
Exam (Solutions)

Course: Numerical Analysis - Sections SIE-GC

Lecturer: Daniel Kressner

Date: 29/01/2025 Duration: 3h

Sciper: Student: Section:

Evaluation table

Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Total

Do not turn the page before the start of the exam. Read carefully the
instructions below.

EXAM RULES

• Write everything with a blue or black pen. Do NOT use a pencil.

• Please write your surname, name, and Sciper number on EVERY PAGE of this document!

• All results (the plots if they are requested, too) and Python code (when requested) MUST BE
TRANSCRIBED ON THESE SHEETS, which must be submitted at the end of the exam.

• It is NOT possible to submit the Python/Jupyter code electronically.

• Scratch paper is provided for your personal notes, but it will not be collected and not be considered
for the corrections.

• Numerical results involving floating point numbers need to be reported to at least three significant
decimal digits. For example, if the result is 1.234657809E-2, write 1.23E-2 or 0.0123.

• Please note that the exam is DOUBLE-SIDED.

AUTHORIZED MATERIAL

The only authorized material is 1 A4 cheat sheet (front and back) handwritten with
pen/pencil. No additional sheets, notes or books (paper or electronics), or calculator, mobile
phone, tablet, laptop or other electronic devices are admitted. The access to the Internet (e-mail,
websites) is prohibited.

VIRTUAL MACHINE LOGIN INSTRUCTIONS

Before the start of the exam:

1) Sign in with your GASPAR username and password (same as for IS-Academia, Moodle, ...);

2) Choose the MATH-251a virtual machine client;

After the exam has started:

3) Open the Jupyter Notebook application by double clicking the icon on the Desktop;

4) In the Jupyter Notebook file browser, go to Desktop and then click on exam2025.ipynb.

We provide you with a copy of the exam notebook called exam2025 copy.ipynb. If you make some
unwanted modifications and do not know how to revert them, you can compare with the copy.

Sciper: Student: Section:

Exercise 1 (0.7 Points in total)

Given some function f : [− 1, 1] → R, consider the approximation of the integral

I(f) =

∫ 1

−1
f(x) dx

by the quadrature formula

Q(f) =
2∑

i=1

αif(xi) (1)

for the quadrature weights α1 = 1 and α2 = 1, and quadrature nodes x1 = −1
3 and x2 = +1

3 .

Question 1 (0.3 Points) Determine the degree of exactness of the quadrature formula (1). Provide
full justification for your answer, incuding all derivations.

Solution: We check for which monomials f(x) = xs, s = 0, 1, . . . the quadrature rule gives the exact
integral:

I(1) =

∫ 1

−1
1 dx = 2

Q(1) = 1 + 1 = 2

I(x) =

∫ 1

−1
x dx = 0

Q(x) = −1

3
+

1

3
= 0

I(x2) =

∫ 1

−1
x2 dx =

2

3

Q(x2) =
1

9
+

1

9
=

2

9

Since the quadrature formula integrates monomials up to degree 1 exactly, but no longer monomials of
degree 2, the degree of exactness is 1.

Point distribution:

• +0.1 for the correct derivation of each monomial;

• +0.05 for the correct degree of exactness;

• −0.05 if all derivations are correct but the degree of exactness is incorrect.

1

Question 2 (0.4 Points) Consider the integrals∫ 1

−2
f1(x) dx for f1(x) = sin(x),

and ∫ 1

0
f2(x) dx for f2(x) =

√
x.

The function composite quadrature in the Jupyter notebook implements the composite quadrature
formula Qh(f) corresponding to (1) for a given function f on an arbitrary interval [a, b] with n
sub-intervals. For both integrals, use this Python function to: (i) compute the error of the composite
quadrature formula for n = 10 sub-intervals, and (ii) numerically determine the order of convergence of
the composite quadrature formula. Complete the table below with the errors rounded to three significant
decimal digits.

Hint: The primitives of f1 and f2 are F1(x) = − cos(x) and F2 =
2
3

√
x
3
.

Coefficient Qh(f1) Qh(f2)

(i) error for n = 10 1.58× 10−2 or 0.0158 2.83× 10−3 or 0.00283

(ii) order of convergence 1 1

Point distribution:

• +0.1 for each correct answer;

• rounding errors are tolerated.

