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Exercise 1 (1.4 points)

a) The iteration matrix for the Jacobi method is given by BJ = I −D−1A, where D is the diagonal
matrix with entries dii = aii for i = 1, ..., n. In this case, we have D = 4I and consequently
D−1 = 1

4I. Therefore, the iteration matrix reads
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Following the hint we can write
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(maximum obtained for i = 1, n) and we can conclude that the method converges for
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4
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The spectral radius of the iteration matrix BJ for the Jacobi method is reported in the table below,
for different values of n and θ:

n = 5 n = 100

θ = 2 0.6124 0.7068

θ = 5 0.9682 1.1175

We observe that the Jacobi method converges for every value of n when θ = 2 and only for n = 5
when θ = 5. This result is in agreement with the previous computations. Indeed, we have

θ = 5 ≮
4

cos (π/101)2
= 4.0039

for which the condition (1) is not verified.

b) We can solve the linear system by using the following commands:

import numpy as np
from examen aux import jacobi

n = 50
theta = 2

A = 4*np.eye(n) + theta*( np.diag(np.ones(n−1),−1)
+ np.diag(np.ones(n−1),1) )

b = np.ones(n)
x0 = 0. * b
tol = 1e−6
nmax = 500

xJ,iterJ,resJ = jacobi(A,b,x0,nmax,tol)
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We get: iterJ = 48, resJ(end) = 5.3190 · 10−06.

c) We can solve the linear system for different values of n with the following commands

import numpy as np
from matplotlib import pyplot as plt
from examen aux import jacobi

theta = 1.
ns = [4,8,16,32,64]
niter = []

tol = 1e−6
nmax = 20000
for n in ns:

A = 4*np.eye(n) + theta*( np.diag(np.ones(n−1),−1) + np.diag(np.ones(n−1),1) )
b = np.ones(n)
x0 = 0. * b
,iterJ, = jacobi(A,b,x0,nmax,tol)

niter += [iterJ]

plt.figure()
plt.semilogx(ns,niter,'r*−')
plt.grid()
plt.show()

theta = 1
ns = list(range(4, 204, 4))
nmax = 500
tol = 1.0e−6
err = []
res = []

for n in ns:
A = 4.0 * np.eye(n) + theta * np.diag(np.ones(n−1),1) + np.diag(np.ones(n−1),−1)
b = 6.0 * np.ones(n)
b[0] = 5
b[−1] = 5

x0 = np.zeros(n)
x = np.ones(n)

xJ, , = jacobi(A, b, x0, nmax, tol)

err.append(np.linalg.norm(x − xJ) / np.linalg.norm(x))
res.append(np.linalg.norm(b − A @ xJ) / np.linalg.norm(b))

plt.loglog(ns, err)
plt.loglog(ns, res)
plt.grid()
plt.show()

Figure 1 contains the obtained plots for the relative error and the normalized residual as a function
of n for the Jacobi method.

We can conclude that the residual is a good estimator of the error. Indeed, we can see that the
matrix A is well-conditioned for all values of n (the condition number for n = 200 is equal to 7).
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Figure 1: Relative error and normalized residual for different values of n for the Jacobi method.

We recall that the error and the residual at iteration k are linked as follows

∥x− x(k)∥
∥x∥

≤ K(A)
∥r(k)∥
∥b∥

,

the residual is therefore a good estimator of the error as long as the condition number of the matrix
is close to 1.
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Exercise 2 (1.4 points)

a) Consider a grid of M + 1 uniformly spaced points a = x0 < x1 < . . . < xM = b, which defines
M intervals of length h = (b − a)/M . The composite Simpson quadrature formula Qsimp

h (f) to

approximate I(f) =
∫ b
a f(x) dx is

Qsimp
h (f) =

M∑
i=1

h

6

(
f(xi−1) + 4f

(
xi−1 + xi

2

)
+ f(xi)

)
.

The degree of exactness is 3.

b) If f ∈ C4, one can show that∣∣∣∣∫ b

a
f(x)dx−Qh(f)

∣∣∣∣ ≤ C max
x∈[a,b]

|f ′′′′
(x)|h4,

with C a constant. Hence, Qsimp
h (f) has order 4, as long as f is regular enough.

