
Advanced Numerical Analysis
Lecture 7

Spring 2025

Daniel Kressner

Linear systems

Ax = b

with invertible matrix A ∈ Rn×n and right-hand side vector b ∈ Rn.

A =



a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
. . .

...
...

...
. . .

...
an1 an2 · · · · · · ann

 , x =



x1
x2
...
...

xn

 , b =



b1
b2
...
...

bn

 .

A simple example
Configuration of coupled springs under some forces. Aim: Compute
elongation of each spring.

k1

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

k2 k3 k4

xx x

1F 2F 3F

1 2 3

The equilibrium of forces at every node gives
k1x1 + k2(x1 − x2) = F1

k2(x2 − x1) + k3(x2 − x3) = F2

k3(x3 − x2) + k4x3 = F3

⇒


(k1 + k2)x1 − k2x2 =F1

−k2x1 + (k2 + k3)x2 − k3x3 =F2

− k3x2 + (k3 + k4)x3 =F3

Linear system of 3 equations and 3 unknowns: K x = F

More complex applications

By imposing the equilibrium of forces at each node, we get a large
linear system of equations (static case) or a large system of ordinary
differential equations system (dynamic case). Hopeless to solve by
hand. Need to use numerical algorithms!
▶ Numerical solution of linear systems.
▶ Discretization of differential equations (dynamic case).

More complex applications

Photo credit: CoMSIRU, University
of Cape Town

Photo credit:
www.engineeringcivil.com

The structure is divided in many small “cubes” (finite elements). By
imposing the equilibrium of forces at each one of them a large linear
system is obtained (it may have million of unknowns).
Dealing with such an application relies on the following ingredients:
▶ Approximation / Interpolation.
▶ Discretizations of differential equations.
▶ Numerical solution of linear systems.

Construction of LU factorization

LU factorization proceeds in n − 1 steps, reducing the k th column of
A in Step k .

Before Step k , the modified matrix A takes the form

A(k−1) =



a11 a12 a13 · · · · · · a1n

a(1)
22 a(1)

23 · · · · · · a(1)
2n

.
...

a(k−1)
kk · · · a(k−1)

kn
...

...
a(k−1)

nk · · · a(k−1)
nn


.

(For Step 1, we simply set A(0) := A.)

Construction of LU factorization
For performing Step k , the coefficients

ℓik :=
a(k−1)

ik

a(k−1)
kk

, i = k + 1, . . . ,n,

are computed. Only possible if pivot element a(k−1)
kk is nonzero.

The multiplication of the matrix

Lk :=



1
. . .

1
−ℓk+1,k 1

...
. . .

−ℓn k 1


with A(k−1) performs Step k and eliminates all entries below the
(k − 1)th diagonal entry.

Construction of LU factorization
The whole procedure is then repeated with the resulting matrix

A(k) = Lk A(k−1). (1)

After n − 1 steps, we obtain

A(n−1) = Ln−1Ln−2 · · · L1A(0) = Ln−1Ln−2 · · · L1A.

This can be rewritten as LU = A, with

L := L−1
1 L−1

2 · · · L
−1
n−1, U = A(n−1).

Note that U is upper triangular by construction. The factors L−1
k of the

matrix L are given by

L−1
k =



1
. . .

1
ℓk+1,k 1

...
. . .

ℓn k 1


,

which can be verified by checking L−1
k Lk = I.

Construction of LU factorization

Due to the special structure of L−1
k , the sub-diagonal entries of L are

obtained from collecting the subdiagonal entries of all L−1
k :

L = L−1
1 L−1

2 · · · L
−1
n−1 =



1

ℓ21
. . .

ℓ31
. . . 1

... ℓk+1,k 1

...
...

.
ℓn1 · · · ℓn k · · · ℓn,n−1 1


.

Abstract form of LU factorization

Algorithm 4.7
A(0) := A
for k = 1, . . . ,n − 1 do

Determine matrix Lk by computing the coefficients

ℓik :=
a(k−1)

ik

a(k−1)
kk

, i = k + 1, . . . ,n.

Set A(k) := Lk A(k−1).
end for

▶ Naive implementation of matrix product Lk A(k−1) ⇝ O(n4)
complexity.

Practical form of LU factorization
Changes:
▶ Exploit structure of Lk when performing
▶ Update A in place.

Algorithm 4.9
Set L := In.
for k = 1, . . . ,n − 1 do

for i = k + 1, . . . ,n do
ℓik ←

aik

akk
for j = k + 1, . . . ,n do

aij ← aij − ℓik akj
end for

end for
end for
Set U to upper triangular part of A.

Number of elementary operations (flops) of Algorithm 4.9:

n−1∑
k=1

(
1 + 2(n − k)

)
(n − k) =

2
3

n3 − 1
2

n2 − 1
6

n =
2
3

n3 + O(n2).

Python implementation

import numpy as np
def mylu(A):

n = A.shape[0]
L = np.eye(n)
for k in range(n):

L[k+1:n, k] = A[k+1:n, k] / A[k,k]
A[k+1:n, k+1:n] = A[k+1:n, k+1:n]

- np.outer(L[k+1:n, k], A[k, k+1:n])
U = np.triu(A)
return L, U

Python implementation

import numpy as np, scipy as sp
A = np.array([[-0.370, 0.050, 0.050, 0.070],

[0.050, -0.116, 0.000, 0.050],
[0.050, 0.000, -0.116, 0.050],
[0.070, 0.050, 0.050, -0.202]])

b = np.array([[-2], [0], [0], [0]])
L, U = mylu(A)
y = sp.linalg.solve_triangular(L, b, lower=True,

unit_diagonal=True)
x = sp.linalg.solve_triangular(U, y)

This produces the output

x =
8.1172
5.9893
5.9893
5.7779

