Advanced Numerical Analysis

Lecture 7
Spring 2025

=Pi-L

Daniel Kressner

Linear systems

Ax=Db

with invertible matrix A € R"*" and right-hand side vector b € R".

ayy & -+ -0 ap X1 b
a1 @2 -+ -+ & Xo b,

am @n2 - - apn Xn by

A simple example

Configuration of coupled springs under some forces. Aim: Compute
elongation of each spring.

X1, X2 X3,
Ky ks ks K4
— —4 —e
F F Fs

The equilibrium of forces at every node gives

Kixq + kz(X1 — XQ) =F
kg(Xg — X1) + k3(X2 — X3) =F
k3(X3 — X2) + kaxs = F3

(k1 + ko)x1 — ko Xz =F;
= —koxi + (ke+k)x2 - ksxz =F
= kaxo + (ks +ki)xs =F3

Linear system of 3 equations and 3 unknowns: Kx =F

More complex applications

By imposing the equilibrium of forces at each node, we get a large
linear system of equations (static case) or a large system of ordinary
differential equations system (dynamic case). Hopeless to solve by
hand. Need to use numerical algorithms!

» Numerical solution of linear systems.

» Discretization of differential equations (dynamic case).

More complex applications

i

i

ion points

sE0
253
¥

g‘é% Lateral
%ig% shift
Lo/u10W
compression
Fo — - Figure 14. Indicating the lateral shift of the LS‘U 10W ciagonal, with Mises stress Gontouss.
Photo credit: CoMSIRU, University Photo credit:
of Cape Town www.engineeringcivil.com

The structure is divided in many small “cubes” (finite elements). By
imposing the equilibrium of forces at each one of them a large linear
system is obtained (it may have million of unknowns).

Dealing with such an application relies on the following ingredients:

» Approximation / Interpolation.
» Discretizations of differential equations.
» Numerical solution of linear systems.

Construction of LU factorization

LU factorization proceeds in n — 1 steps, reducing the kth column of
Ain Step k.

Before Step k, the modified matrix A takes the form

an a2 a3 ain

1 1 1

ay &) &

A=) _ 1 o
ag o an !

K- k—

Ak gk

(For Step 1, we simply set A©) := A)

Construction of LU factorization

For performing Step k, the coefficients

k-1
lik = ai,; 1;7
Qi

i=k+1,...,n,

are computed. Only possible if pivot element a{« ") is nonzero.

The multiplication of the matrix

—lnk 1

with A=) performs Step k and eliminates all entries below the
(k — 1)th diagonal entry.

Construction of LU factorization
The whole procedure is then repeated with the resulting matrix

AR = [A=), (1)
After n — 1 steps, we obtain
A = Ly gLy o LA®) = Ly 4Ly o LA
This can be rewritten as LU = A, with
Li=L7"L50 !

n—1

U=Ar-1,

Note that U is upper triangular by construction. The factors L;‘ of the
matrix L are given by

which can be verified by checking L;‘ Ly =1.

Construction of LU factorization

Due to the special structure of L, ', the sub-diagonal entries of L are
obtained from collecting the subdiagonal entries of all L,

1
lo1

L=yt = T

n—1 —

leyrp 1

bpy - lnk gn,n71 1

Abstract form of LU factorization

Algorithm 4.7
A0 .— A
fork=1,...,n—1do
Determine matrix Ly by computing the coefficients
k—1
a/('k :
k—1)’
a§<k :
Set AK) .= [, A=),
end for

Ly = i=k+1,...,n

» Naive implementation of matrix product Ly AK—1) ~» O(n*)
complexity.

Practical form of LU factorization
Changes:
» Exploit structure of Ly when performing
» Update Ain place.
Algorithm 4.9
Set L:= I,
fork=1,....n—1do
fori=k+1,...,ndo
aik
lik < —
kk
forij=k+1,...,ndo
ajj < aj — E,kak,-
end for
end for
end for
Set U to upper triangular part of A.

Number of elementary operations (flops) of Algorithm 4.9:

1

3>
|

2 1
(1+2(n—k))(n_k):§n3_§2 Ln-2

>
Il

1

P ln_Zp, o(r?).

Python implementation

import numpy as np
def mylu(A):
n = A.shape[0]
L = np.eye(n)
for k in range(n):
L{k+1l:n, k] = A[k+1l:n, k] / Alk,k]
Alk+1:n, k+1:n] = A[k+1l:n, k+1l:n]
- np.outer(L[k+1l:n, k], Af[k, k+1l:n])
U = np.triu(A)
return L, U

Python implementation

import numpy as np, scipy as sp

A = np.array([[-0.370, 0.050, 0.050, 0.0707,
[0.050, -0.116, 0.000, 0.050],
[0.050, 0.000, -0.116, 0.050],
[0.070, 0.050, 0.050, -0.20211)
[-

b = np.array ([

L, U = mylu(A)

y = sp.linalg.solve_triangular (L, b, lower=True,
unit_diagonal=True)

2}, (01, [0], [0O]])

x = sp.linalg.solve_triangular (U, vy)
This produces the output

% =
L1172
.9893
.9893
L1779

o O U1