2

Sciper: Student: Section:

Exercise 2 (1.2 Points in total)

This is a multiple choice exercise. One, and only one, answer is correct for every question.
Clearly mark your answer choice with a cross. Use correction fluid (Tipp-Ex) to remove a cross if you
have accidentally crossed an answer. If needed, you can request Tipp-Ex from the proctors. 0.2 points
are given if the correct answer is crossed and none of the other three answers is crossed. In all other cases,
0 points are given.

Question 1 (0.2 Points) Consider the data

x1 = −1 y1 = 3
x2 = 1 y2 = 0
x3 = 2 y3 = β
x4 = 4 y4 = β.

Let p3 be the degree 3 interpolating polynomial for this data, that is, p3(xi) = yi for i = 1, . . . , 4.
Determine the value of β for which p3(0) = −1 holds.

□ − 3
11

□ 4
3

⊠ 3

□ 6

Solution: The degree 3 interpolating polynomial is given by the Lagrange interpolation formula (lecture
notes, Proposition 2.1)

p3(x) = y1
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
+ y2

(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)

+ y3
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
+ y4

(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)

= 3
(x− 1)(x− 2)(x− 4)

(−1− 1)(−1− 2)(−1− 4)
+ β

(x+ 1)(x− 1)(x− 4)

(2 + 1)(2− 1)(2− 4)
+ β

(x+ 1)(x− 1)(x− 2)

(4 + 1)(4− 1)(4− 2)

= − 1

10
(x− 1)(x− 2)(x− 4) +−β

6
(x+ 1)(x− 1)(x− 4) +

β

30
(x+ 1)(x− 1)(x− 2).

Enforcing the condition p3(0) = −1 results in the value

p3(0) =
4

5
+−2β

3
+

β

15
=

4

5
− 9β

15
= −1 ⇐⇒ β = 3.

Point distribution:

• +0.2 for the correct answer;

• 0 points if crosses are ambiguous or multiple boxes are crossed.

3

Question 2 (0.2 Points) The following Python function implements an unknown composite quadrature

formula for approximating an integral
∫ b
a f(x) dx.

def unknown composite quadrature(a, b, n, f):
Unknown composite quadrature formula
− a,b: lower/upper bounds of integration interval
− n: number of sub−intervals
− f: function to integrate
h = (b − a) / n
xi = np.linspace(a, b, n + 1) # sub−interval boundaries
alphai = (h / 3) * np.hstack((0.5, np.ones(n − 1), 0.5)) # weights at xi
ci = np.linspace(a + h / 2, b − h / 2, n) # sub−interval mid−points
betai = (2 * h / 3) * np.ones(n) # weights at ci
Qh = np.dot(alphai, f(xi)) + np.dot(betai, f(ci))
return Qh

Which composite quadrature formula does this function compute?

□ Composite midpoint formula

□ Composite trapezoidal formula

⊠ Composite Simpson formula

□ Composite Gaussian formula

Solution: This identical code appears in the course notes (lecture notes, page 64).

Point distribution:

• +0.2 for the correct answer;

• 0 points if crosses are ambiguous or multiple boxes are crossed.

4

Sciper: Student: Section:

Question 3 (0.2 Points) Suppose that the Newton method is applied to the system of equations
f(x) = 0 with

f(x) =

[
x1 + cos(x2)

5− x2

]
and initial point x(0) = [x

(0)
1 , x

(0)
2]⊤. Then the iterates x(k) = [x

(k)
1 , x

(k)
2]⊤, k = 1, 2, . . ., produced by the

Newton method satisfy the recursion:

⊠

{
x
(k+1)
1 =sin(x

(k)
2)(5− x

(k)
2)− cos(x

(k)
2)

x
(k+1)
2 =5

□

{
x
(k+1)
1 =cos(x

(k)
2) + sin(x

(k)
2)(x

(k)
2 − 5)

x
(k+1)
2 =5

□

{
x
(k+1)
1 =x

(k)
1 − x

(k+1)
1 − cos(x

(k+1)
2)− sin(x

(k+1)
2)(x

(k+1)
2 − 5)

x
(k+1)
2 =x

(k)
2 + 5− x

(k+1)
2

□

{
x
(k+1)
1 =cos(x

(k)
2) + sin(x

(k)
2)(x

(k)
2 − 5)− x

(k)
1

x
(k+1)
2 =5− x

(k)
2

Solution: The Jacobian of f at x satisfies

Jf (x) =

[
1 − sin(x2)
0 −1

]
=⇒ Jf (x)

−1 =

[
−1 sin(x2)
0 1

]
.

