materials will be published on **Moodle**:

<https://go.epfl.ch/numerical-analysis>

- **Pluto notebooks** used during the lecture
- **Weekly** exercise sheets (*no submission*)
- **Graded** exercise sheet (*submission mandatory*)
- Additional materials (see Moodle):
 - Lecture notes of Prof. Fabio Nobile (English & French)
 - Tobin A. Driscoll, Richard J. Braun *Fundamentals of Numerical Computation* (2022).
 - Giray Ökten *First Semester Numerical analysis* (2023).
 - MIT's *Introduction to computational thinking* lecture

Course evaluation

- One graded exercise sheet (20%)
 - One graded sheet around week 11 (\approx 6 May)
 - Implementation and analysis of algorithms
 - Focuses on *computational* aspects of the course
 - Think of it as a **take home exam**
 - Individual submissions, interviews and spot checks
- Final exam (80%)
 - **Written exam** consisting of *theoretical* problems
 - Pen and paper questions

Learning objectives

- We study **numerical techniques** to solve mathematical problems
- **This is not a programming course.** Most exercises can be done by *understanding* and *using* code, which we provide
- **Main objectives** of the course are:
 - Obtain a basic idea how an algorithm works
 - Understand its underlying theory
 - Know the advantages and disadvantages of each algorithm
 - Know how to employ **julia** to solve mathematical problems
 - Learn how to analyse numerical results critically
 - Learn how to choose the best algorithm for each problem
- **Fundamental concepts:**
 - **Stability** of an algorithm
 - **Accuracy** of an algorithm
 - **Cost** of an algorithm

Questions ?

Questions ?

Your background & prior knowledge

Your background and prior knowledge

Quick survey

<https://etc.ch/K7Ud>

