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Quiz of Exercise Set 9
(a) For any invertible matrix A, right-hand side b, and starting vector

x0, there is a choice of α such that the Richardson method
converges.

◦ True ◦ False

(b) Consider a family of linear systems

Anx = bn, An ∈ Rn×n,

such that
◦ An is symmetric positive definite;
◦ κ2(An) = ∥An∥2∥A−1

n ∥2 = O(n2) for n → ∞;
◦ ∥x∥2 = 1.

Consider fixed accuracy ε > 0. Let kn denote the minimal
number of iterations of the Richardson method (with optimal α,
zero starting vector, no preconditioner) needed to attain
∥xkn − x∥2 ≤ ε. Then for n → ∞ it holds that

◦ kn = O(1)
◦ kn = O(log n)

◦ kn = O(n)
◦ kn = O(n2)



Quiz of Exercise Set 9

(c) Let f : Rn → R be continuously differentiable on Rn. If x is a
minimum of f then ∇f (x) = 0.

◦ True ◦ False

(d) Let f : Rn → R be continuously differentiable on Rn and x such
that ∇f (x) ̸= 0. Then for every ε > 0 there is y with ∥y − x∥ ≤ ε
and f (y) < f (x).

◦ True ◦ False



CG method

Given x(0) ∈ Rn, let r(0) = b − Ax(0) and p(0) = r(0). Then for all k ≥ 0,

αk = ⟨p(k),r(k)⟩
⟨p(k),Ap(k)⟩ ;

x(k+1) = x(k) + αk p(k);

r(k+1) = r(k) − αk Ap(k);

βk = ⟨r(k+1), Ap(k)⟩
⟨p(k), Ap(k)⟩ ;

p(k+1) = r(k+1) − βk p(k).



Convergence of CG

Theorem (Theorem 5.9)
Let A ∈ Rn×n be SPD. Then CG yields after at most n iterations the
exact solution (assuming exact arithmetic).

▶ Usually not very relevant because: (1) One hopes to get good
accuracy well before. (2) Result (miserably) fails to hold in
floating point arithmetic.

▶ Exception: Solving sparse linear systems over finite fields
[Teitelbaum’1998].



Convergence of CG

Theorem (Theorem 5.10)
Let A ∈ Rn×n be SPD and consider linear system Ax = b. For k ≥ 0,
let e(k) := x(k) − x ∈ Rn, where x(k) is the kth iterate of CG. Then,

∥∥e(k)
∥∥

A ≤ 2
Ck

1 + C2k

∥∥e(0)
∥∥

A, with C :=

√
κ2(A)− 1√
κ2(A) + 1

.

▶ Reduces κ2(A) (Gradient descent) to
√

κ2(A) (CG)
▶ Preconditioning can be used to reduce

√
κ2(A) further.



Linear regression

data (xi, yi)
linear regression



Nonlinear regression

data (xi, yi)
non-linear regression



Maximum norm error function
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Euclidean norm error function
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Numerical instability of normal equations

Setting: n × n linear system Ax = b. Condition number of
Vandermonde matrix A grows exponentially with n!
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LU with pivoting

Normal equations

Residual norm vs. n when solving linear system by LU with pivoting
or normal equations by Cholesky.