Therefore, the Newton method iterates x(k+1) = x(k) − Jf (x
(k))−1f(x(k)) (lecture notes, page 28) are[

x
(k+1)
1

x
(k+1)
2

]
=

[
x
(k)
1

x
(k)
2

]
+

[
−1 sin(x

(k)
2)

0 1

][
x
(k)
1 + cos(x

(k)
2)

5− x
(k)
2

]
=

[
− cos(x

(k)
2) + sin(x

(k)
2)(5− x

(k)
2)

5

]
.

Point distribution:

• +0.2 for the correct answer;

• 0 points if crosses are ambiguous or multiple boxes are crossed.

5

Question 4 (0.2 Points) Consider the following linear system of ordinary differential equations:

du(t)

dt
=

−1 0 0
0 −1 0
4 −2 −2

u(t) + b(t), with t > 0, u(0) = u0, (2)

and some b : R → R3, u0 ∈ R3. The backward (implicit) Euler method applied to (2) with fixed time
step size ∆t > 0 is

□ absolutely stable if and only if 0 < ∆t < 1.

□ absolutely stable if and only if 0 < ∆t < 2.

⊠ absolutely stable for every ∆t > 0 (unconditionally absolutely stable).

□ not absolutely stable for any ∆t > 0.

Solution: By Lemma 6.4 (lecture notes), the backward Euler method applied to any linear system is
unconditionally absolutely stable.

Point distribution:

• +0.2 for the correct answer;

• 0 points if crosses are ambiguous or multiple boxes are crossed.

6

Sciper: Student: Section:

Question 5 (0.2 Points) Given a smooth function f : R → R and x̄ ∈ R, consider the finite differences
formula

δhf(x̄) :=
f(x̄− h)− 2f(x̄) + f(x̄+ 2h)

h
.

Of which order is this formula for approximating the derivative of the function f at x̄ ∈ R?

□ 0

⊠ 1

□ 2

□ 3

Solution: The Taylor expansions around x̄ are

f(x̄− h) = f(x̄)− hf ′(x̄) +
h2

2
f ′′(x̄) +O(h3)

f(x̄+ 2h) = f(x̄) + 2hf ′(x̄) + 2h2f ′′(x̄) +O(h3).

Inserting these expansions into the finite differences formula, we get

δhf(x̄) = f ′(x̄) +
5h

2
f ′′(x) +O(h2).

Hence, the method is of order 1.

Point distribution:

• +0.2 for the correct answer;

• 0 points if crosses are ambiguous or multiple boxes are crossed.

7

Question 6 (0.2 Points) Consider a linear system Ax = b with

A =

1 0 0
0 2 0
0 0 3


and some b ∈ R3. For which values of ω > 0 does the Richardson method defined by

Px(k+1) = (P −A)x(k) + b, k = 0, 1, 2, . . . ,

with P = ωI converge to the solution x for every starting vector x(0) and right-hand side b?

□ For ω > 1 but not for 0 < ω < 1.

□ For ω > 1
2 but not for 0 < ω < 1

2 .

⊠ For ω > 3
2 but not for 0 < ω < 3

2 .

□ There is no such ω > 0.

Solution: By Theorem 5.2 (lecture notes), the Richardson method converges if and only if the spectral
radius ρ(B) of B = I − P−1A is smaller than 1. The eigenvalues of B are clearly

1− 1

ω
, 1− 2

ω
, and 1− 3

ω
.

Then, for ω > 3/2, ρ(B) < 1 and for ω < 3/2, ρ(B) > 1.

