
Numerical Analysis

Lecture Notes

Prof. Daniel Kressner

EPFL / MATH / ANCHP

Spring 2025

May 27, 2025

• The following sources were used to prepare these lecture notes:

1. Buffa, Annalisa. Numerical Analysis. Class notes, EPFL, 2020.

2. Deuflhard, Peter; Hohmann, Andreas. Numerical analysis in modern
scientific computing. [1]

3. Driscoll, Tobin A.; Braun Richard J. Fundamentals of Numerical Com-
putation. SIAM, 2022. See https://fncbook.com/

4. Golub, Gene H.; Van Loan, Charles F. Matrix computations. [2]

5. Higham, Nicholas J. Accuracy and stability of numerical algorithms. [3].

6. Hiptmair, Ralf. Numerik für CSE. Lecture Notes, ETH Zürich, 2007.

7. Jeltsch, Rolf. Numerische Mathematik. Vorlesungsskript, ETH Zürich,
1997.

8. Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto, Méthodes numériques.
[5]

Please do not understand this list as a literature recommendation; the material
contained in these lecture notes and discussed during the lecture/exercise is
entirely sufficient to prepare for the exam.

• Sections and parts marked by a ⋆ represent supplementary material, which is
not part of the exam.

• If you spot errors (most likely, there will be plenty), it is a nice gesture to
your colleagues if you put them on the Ed Discussion Board. These lecture
notes will be constantly updated and errors will be corrected.

Chapter 1

Representation of
numbers

Since none of the numbers which we take out from loga-
rithmic and trigonometric tables admit of absolute pre-
cision, but all are to a certain extent approximate only,
the results of all calculations performed by the aid of
these numbers can only be approximately true.
It may happen, that in special cases the effect of the er-
rors of the tables is so augmented that we may be obliged
to reject a method, otherwise the best, and substitute an-
other in its place.
— Carl F. Gauss, Theoria Motus (1809)1

Matlab’s creator Dr. Cleve Moler used to advise for-
eign visitors not to miss the country’s two most awe-
some spectacles: the Grand Canyon, and meetings of
IEEE p754.
— William M. Kahan

2

The aim of this chapter is to understand how numbers are represented in com-
puters. While the set of real numbers is infinite, computers can only represent and
work with a finite subset. Therefore, we need to understand which numbers are
representable and how the operations are performed in this set of representable real
numbers. This topic has regained importance during the last years with the advent
of GPUs and TPUs for scientific computing and machine learning. In particular,
TPUs are designed to perform a high volume of low precision computation and one
cannot expect high accuracy.

Example 1.1 The following expression for Euler’s number e is known from Anal-
ysis:

e = lim
n→∞

(
1 +

1

n

)n

.

One therefore expects that en =
(
1 + 1

n

)n
yields increasingly good approximations

to e as n increases. In exact arithmetic this is indeed true. On the computer,

1Translated and quoted in Higham (2002).
2See http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html.

1

2 Version May 27, 2025 Chapter 1. Representation of numbers

roundoff error affects the accuracy of computations and the computed value ên
behaves quite differently:

Python

Approximation of e, numpy package needed to include e

import numpy as np

for i in range(1,16):

n = 10.0 ** i; en = (1 + 1/n) ** n

print(’10^%2d %20.15f %20.15f’ % (i,en,en-np.e))

n Computed ên Error ên − e

101 2.593742460100002 -0.124539368359044
102 2.704813829421529 -0.013467999037517
103 2.716923932235520 -0.001357896223525
104 2.718145926824356 -0.000135901634689
105 2.718268237197528 -0.000013591261517
106 2.718280469156428 -0.000001359302618
107 2.718281693980372 -0.000000134478673
108 2.718281786395798 -0.000000042063248
109 2.718282030814509 0.000000202355464
1010 2.718282053234788 0.000000224775742
1011 2.718282053357110 0.000000224898065
1012 2.718523496037238 0.000241667578192
1013 2.716110034086901 -0.002171794372145
1014 2.716110034087023 -0.002171794372023
1015 3.035035206549262 0.316753378090216

Initially, the accuracy gets better as n increases, as expected. However, at around
n = 108, the accuracy stagnates and even gets worse when n continues to increase;
for n = 1015 not even a single (decimal) digit of e is computed correctly. ⋄
Example 1.2 From Analysis, we know that the Taylor series for the exponential
function converges for every x ∈ R:

ex =
∞∑

k=0

xk

k!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+

In practice, one can of course only compute a partial sum

si(x) =

i∑

k=0

xk

k!
.

