Final Exam (A)
Course: Numerical Analysis - Sections SIE-GC
E P:: L Lecturer: Pablo Antolin, Espen Sande
Date: 15/01,/2024 Duration: 3h 00
Sciper: Student: Section:

Evaluation table
Ex.1 Ex.2 Ex.3 Ex.4 Total

PLEASE READ CAREFULLY ALL THE INSTRUCTIONS OF THE EXAM

WRITE YOUR SURNAME, NAME, SCIPIER on every page, PLEASE!

All Python code and all the results (the plots and images if they are requested, too)
MUST BE TRANSCRIBED ON THESE SHEETS, which must be submitted at the end
of the exam.

It is not possible to submit the Python/Jupyter code electronically.

Scratch paper is provided for your personal notes, but it will not be considered for the
evaluation of the exam. It must be returned at the end of the exam.

Exercise 3 is of multiple-choice type and this is the only case throughout this exam where
it is not necessary to justify your answer.

Write everything with a blue or black pen.

AUTHORIZED MATERIAL

The only authorized material is: an handwritten formulary on a double-sized A4
sheet.

No other sheets, notes or books (paper or electronics), or calculator, mobile phone, tablet, laptop
or other electronic devices. The access to Internet (e-mail, websites) is obviously prohibited.

Informations for identification (log-in):
Username and password: Your GASPAR account
Virtual machine:

SB-MATH-EXAM

Sciper: Student: Section:

Exercise 1 (1.4 points)

a) The iteration matrix for the Jacobi method is given by By = I — D~'A, where D is the diagonal
matrix with entries d;; = ay for ¢ = 1,...,n. In this case, we have D = 41 and consequently
D1 = %I . Therefore, the iteration matrix reads

0 -

AN

—
=

BJ_I_ZA:

Following the hint we can write

0 i 1 Uy
Ni(By) = 2\/1—6008 (n+1> = ix/écos <n+1> .

o 27) b

Then,

1
p(By) = nax [\i(By)| = 5\/5 max

1<i<n n+1 2

T 1 ™
oo () = e (2

(maximum obtained for i = 1,n) and we can conclude that the method converges for

4
—5
cos (niﬂ)

The spectral radius of the iteration matrix B for the Jacobi method is reported in the table below,
for different values of n and 6:

(1)

p(By) <l<=6<

n=>5 | n=100
0=210.6124 | 0.7068
6=5109682 | 1.1175

We observe that the Jacobi method converges for every value of n when § = 2 and only for n =5
when # = 5. This result is in agreement with the previous computations. Indeed, we have

b=54 " — 40039
cos (m/101)

for which the condition (1) is not verified.

b) We can solve the linear system by using the following commands:

import numpy as np
from examen_aux import jacobi

n = 50
theta = 2

A = 4xnp.eye(n) + thetax(np.diag(np.ones(n-1),-1)
+ np.diag(np.ones(n-1),1))

b = np.ones (n)

x0 = 0. » b

tol = le-6

nmax = 500

xJ,iterJd, resd = jacobi (A,b,x0,nmax,tol)

We get: iterJ = 48, resJ(end) = 5.3190 - 107%.

c) We can solve the linear system for different values of n with the following commands

import numpy as np
from matplotlib import pyplot as plt
from examen_aux import jacobi

theta = 1.
ns = [4,8,16,32,64]
niter = []

tol = le-6
nmax = 20000
for n in ns:
A = 4xnp.eye(n) + thetax(np.diag(np.ones(n-1),-1) + np.diag(np.ones(n-1),1)
b = np.ones (n)
x0 = 0. Db
_,iterd, - = jacobi(A,b,x0,nmax,tol)
niter += [iterJ]

plt.figure()

plt.semilogx (ns,niter, "rx—")
plt.grid()

plt.show ()

theta =1

ns = list (range (4, 204, 4))
nmax = 500

tol 1.0e-6

err = []

res = []

for n in ns:

b = 6.0 x np.ones(n)
b[0] =5

b[-1] =5

x0 = np.zeros (n)

X = np.ones (n)
xJ, -, - = jacobi(A, b, x0, nmax, tol)

err.append(np.linalg.norm(x — xJ) / np.linalg.norm(x))
res.append (np.linalg.norm(b - A @ xJ) / np.linalg.norm(b))

plt.loglog(ns, err)
plt.loglog(ns, res)
plt.grid()
plt.show ()

A = 4.0 x np.eye(n) + theta » np.diag(np.ones(n-1),1) + np.diag(np.ones(n-1),

)

-1)

Figure 1 contains the obtained plots for the relative error and the normalized residual as a function

of n for the Jacobi method.

We can conclude that the residual is a good estimator of the error. Indeed, we can see that the
matrix A is well-conditioned for all values of n (the condition number for n = 200 is equal to 7).

