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Exercise 1 (1.4 points)

a) The iteration matrix for the Jacobi method is given by By = I — D~'A, where D is the diagonal
matrix with entries d;; = ay for ¢ = 1,...,n. In this case, we have D = 41 and consequently
D1 = %I . Therefore, the iteration matrix reads
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Following the hint we can write

0 i 1 Uy
Ni(By) = 2\/1—6008 (n+1> = ix/écos <n+1> .

o 27) b

Then,

1
p(By) = nax [\i(By)| = 5\/5 max

1<i<n n+1 2

T 1 ™
oo () = e (2

(maximum obtained for i = 1,n) and we can conclude that the method converges for
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The spectral radius of the iteration matrix B for the Jacobi method is reported in the table below,
for different values of n and 6:

(1)

p(By) <l<=6<

n=>5 | n=100
0=210.6124 | 0.7068
6=5109682 | 1.1175

We observe that the Jacobi method converges for every value of n when § = 2 and only for n =5
when # = 5. This result is in agreement with the previous computations. Indeed, we have

b=54 " — 40039
cos (m/101)

for which the condition (1) is not verified.

b) We can solve the linear system by using the following commands:

import numpy as np
from examen_aux import jacobi

n = 50
theta = 2

A = 4xnp.eye(n) + thetax( np.diag(np.ones(n-1),-1)
+ np.diag(np.ones(n-1),1) )

b = np.ones (n)

x0 = 0. » b

tol = le-6

nmax = 500

xJ,iterJd, resd = jacobi (A,b,x0,nmax,tol)




We get: iterJ = 48, resJ(end) = 5.3190 - 107%.

c) We can solve the linear system for different values of n with the following commands

import numpy as np
from matplotlib import pyplot as plt
from examen_aux import jacobi

theta = 1.
ns = [4,8,16,32,64]
niter = []

tol = le-6
nmax = 20000
for n in ns:
A = 4xnp.eye(n) + thetax( np.diag(np.ones(n-1),-1) + np.diag(np.ones(n-1),1)
b = np.ones (n)
x0 = 0. Db
_,iterd, - = jacobi(A,b,x0,nmax,tol)
niter += [iterJ]

plt.figure()

plt.semilogx (ns,niter, "rx—")
plt.grid()

plt.show ()

theta =1

ns = list (range (4, 204, 4))
nmax = 500

tol 1.0e-6

err = []

res = []

for n in ns:

b = 6.0 x np.ones(n)
b[0] =5

b[-1] =5

x0 = np.zeros (n)

X = np.ones (n)
xJ, -, - = jacobi(A, b, x0, nmax, tol)

err.append(np.linalg.norm(x — xJ) / np.linalg.norm(x))
res.append (np.linalg.norm(b - A @ xJ) / np.linalg.norm(b))

plt.loglog(ns, err)
plt.loglog(ns, res)
plt.grid()
plt.show ()

A = 4.0 x np.eye(n) + theta » np.diag(np.ones(n-1),1) + np.diag(np.ones(n-1),

)

-1)

Figure 1 contains the obtained plots for the relative error and the normalized residual as a function

of n for the Jacobi method.

We can conclude that the residual is a good estimator of the error. Indeed, we can see that the
matrix A is well-conditioned for all values of n (the condition number for n = 200 is equal to 7).
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Figure 1: Relative error and normalized residual for different values of n for the Jacobi method.

We recall that the error and the residual at iteration k are linked as follows
I ®
bl 7

Il — x|

< K(A)

x|

the residual is therefore a good estimator of the error as long as the condition number of the matrix
is close to 1.




Exercise 2 (1.4 points)

a) Consider a grid of M + 1 uniformly spaced points @ = zg < 21 < ... < )y = b, which defines
M intervals of length h = (b — a)/M. The composite Simpson quadrature formula Q;""(f) to

approximate I(f) = f: f(z)dx is

The degree of exactness is 3.

b) If f € C*, one can show that

"

b
[ s - un| < € max 1" @),

with C a constant. Hence, fomp (f) has order 4, as long as f is regular enough.