Point distribution:

• +0.2 for the correct answer;

• 0 points if crosses are ambiguous or multiple boxes are crossed.

8

Sciper: Student: Section:

Exercise 3 (0.3 Points in total)

The following Python function implements a fixed-point iteration.

def fixed point(x0, tol, nmax):
"""
Fixed point iteration.

Parameters
−−−−−−−−−−
x0 : float

The initial guess for the fixed point.
tol : float

The desired tolerance for the fixed point.
nmax : int

The maximum number of iterations.

Returns
−−−−−−−
x seq : array−like

The successive values of the fixed point iterations.
res : array−like

The value of the residual at each iteration.
niter : int

The number of iterations performed.
"""

niter = 0
x seq = []
x seq.append(x0)
xt = 2 * x0 − (x0 − 1) ** 3 − 2 * np.log(x0) − 1

res = []
res.append(x0 − xt) # this measures "how far x0 is from the fixed point"
while (abs(res[−1]) > tol) and (niter < nmax):

niter = niter + 1
x seq.append(xt)
x0 = xt
xt = 2 * x0 − (x0 − 1) ** 3 − 2 * np.log(x0) − 1
res.append(abs(x0 − xt))
if niter ≥ nmax:

print("maximum iterations reached without achieving desired tolerance")

convert from list to array
x seq = np.array(x seq)
res = np.array(res)

return x seq, res, niter

9

Question 1 (0.2 Points) Write down the fixed-point iteration. That is, determine the function ϕ that
produces the sequence x(k+1) = ϕ(x(k)), k = 0, 1, 2, . . . , corresponding to the output x seq of the function
fixed point.

Solution: We look at the line xt = 2 * x0 - (x0 - 1) ** 3 - 2 * np.log(x) - 1 to see that the
function ϕ is given by

ϕ(x) = 2x− (x− 1)3 − 2 log(x)− 1.

Point distribution:

• +0.2 for correct expression ϕ;

• −0.1 if ϕ isn’t defined but the correct recurrence is given;

• Expression in terms of NumPy functions are tolerated.

10

Sciper: Student: Section:

Question 2 (0.1 Point) For the fixed point α = 1 and ϕ from Question 1, determine theoretically
the order of the fixed-point iteration x(k+1) = ϕ(x(k)), k = 0, 1, 2, Provide full justification for your
answer, incuding all derivations.

Solution: By Theorem 1.2 from the lecture notes, since ϕ is smooth in a neighborhood of α = 1, we can
check the derivatives of the function ϕ evaluated at the fixed point α = 1:

ϕ′(x) = 2− 3(x− 1)2 − 2

x
=⇒ ϕ′(1) = 0

ϕ′′(x) = −6(x− 1) +
2

x2
=⇒ ϕ′′(1) = 2 ̸= 0

ϕ′′′(x) = −6− 4

x3
=⇒ ϕ′′′(1) = −10 ̸= 0

ϕ(s)(x) = −2(s− 1)!

xs
, s ≥ 4 =⇒ ϕ(s)(1) ̸= 0, s ≥ 4.

Since ϕ(s)(α) = 0 for s = 1 but ϕ(s)(α) ̸= 0 for s ≥ 2, the method is of order 2.

Point distribution:

• +0.05 if the derivatives ϕ′(1) and ϕ′′(1) are correctly calculated;

• +0.05 point if based on the calculation the correct order is determined;

• −0.05 if ϕ′′(1) ̸= 0 is not checked;

• 0 points in any other case (missing derivative computations, wrong justification, ...).

11

Exercise 4 (0.3 Points in total)

Consider the Hilbert matrix A ∈ Rn×n, which has the entries

aij =
1

i+ j − 1
, i, j = 1, 2, . . . , n.

The function hilbert matrix in the Jupyter notebook generates this matrix.

Question 1 (0.1 Point) Numerically compute the (spectral) condition number κ(A) = ∥A−1∥∥A∥ of
the Hilbert matrix for n = 12, where ∥ · ∥ denotes the spectral norm of a matrix.

Computed value of κ(A) (rounded to three significant decimal digits):

Solution: Using np.linalg.cond, we get κ(A) = 1.75× 1016.