Sciper: Student: Section:

— Erreur relative
— Residu normalise

Figure 1: Relative error and normalized residual for different values of n for the Jacobi method.

We recall that the error and the residual at iteration k are linked as follows
I ®
bl 7

Il — x|

< K(A)

x|

the residual is therefore a good estimator of the error as long as the condition number of the matrix
is close to 1.

Exercise 2 (1.4 points)

a) Consider a grid of M + 1 uniformly spaced points @ = zg < 21 < ... <)y = b, which defines
M intervals of length h = (b — a)/M. The composite Simpson quadrature formula Q;""(f) to

approximate I(f) = f: f(z)dx is

The degree of exactness is 3.

b) If f € C*, one can show that

"

b
[s - un| < € max 1" @),

with C a constant. Hence, fomp (f) has order 4, as long as f is regular enough.

The fourth derivative of f appears in the constant C.

c) We use the following commands:

import numpy as np
from matplotlib import pyplot as plt
from examen_aux import simp

a,b = 0,1
f = lambda x: np.exp(x)*np.sin(x)
exact = .5 x (1 + np.exp(l) * (np.sin(l)-np.cos(l)))

M = 2 x* np.arange(l, 6)
errsimp = []

for i in range(len(M)):
intsimp = simp(a, b, M[i], f)
errsimp += [abs (intsimp-exact)]

H = (b-a)/M

plt.figure()

plt.loglog(H, errsimp, 'r*-")

plt.loglog (H,H/100, "k——")

plt.loglog (H,Hx*2/100, 'k"—")

plt.loglog (H,H*%x4/100, "kd-")

plt.grid()

plt.legend(['error', 'order 1','order 2','order 4'])

We obtain the graph in Figure 1 (left). We see that the convergence order is 4, as predicted by the
theory.

d) This time we obtain the graph in Figure 1 (center). The order is no longer 4 but only 1.5, due to
the reduced regularity of the function \/x.

Sciper: Student: Section:

FIGURE 1: Left: error convergence for f(z) = e”sin(z). Center: error convergence for f(z) = /x.
23—72%+142-8
z—4 '

Right: error convergence for f(x) =
e) For this function f, we obtain the graph in Figure 1 (right). The error is always very small, around
machine precision. This is a consequence of the fact that, in fact, f is a quadratic polynomial:

23 -T2+ 142 -8 (v —1)(z —4)(z —2)

R e e I R G

Accordingly, the Simpson formula yields the exact result, no matter the choice of M.

Exercise 3 - Multiple choice questions (1.2 points)

Version A

Version B

MC1

MC2

MC3

MC4

MC5

MC6

Answer

b)

)

)

b)

MC1

MC2

MC3

MC4

Answer

b)

Q)

Sciper: Student: Section:

Exercise 4 - Implementation (0.5 points)

CODE1 Complete the following Python function which implements the Heun method.

import numpy as np
def heun(f,I,u0,N):

dt = (I[1]1-I[0])/N

u = np.zeros (N+1)
t = mnp.linspace(I[0], I[1], N + 1)
ul0] = u0

for n in range(N):

z = uln] + dt * f(t[n]l, ulnl)

uln+1] = uln] + dt / 2 * (£(t[n]l, ulnl)
+ f(t[n] + dt, z))

return t, u, dt

CODE2 Complete the following Python function which implements the bisection method.

import numpy as np

def bisection(f, a, b, tol, nmax):
Tries to find a zero of the continuous function f in the interval [a, b]
using the bisection method. This function assumes that a zero is found when the
length of the bisection interval semilength at a certain iteration 1is smaller
than the given tolerance.

Input:
f: function whose zero %is sought. It must be evaluable as f(z),
where = 715 a scalar value.
a, b: Start and end of the interval. They must be such that the walues
of the function f at them have opposite sign.
tol: Tolerance to be used.
nmax: Mazimum number of iterations to perform.

Output:
zero: Computed zero.
fzero: Value of f evaluated at the computed zero.
niter: Number of t1terations performed.

"wmn

fa = f(a)
fb = f(b)
niter = 0

if fa * fb > 0:
raise Exception("The sign of f at a and b must be different")

elif np.abs(fa) < tol:
zZzero = a # TO COMPLETE
res = fa # TO COMPLETE
return zero, res, niter

elif np.abs(fb) < tol:
zero = b # TO COMPLETE
res = fb # TO COMPLETE
return zero, res, niter

I = 0.5 %x (b - a) # This 1s the interval semilength, t.e. the error estimate.

while I > tol and niter < nmax:
TO COMPLETE below
niter += 1

zero = 0.5 *x (a + b)
fzero = f(zero)

if fzero * fa < O0:
b = zero
fb = fzero
elif fzero * fb < 0:

a = zero
fa = fzero
else:
I =20

I = 0.5 %1

zero = 0.5 *x (a + b)
return zero, f(zero), niter

