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Exercise 1 (1.4 points)

Let us define the following tridiagonal matrix:

A =


4 θ
1 4 θ

. . .
. . .

. . .

1 4 θ
1 4

 ∈ Rn×n

where θ ≥ 0, which can be constructed in Python (after having defined theta and n) with the following
commands:

import numpy as np
A = 4*np.eye(n) + np.diag(np.ones(n−1),−1) + theta*np.diag(np.ones(n−1),1)

We want to solve the linear system Ax = b with b = (1, ..., 1)⊤ ∈ Rn.

a) Compute (by hand) for which values of θ the Jacobi iterative method converges to the true solution.
Hint: the eigenvalues of a tridiagonal matrix

M =


a b
c a b

. . .
. . .

. . .

c a b
c a

 ∈ Rn×n

are λi(M) = a+ 2
√
bc cos

(
πi
n+1

)
, i = 1, ..., n.

Then, compute the spectral radius of the iteration matrix of the Jacobi method for the different
values n = 5, 100 and θ = 2, 5. Fill out the following table with the obtained results. Do the results
agree with the convergence condition for θ obtained previously?

n = 5 n = 100

θ = 2

θ = 5

b) Let us set n = 50 and θ = 2. Solve the linear system using the Jacobi method (function jacobi
provided on the next page) by setting the initial guess to the vector x0 = 0, the tolerance to 10−6

and the maximum number of iteration to 500. Write down the number of iterations needed to reach
convergence and the residual at the final iteration.

c) Now, set θ = 1, b = (5, 6, 6, ..., 6, 6, 5)⊤ and the initial guess vector x0 = 0, and consider the different
values n = 4, 8, 12, ..., 200. Knowing that the exact solution of the linear system is x = (1, ..., 1)⊤

and denoting by xJ the approximated solution obtained with the Jacobi method, plot the relative
error ∥x − xJ∥/∥x∥ and the normalized residual ∥b − AxJ∥/∥b∥ as a function of n in a graph in
double logarithmic scale (report the graph qualitatively on the exam sheet). Is the residual a good
estimator of the error? Why?

1



import numpy as np

def jacobi(A,b,x0,nmax ,tol):

"""

Jacobi iterative method.

x, niter , res = jacobi(a, b, x0, nmax , tol) attempts to solve the system of linear

equations A*x=b

for x using the Jacobi method.

Input:

A: n-by -n coefficient matrix A. It must be not singular

b: right -hand -side column vector. It must have length n.

x0: initial solution guess. It must have length n.

nmax: Maximum number of iterations to perform.

tol: Tolerance of the method. Used for stopping the iterations by comparing

the norm of the residual with the residual for x0.

Output:

x: compute solution vector. It has length n.

niter: Number of iterations performed until convergence was reached.

res: Norm of the residual at each iteration , including the first one.

"""

P = np.diag(np.diag(A))

x = x0.copy()

r = b - A @ x

r0 = np.linalg.norm(r)

res = [r0]

niter = 0

while res[-1]/r0 > tol and niter < nmax:

z = np.linalg.solve(P, r)

x = x + z

r = b - A @ x

niter = niter + 1

res.append(np.linalg.norm(r))

return x, niter , res
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Exercise 2 (1.4 points)

a) For a continuous function f : [a, b] → R, write the composite Simpson’s quadrature formula Qsimp
h (f)

over M sub-intervals of length h = (b − a)/M to approximate the integral I(f) =
∫ b
a f(x) dx, and

recall its degree of exactness.

b) We recall that the order of a composite quadrature formula Qh(f) is the largest integer p such that∣∣∣∣∫ b

a
f(x) dx−Qh(f)

∣∣∣∣ ≤ Chp, (1)

where h = (b − a)/M , for a constant C > 0 that depends on f and is otherwise independent of
h. What is the order of the composite Simpson’s formula and which derivatives of f appear in the
constant C of the estimate (1)?

c) We now consider the function f(x) = ex sin(x) and the bounds a = 0 and b = 1. Knowing that the
exact value of the integral over the interval [0, 1] is

I(f) =
1

2

[
1 + exp(1)

(
sin(1)− cos(1)

)]
,

approximate the integral I(f) by the composite Simpson’s formula (function simp provided on the
next page) using M = 2, 22, 23, 24, 25 sub-intervals of the same length h = (b− a)/M , and calculate
for each value of h the error

ϵh =
∣∣I(f)−Qsimp

h (f)
∣∣.

Then plot the graph of the error ϵh as a function of h on a logarithmic scale (command loglog).
What is the order of convergence that we observe?

d) Repeat point c) using f(x) =
√
x, knowing that I(f) = 2

3 . Comment on the results obtained.

e) Repeat point c) using f(x) =
x3 − 7x2 + 14x− 8

x− 4
, knowing that I(f) = 5

6 . Comment on the results

obtained.
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import numpy as np

def simp(a,b,m,f):

"""

Composite Simpson formula.

intsimp = simp(a, b, m, f) computes the integral of the function f in the interal [a

, b]

using m sub -intervals.

Input:

a: Start of the interval.

b: End of the interval.

m: Number of sub -intervals.

f: function to integrate. This function must be evaluable as f(x),

with x being a numpy array.

Output:

intsimp: Computed integral.

"""

m = int (m)

h = (b - a) / m

x = np.linspace(a, b, m + 1)

xmid = 0.5 * (x[:-1] + x[1:])

return h/6.0 * np.sum(f(x[:-1])+ 4.0*f(xmid) + f(x[1:]))
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Exercise 3 - Multiple choice questions (1.2 points)

This is a multiple-choice exercise.
One, and only one, answer is correct for every question.
Mark your answer with a cross or a circle in a legible way.
Each correct answer is worth 1

5 , each “blank” question is worth 0 and each wrong answer is worth − 1
20 .