The fourth derivative of f appears in the constant C.

c) We use the following commands:

import numpy as np
from matplotlib import pyplot as plt
from examen aux import simp
a,b = 0,1

f = lambda x: np.exp(x)*np.sin(x)
exact = .5 * ( 1 + np.exp(1) * (np.sin(1)−np.cos(1)) )

M = 2 ** np.arange(1, 6)
errsimp = []

for i in range(len(M)):
intsimp = simp( a, b, M[i], f)
errsimp += [abs(intsimp−exact)]

H = (b−a)/M

plt.figure()
plt.loglog(H, errsimp, 'r*−')
plt.loglog(H,H/100,'k−−')
plt.loglog(H,H**2/100,'kˆ−')
plt.loglog(H,H**4/100,'kd−')
plt.grid()
plt.legend(['error','order 1','order 2','order 4'])

We obtain the graph in Figure 1 (left). We see that the convergence order is 4, as predicted by the
theory.

d) This time we obtain the graph in Figure 1 (center). The order is no longer 4 but only 1.5, due to
the reduced regularity of the function

√
x.
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Figure 1: Left: error convergence for f(x) = ex sin(x). Center: error convergence for f(x) =
√
x.

Right: error convergence for f(x) = x3−7x2+14x−8
x−4 .

e) For this function f , we obtain the graph in Figure 1 (right). The error is always very small, around
machine precision. This is a consequence of the fact that, in fact, f is a quadratic polynomial:

f(x) =
x3 − 7x2 + 14x− 8

x− 4
=

(x− 1)(x− 4)(x− 2)

x− 4
= (x− 1)(x− 2)

Accordingly, the Simpson formula yields the exact result, no matter the choice of M .
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Exercise 3 - Multiple choice questions (1.2 points)

Version A

MC1 MC2 MC3 MC4 MC5 MC6

Answer b) a) a) b) a) c)

Version B

MC1 MC2 MC3 MC4 MC5 MC6

Answer e) b) d) c) c) e)
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Exercise 4 - Implementation (0.5 points)

CODE1 Complete the following Python function which implements the Heun method.

import numpy as np

def heun(f,I,u0 ,N):

"""

Solve the differential equation:

u '=f(t,u), t in (t0,T],

u(t0)=u0

using the Heun's method on an equispaced grid of stepsize dt=(T-t0)/N.

Input:

f: right -hand -side function. It can be evaluated as f(x),

where x is a scalar value.

I: integration interval [t0 ,T].

u0: initial condition.

N: number of sub -intervals.

Output:

t: vector of time snapshots [t0 ,t1 ,...,tN] (with tN=T).

u: approximation of the solution [u0 ,u1 ,...,uN].

dt: time step.

"""

dt = (I[1]-I[0])/N

u = np.zeros(N+1)

t = np.linspace(I[0], I[1], N + 1) # TO COMPLETE

u[0] = u0 # TO COMPLETE

for n in range(N):

# TO COMPLETE below

z = u[n] + dt * f(t[n], u[n])

u[n+1] = u[n] + dt / 2 * ( f(t[n], u[n]) # TO COMPLETE

+ f(t[n] + dt , z) )

return t, u, dt
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CODE2 Complete the following Python function which implements the bisection method.

import numpy as np

def bisection( f, a, b, tol , nmax ):

"""

Tries to find a zero of the continuous function f in the interval [a, b]

using the bisection method. This function assumes that a zero is found when the

length of the bisection interval semilength at a certain iteration is smaller

than the given tolerance.

Input:

f: function whose zero is sought. It must be evaluable as f(x),

where x is a scalar value.

a, b: Start and end of the interval. They must be such that the values

of the function f at them have opposite sign.

tol: Tolerance to be used.

nmax: Maximum number of iterations to perform.

Output:

zero: Computed zero.

fzero: Value of f evaluated at the computed zero.

niter: Number of iterations performed.

"""

fa = f(a)

fb = f(b)

niter = 0

i f fa * fb > 0:

raise Exception("The sign of f at a and b must be different")

e l i f np.abs(fa) < tol:

zero = a # TO COMPLETE

res = fa # TO COMPLETE

return zero , res , niter

e l i f np.abs(fb) < tol:

zero = b # TO COMPLETE

res = fb # TO COMPLETE

return zero , res , niter

I = 0.5 * (b - a) # This is the interval semilength , i.e. the error estimate.

while I > tol and niter < nmax:

# TO COMPLETE below

niter += 1

zero = 0.5 * (a + b)

fzero = f(zero)

i f fzero * fa < 0:

b = zero

fb = fzero

e l i f fzero * fb < 0:

a = zero

fa = fzero

else :
I = 0

I = 0.5 * I

zero = 0.5 * (a + b)

return zero , f(zero), niter
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