Point distribution:

• +0.1 for correct values of κ(A);

• small deviations from the correct value are tolerated.

Question 2 (0.1 Point) Let x solve the system Ax = b for some nonzero vector b ∈ R12, where A is
the Hilbert matrix from above for n = 12. Let x̂ solve the system Ax̂ = b̂ for a different non-zero vector
b̂ ∈ R12. Suppose that the entries of b, b̂ satisfy |b̂i − bi| ≤ ϵ|bi| for i = 1, . . . , 12 and some ϵ > 0. Provide
a value for α such that the inequality

∥x̂− x∥
∥x∥

≤ αϵ (3)

holds. Briefly justify your choice.

Solution: By Lemma 4.3 from the lecture notes, α = κ(A) = 1.75× 1016 verifies this inequality. To

see this, realize that |b̂i − bi| ≤ ϵ|bi| =⇒ b̂i − bi = siϵbi ⇐⇒ b̂i = bi(1 + siϵ) for some si ∈ [−1, 1],
i = 1, 2, . . . , 12. Hence, Lemma 4.3 with ϵmax = maxi=1,2,...,12 |siϵ| ≤ ϵ yields the inequality.

Point distribution:

• +0.1 if either α = κ(A) or the value from Question 1 is given.

12

Sciper: Student: Section:

Question 3 (0.1 Point) Validate numerically that the inequality (3) holds for the Hilbert ma-
trix A for n = 12 and the value of α you determined in Question 2. For this purpose, choose
x = [1, 2, . . . , 12]⊤ ∈ R12 and compute b := Ax. Further, let x̂ be the solution produced by the NumPy
function np.linalg.solve(A, b) and compute b̂ := Ax̂. Then compute and write down the left- and
right-hand side of (3), rounded to three significant decimal digits.

Solution: We get
∥x̂− x∥
∥x∥

= 4.77× 10−2 or 0.0477,

and

max
i

|b̂i − bi|
|bi|

κ(A) = 3.34.

Clearly, the inequality holds for this specific example.

Point distribution:

• +0.05 if left-hand side is correctly computed;

• +0.05 if right-hand side is correctly computed;

• tolerated if correct value for ε not just 10−16 but justified it with something like ∥b−b̂∥2
∥b∥2 .

13

Exercise 5 (0.7 Points in total)

Question 1 (0.3 Points) Complete the following Python function such that it implements the Heun
method.

def heun(f, u 0, T, N):
"""
Solves an ordinary differential equation

u' = f(t,u), t in (0, T],
u(0) = u 0

using the Heun method on an equispaced grid of stepsize dt = T / N.

Parameters
−−−−−−−−−−
f : function
u 0 : float

Starting value.
T : float > 0

End point.
N : int

Number of time steps

Returns
−−−−−−−
u : NumPy array

Approximate solution np.array([u 0, u 1, u 2,...,u N])
"""

u = np.zeros(N + 1)

BEGIN SOLUTION
u[0] = u 0
dt = T / N
END SOLUTION

for n in range(N):

BEGIN SOLUTION
u FE = u[n] + dt * f(n * dt, u[n])
u[n + 1] = u[n] + dt / 2 * f(n * dt, u[n]) + dt / 2 * f((n + 1) * dt, u FE)
END SOLUTION

return u

Point distribution:

• −0.1 for correct variable initialization;

• +0.1 for correct intermediate step (forward Euler);

• +0.1 for correct next iterate;

• also fine if intermediate is used directly in the next iterate, and the formula as a whole is correct;

• small syntactic errors in the code (wrongly placed parantheses, ...) are tolerated.

14

Sciper: Student: Section:

Question 2 (0.2 Points) Consider the ordinary differential equation
du(t)

dt
= t− u(t), t ∈ (0, T]

u(0) = 5.
(4)

The Jupyter notebook provides the function forward euler, which implements the forward (explicit)
Euler method. Use this implementation of the forward Euler method and your implementation of the
Heun method from Question 1 to solve (4) for T = 10 and N = 10 steps. Sketch the two approximations
of the solution u(t) in the plots below. Do not forget to label the y-axis.

t

u(t)

0 5 10

forward Euler

0

5

10

t

u(t)

0 5 10

Heun

0

5

10

Point distribution:

• +0.1 per plot if the general shape is correct, the axes are labeled and values approximately corre-
spond to the solution;

• If code from Question 1 was wrong and the graph reflects that mistake, tolerate it as a follow-up
mistake;

• −0.1 if graphs are correct, but order is swapped.