MC1 We want to find an approximation of the solution of the ordinary differential equation{
u′(t) = −2u(t) + (t+ 1)
u(0) = u0,

by using the following scheme: {
un+1 = 1

2∆t+1u
n +∆t (n+1)∆t+1

2∆t+1

u0 = u0.

Which scheme is it?

a) Forward Euler (explicit).

b) Backward Euler (implicit).

c) Crank-Nicolson.

d) Heun.

e) None of the above.

MC2 Let us consider the data
x1 = −1 y1 = 12
x2 = 0 y2 = 12
x3 = 2 y3 = 6.

The derivative at x = 1 of a polynomial that interpolates the data (xi, yi), i = 1, 2, 3, is equal to

a) -3

b) 0

c) 1

d) 5

e) 11
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MC3 The Newton method for solving the system of equations f(x) = 0 with

f(x) =

[
sin(x1) + x1
2x1 − x2 + 5

]
.

is:

a)

 x
(k+1)
1 =x

(k)
1 − sin(x

(k)
1 )+x

(k)
1

cos(x
(k)
1 )+1

x
(k+1)
2 =2x

(k+1)
1 + 5

b)

 x
(k+1)
1 =x

(k)
1 − cos(x

(k)
1 )+1

sin(x
(k)
1 )+x

(k)
1

x
(k+1)
2 =2x

(k)
1 + 5

c)

 x
(k+1)
1 =x

(k)
1 − sin(x

(k)
1 )+x

(k)
1

cos(x
(k)
1 )+1

x
(k+1)
2 =x

(k)
1 + x

(k+1)
1 + 5

d)

 x
(k+1)
1 =x

(k)
1 − cos(x

(k)
1 )+1

sin(x
(k)
1 )+x

(k)
1

x
(k+1)
2 =2x

(k+1)
1 + 5

e)

 x
(k+1)
1 =x

(k)
1 − sin(x

(k)
1 )+x

(k)
1

cos(x
(k)
1 )+1

x
(k+1)
2 =2x

(k)
1 + 5

MC4 Consider the first-order linear differential equation system

X′(t) = AX(t) + b(t), with A =

 −1 3 2
0 −1 0

−1 1 −3

 . (2)

The forward Euler method to approximate the problem (2) is absolutely stable if and only if

a) 0 < ∆t ≤ 2

b) 0 < ∆t < 4
5

c) 0 < ∆t < 1
2

d) 0 < ∆t < 1

e) ∆t > 0 (unconditionally absolutely stable)
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MC5 Let f : R∗
+ → R be defined by f(x) = (x − 1)3 + 2 log(x) + 1. We are interested in the unique

fixed point α = 1 of f . Under what condition on ω is the composite fixed point method defined for ω ∈ R
by

x(k+1) = ϕ(x(k)) = (1− ω)x(k) + ωf(x(k))

of order 2?

a) ω = −1

b) ω = 0

c) ω = 1

d) ω = 1/2

e) none of the values of ω proposed above

MC6 Given f ∈ C4([0, 1]), let s3,h be a cubic spline that interpolates f at the equally distributed nodes
0 = x1 < x2 < . . . < xn+1 = 1, where h = 1/n is the length of each interval Ii = [xi, xi+1], i = 0, . . . , n.
What is the order of convergence for the error maxx∈[0,1] |f ′′(x)− s′′3,h(x)| as h goes to zero?

a) 4

b) 3

c) 2

d) 1

e) 0 (no convergence order).
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Exercise 4 - Implementation (0.5 points)

CODE1 Complete the following Python function which implements the Heun method

import numpy as np

def heun(f, I, u0, N):

"""

Solve the differential equation:

u '=f(t,u), t in (t0,T],

u(t0)=u0

using the Heun's method on an equispaced grid of stepsize dt=(T-t0)/N.

Input:

f: right -hand -side function. It can be evaluated as f(x),

where x is a scalar value.

I: integration interval [t0 ,T].

u0: initial condition.

N: number of sub -intervals.

Output:

t: vector of time snapshots [t0 ,t1 ,...,tN] (with tN=T).

u: approximation of the solution [u0 ,u1 ,...,uN].

dt: time step.

"""

dt = (I[1] - I[0]) / N

u = np.zeros(N+1)

t = # TO COMPLETE

u[0] = # TO COMPLETE

for n in range(N):

# TO COMPLETE below

u[n+1] = # TO COMPLETE

return t, u, dt
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CODE2 Complete the following Python function which implements the bisection method.

import numpy as np

def bisection(f, a, b, tol , nmax):

"""

Tries to find a zero of the continuous function f in the interval [a, b]

using the bisection method. This function assumes that a zero is found when the

length of the bisection interval semilength at a certain iteration is smaller

than the given tolerance.

Input:

f: function whose zero is sought. It must be evaluable as f(x),

where x is a scalar value.

a, b: Start and end of the interval. They must be such that the values

of the function f at them have opposite sign.

tol: Tolerance to be used.

nmax: Maximum number of iterations to perform.

Output:

zero: Computed zero.

fzero: Value of f evaluated at the computed zero.

niter: Number of iterations performed.

"""

fa = f(a)

fb = f(b)

niter = 0

i f fa * fb > 0:

raise Exception("The sign of f at a and b must be different")

e l i f np.abs(fa) < tol:

zero = # TO COMPLETE

res = # TO COMPLETE

return zero , res , niter

e l i f np.abs(fb) < tol:

zero = # TO COMPLETE

res = # TO COMPLETE

return zero , res , niter

I = 0.5 * (b - a) # This is the interval semilength , i.e., the error estimate.

while I > tol and niter < nmax:

# TO COMPLETE below

return zero , f(zero), niter

18