The fourth derivative of f appears in the constant C.

c) We use the following commands:

import numpy as np
from matplotlib import pyplot as plt
from examen_aux import simp

a,b = 0,1
f = lambda x: np.exp(x)*np.sin(x)
exact = .5 x (1 + np.exp(l) * (np.sin(l)-np.cos(l)) )

M = 2 x* np.arange(l, 6)
errsimp = []

for i in range(len(M)):
intsimp = simp( a, b, M[i], f)
errsimp += [abs (intsimp-exact) ]

H = (b-a)/M

plt.figure()

plt.loglog(H, errsimp, 'r*-")

plt.loglog (H,H/100, "k——")

plt.loglog (H,Hx*2/100, 'k"—")

plt.loglog (H,H*%x4/100, "kd-")

plt.grid()

plt.legend(['error', 'order 1','order 2','order 4'])

We obtain the graph in Figure 1 (left). We see that the convergence order is 4, as predicted by the
theory.

d) This time we obtain the graph in Figure 1 (center). The order is no longer 4 but only 1.5, due to
the reduced regularity of the function \/x.
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FIGURE 1: Left: error convergence for f(z) = e”sin(z). Center: error convergence for f(z) = /x.
23—72%+142-8
z—4 '

Right: error convergence for f(x) =
e) For this function f, we obtain the graph in Figure 1 (right). The error is always very small, around
machine precision. This is a consequence of the fact that, in fact, f is a quadratic polynomial:

23 -T2+ 142 -8 (v —1)(z —4)(z —2)

R e e I R G

Accordingly, the Simpson formula yields the exact result, no matter the choice of M.




Exercise 3 - Multiple choice questions (1.2 points)

Version A

Version B

MC1

MC2

MC3

MC4

MC5

MC6

Answer

b)

)

)

b)

MC1

MC2

MC3

MC4

Answer

b)

Q)
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Exercise 4 - Implementation (0.5 points)

CODE1 Complete the following Python function which implements the Heun method.

import numpy as np
def heun(f,I,u0,N):

dt = (I[1]1-I[0])/N

u = np.zeros (N+1)
t = mnp.linspace(I[0], I[1], N + 1)
ul0] = u0

for n in range(N):

z = uln] + dt * f(t[n]l, ulnl)

uln+1] = uln] + dt / 2 * ( £(t[n]l, ulnl)
+ f(t[n] + dt, z) )

return t, u, dt




CODE2 Complete the following Python function which implements the bisection method.

import numpy as np

def bisection( f, a, b, tol, nmax ):
Tries to find a zero of the continuous function f in the interval [a, b]
using the bisection method. This function assumes that a zero is found when the
length of the bisection interval semilength at a certain iteration 1is smaller
than the given tolerance.

Input:
f: function whose zero %is sought. It must be evaluable as f(z),
where = 715 a scalar value.
a, b: Start and end of the interval. They must be such that the walues
of the function f at them have opposite sign.
tol: Tolerance to be used.
nmax: Mazimum number of iterations to perform.

Output:
zero: Computed zero.
fzero: Value of f evaluated at the computed zero.
niter: Number of t1terations performed.

"wmn

fa = f(a)
fb = f(b)
niter = 0

if fa * fb > 0:
raise Exception("The sign of f at a and b must be different")

elif np.abs(fa) < tol:
zZzero = a # TO COMPLETE
res = fa # TO COMPLETE
return zero, res, niter

elif np.abs(fb) < tol:
zero = b # TO COMPLETE
res = fb # TO COMPLETE
return zero, res, niter

I = 0.5 %x (b - a) # This 1s the interval semilength, t.e. the error estimate.

while I > tol and niter < nmax:
# TO COMPLETE below
niter += 1

zero = 0.5 *x (a + b)
fzero = f(zero)

if fzero * fa < O0:
b = zero
fb = fzero
elif fzero * fb < 0:

a = zero
fa = fzero
else:
I =20

I = 0.5 %1

zero = 0.5 *x (a + b)
return zero, f(zero), niter