15

Question 3 (0.2 Points) Numerically determine the order of convergence of the forward Euler and
Heun method applied to problem (4).

Hint: The exact solution of (4) is u(t) = 6 exp(−t) + t− 1.

forward Euler Heun

order of convergence 1 2

Point distribution:

• +0.1 for every correct order.

16

Sciper: Student: Section:

Exercise 6 (0.6 Points in total)

Consider the function

f(x) = (1− x) cos(x), x ∈ [0, 1]. (5)

Question 1 (0.2 Points) Use Python to compute the degree 5 interpolating polynomial p of this
function f at the uniformly spaced nodes xi =

i
5 for i = 0, 1, . . . , 5. Write down the Python code below

and report the value of p(0.4).

Python code:

Solution:

BEGIN SOLUTION
f = lambda x: (1 − x) * np.cos(x)
x = np.linspace(0, 1, 6)

p = np.polyfit(x, f(x), 5)
p eval = np.polyval(p, 0.4)
print("Evaluation: p(0.4) = {:.3f}".format(p eval))
END SOLUTION

Value of p(0.4) rounded to three decimal digits:

p(0.4) = 5.53× 10−1 or 0.553

Point distribution:

• +0.2 if everything is correct;

• −0.1 if there is a small mistake;

• 0 otherwise.

17

Question 2 (0.2 Points) Use Python to compute the derivative p′ of the interpolating polynomial p
from Question 1. Write down the Python code below and report the error |p′(0.4)− f ′(0.4)|.

Python code:

BEGIN SOLUTION
p der = p[:−1] * np.arange(5, 0, −1)
p der eval = np.polyval(p der, 0.4)
f der eval = − np.cos(0.4) − (1 − 0.4) * np.sin(0.4)
error = abs(p der eval − f der eval)
print("Error: |p'(0.4) − f'(0.4)| = {:.3f}".format(error))
END SOLUTION

Value of |p′(0.4)− f ′(0.4)| rounded to three decimal digits:

|p′(0.4)− f ′(0.4)| = 1.24× 10−5 or 0.0000124

Point distribution:

• +0.2 if everything is correct (polyder and finite differences accepted);

• −0.1 if there is a small mistake (e.g., order, coefficients);

• 0 otherwise.

18

Sciper: Student: Section:

Question 3 (0.2 Points) Use Python to compute the integral I(p) =
∫ 1
0 p(x) dx of the interpolating

polynomial p from Question 1. Write down the Python code below and report the error |I(p) − I(f)|.
Hint : I(f) =

∫ 1
0 f dx = 1− cos(1).

Python code:

BEGIN SOLUTION
p int = np.sum(p * 1 / np.arange(6, 0, −1))
f int = 1 − np.cos(1)
error = abs(p int − f int)
print("Error: |I(p) − I(f) | = {:.3f}".format(error))
END SOLUTION

Value of |I(f)− I(p)| rounded to three decimal digits:

|I(p)− I(f)| = 7.00× 10−7 or 0.0000007

Point distribution:

• +0.2 if everything is correct (polyint accepted);

• −0.1 if there is a small mistake (e.g., order, coefficients);

• 0 otherwise.