The remainder of the Taylor expansion admits the expression

ex − si(x) =
eξxi+1

(i+ 1)!

for some ξ ∈ R strictly between 0 and x (that is, ξ ∈ (0, x) for x > 0 and ξ ∈ (x, 0)
for x < 0). If we choose i such that |x|i+1/(i + 1)! ≤ tol · |si(x)| is satisfied for a
(small) chosen tolerance tol then for negative x it holds that

|ex − si(x)| ≤
|x|i+1

(i+ 1)!
≤ tol · |si(x)| ≈ tol · ex.

Version May 27, 2025 3

x Computed ŝi(x) exp(x)
| exp(x)−ŝi(x)|

exp(x)

-20 5.6218844674e-09 2.0611536224e-09 1.727542676201181
-18 1.5385415977e-08 1.5229979745e-08 0.010205938187564
-16 1.1254180496e-07 1.1253517472e-07 0.000058917020257
-14 8.3152907681e-07 8.3152871910e-07 0.000000430176956
-12 6.1442133148e-06 6.1442123533e-06 0.000000156480737
-10 4.5399929556e-05 4.5399929762e-05 0.000000004544414
-8 3.3546262817e-04 3.3546262790e-04 0.000000000788902
-6 2.4787521758e-03 2.4787521767e-03 0.000000000333306
-4 1.8315638879e-02 1.8315638889e-02 0.000000000530694
-2 1.3533528320e-01 1.3533528324e-01 0.000000000273603
0 1.0000000000e+00 1.0000000000e+00 0.000000000000000
2 7.3890560954e+00 7.3890560989e+00 0.000000000479969
4 5.4598149928e+01 5.4598150033e+01 0.000000001923058
6 4.0342879295e+02 4.0342879349e+02 0.000000001344248
8 2.9809579808e+03 2.9809579870e+03 0.000000002102584

10 2.2026465748e+04 2.2026465795e+04 0.000000002143800
12 1.6275479114e+05 1.6275479142e+05 0.000000001723845
14 1.2026042798e+06 1.2026042842e+06 0.000000003634135
16 8.8861105010e+06 8.8861105205e+06 0.000000002197990
18 6.5659968911e+07 6.5659969137e+07 0.000000003450972
20 4.8516519307e+08 4.8516519541e+08 0.000000004828738

Table 1.1: Numerical approximation of ex by the truncated Taylor series si(x),
where i has been chosen such that the relative error is (approximately) bounded by
tol = 10−8 in exact arithmetic.

In turn, the relative error |ex − si(x)|/|ex| is approximately bounded by tol. For
positive x a similar bound can be found by a refined analysis of the remainder
(EFY=Exercise For You).

Python

def expeval(x, tol):

#Approximation of e^x

s = 1; k = 1

term = 1

while (abs(term)>tol*abs(s)):

term = term * x / k

s = s + term

k = k + 1

return s

Table 1.1 shows the results for tol = 10−8. In contrast to the theoretical results,
the relative error is above the imposed (approximate) bound tol = 10−8 for very
negative x. ⋄

One goal of this chapter is to better understand (and avoid if possible) the phenom-
ena observed in Examples 1.1 and 1.2. To achieve this, we first need to discuss the
representation and approximation of real numbers on computers.

For more interesting stories of what has gone (terribly) wrong in the world be-
cause of roundoff errors, see [4].

4 Version May 27, 2025 Chapter 1. Representation of numbers

1.1 Representation of real numbers

The first step in representing a real number on a computer is to express it in terms
of its digits with respect to a base β ≥ 2. The following theorem, which we state
without proof, gives the so called normalized representation or scientific notation of
a number.

Theorem 1.3 Given a base 2 ≤ β ∈ N, every nonzero x ∈ R can be represented
as

x = ±βe

(
d1
β

+
d2
β2

+
d3
β3

+ · · ·
)

(1.1)

with the digits d1, d2, . . . ,∈ {0, 1, 2, . . . , β − 1}, where d1 6= 0, and the exponent
e ∈ Z.