19

Exercise 7 (0.7 Points in total)

Given data xi ∈ R, yi ∈ R, with i = 1, 2, . . . , n + 1, we aim at approximating this data by a function of
the form

q(x) = a0 + a1x+ a2e
x

for some real coefficients a0, a1, a2 ∈ R. More precisely, we want to find the least-squares approximation,
i.e., the coefficients a0, a1, a2 ∈ R that minimize the least-squares error:

min
a0,a1,a2∈R

n+1∑
i=1

(yi − (a0 + a1xi + a2e
xi))2. (6)

Question 1 (0.3 Points) Rewrite the minimization problem (6) in matrix-vector form. More precisely,
determine a matrix V ∈ R(n+1)×3 such that the vector a = [a0, a1, a2]

⊤ ∈ R3 containing the solution
a0, a1, a2 of (6) satisfies the minimization problem

min
a∈R3

∥y − V a∥2, (7)

with y = [y1, y2, . . . , yn+1]
⊤ ∈ Rn+1. Write down explicit formulas for the entries of V :

Solution: The matrix has entries

V =


1 x1 ex1

1 x2 ex2

1 x3 ex3

...
...

...
1 xn+1 exn+1


or

Vi1 = 1, i = 1, 2, . . . , n+ 1

Vi2 = xi, i = 1, 2, . . . , n+ 1

Vi3 = exi , i = 1, 2, . . . , n+ 1.

Point distribution:

• +0.3 if matrix or entries of the matrix are correctly written down;

• −0.2 if only case n = 2 is given;

• −0.1 points if V is starting with x0 or ending with xn;

• 0 points if only standard Vandermonde matrix (monomial basis) is given.

Hint : Note that this is not a least-squares polynomial approximation problem. Still, the correct matrix
V can be found in a fashion anologous to the derivation of the Vandermonde matrix for least-squares
polynomial approximation problems.

20

Sciper: Student: Section:

Question 2 (0.2 Points) Using your results from Question 1, complete the following Python function
such that it computes the least-squares solution a = [a0, a1, a2]

⊤ ∈ R3 of (7) for given data vectors
x = [x1, x2, . . . , xn+1]

⊤ ∈ Rn+1 and y = [y1, y2, . . . , yn+1]
⊤ ∈ Rn+1.

def least squares(x, y):
"""
Computes the vector of coefficients for the least−squares approximant
q(x) = a 0 + a 1 x + a 2 eˆx given data x i, y i, i=1, 2, ..., n + 1.

Parameters
−−−−−−−−−−
x : NumPy array of shape (n+1,)

x−values of the data.
y : NumPy array of shape (n+1,)

y−values of the data.

Returns
−−−−−−−
a : NumPy array of shape (3,)

Array of coefficients a 0, a 1, a 2.
"""

BEGIN SOLUTION
n = len(x) − 1
V = np.ones((n + 1, 3))
V[:, 1] = x
V[:, 2] = np.exp(x)
a = np.linalg.solve(V.T @ V, V.T @ y)
END SOLUTION

return a

Point distribution:

• +0.1 if matrix V is correctly assembled;

• +0.1 if normal equations are correctly computed and solved (np.linalg.lstsq is also tolerated);

• −0.05 if V ⊤ instead of V is assembled and then used as V ;

• −0.05 if the shape of V is (n+ 1)× (n+ 1) instead of (n+ 1)× 3;

• −0.05 if matrix V is only assembled for n = 2;

• small indexing errors are tolerated;

• 0 points if np.polyfit is used, since it computes the least squares approximant in a different basis.

21

Question 3 (0.2 Points) Consider the data points xi = i
4 and yi = sin(xi) cos(xi) + x2i − 1 for

i = 1, 2, . . . , 10. Provide the Python code that utilizes the function from Question 2 to solve the least-
squares problem (7) for this data. Report the least-squares error (7).

Python code:

BEGIN SOLUTION
x data = np.arange(1, 11) / 4
y data = np.sin(x data) * np.cos(x data) + x data ** 2 − 1

a = least squares(x data, y data)

y ls = a[0] + a[1] * x data + a[2] * np.exp(x data)

ls error = np.sum((y data − y ls) ** 2)
print("Least squares error: E ls = {:.2e}".format(ls error))
END SOLUTION

Value of the least-squares error (7) rounded to three decimal digits.

Solution: mina∈R3∥y − V a∥2 = 2.90× 10−2 or 0.0290

Point distribution:

• +0.1 if least-squares coefficients are correctly computed, even if an incorrectly implemented
least squares from previous question is referenced;

• +0.1 if the least-squares error (7) is correctly computed and written down;

• −0.05 if the value of the error is not given.

22