The representation (1.1) becomes unique if we additionally require that there is an
infinite subset N1 ⊂ N such that dk 6= β−1 for all k ∈ N1. Otherwise, x = +101 ·0.1
and x = +100 ·0.999 . . . would be two different representations of the same number.
However, this aspect will be irrelevant for us; on a computer we can only work with
a finite number of digits anyway.

System β Digits

Decimal 10 0, 1, 2, . . . , 9

Binary 2 0, 1

Octal 8 0,1,2,. . . ,7

Hexadecimal 16 0, 1, 2, . . . , 9, A,B,C,D,E,F

Les doits ou les poings⋆

In daily life we mostly use the decimal system (β = 10). But there are exceptions, β = 12 also plays a
role (hours, months, dozen / douzaine). Also, some tribes used their toes for counting as well (β = 20).
Some regions of the world also use 4, 8 or 16, see https://en.wikipedia.org/wiki/Numeral_system. For
obvious reasons, almost every computer operates with a binary system (β = 2) and the hexadecimal
system is only used for representing binary numbers more conveniently. A computer developed in
Moscow at the end of the 1950ies was based on the ternary system (β = 3) but it was not a huge
success.

To compute the representation of Theorem 1.3 for given x ∈ R \ {0}, the following
algorithm can be used:

Determine e ∈ Z such that x ∈ βex̃ with β−1 ≤ x̃ < 1. Set j = 1.
while x̃ 6= 0 do
Set x = βx̃.
Decompose x = dj + x̃ such that dj ∈ N, 0 ≤ dj ≤ β − 1 and 0 ≤ x̃ < 1.
j ← j + 1.

end while

The binary system has some unexpected consequences. As we will see below,
the decimal number 0.2 cannot be represented by a finite binary fraction, that is,

1.2. Floating point numbers on computers Version May 27, 2025 5

the algorithm above does not terminate. To avoid this effect, some specialized
applications in the finance industry use the decimal system. In most cases, this is
emulated by software and, consequently, quite slow. Hardware processors, which
directly support decimal operations, are rare; an example was the IBM Power6
processor.

Theorem 1.4 Consider a nonzero rational number x = p/q, where p, q ∈ Z have
no common divisor. Then x has a finite representation in base β ≥ 2 if and only if
each of the prime factors of the denominator q divides β.

Example 1.5 In base β = 10, a rational number has a finite representation if and
only if it can be written as ± p

2n5m for some p, n,m ∈ N. This corresponds to the
known fact that in base 10, if the divisor has a factor that is neither 2 nor 5, then
the Euclidean division does not finish and becomes periodic.

In base β = 2 instead, to have a finite representation, a number needs to be
written as ± p

2n for some p, n ∈ N. For instance, x = 1
5 = (0.2)10 does not have

a finite representation in base 2. This can be checked by applying the algorithm
above:

x = 2−20.8 ⇒ e = −2, x̃ = 0.8

x = 2x̃ = 1.6

x = 1 + 0.6 ⇒ d1 = 1, x̃ = 0.6

x = 2x̃ = 1.2 ⇒ d2 = 1, x̃ = 0.2

After two loops we are again at 0.2 and the algorithm becomes cyclic. Therefore,
1
5 = (0.00110011 . . .)2 =

(
0.0011

)
2
. ⋄

1.2 Floating point numbers on computers

Computers can only store and calculate with finitely many numbers F ⊂ R. Apart
from specialized devices, such as audio decoding hardware devices, nearly all pro-
cessors operate with floating point numbers.

Definition 1.6 (Floating point numbers F(β, t, emin, emax)) Consider β ∈
N, β ≥ 2 (base), t ∈ N (length of mantissa/significand), and emin < 0 < emax

with emin, emax ∈ Z (range of exponent). Then the set F = F(β, t, emin, emax) ⊂
R is defined as

F :=



±β

e

(
d1
β

+
d2
β2

+ · · ·+ dt
βt

)
:

d1, . . . , dt ∈ {0, . . . , β − 1},
d1 6= 0,
e ∈ Z, emin ≤ e ≤ emax.



 ∪ {0}.

Example 1.7 The floating point number +23(0.1011)2 = (5.5)10 belongs to F(2, 4,−1, 4),
but neither to F(2, 3,−1, 4), nor to F(2, 4,−2, 2).

6 Version May 27, 2025 Chapter 1. Representation of numbers

Let us consider the set F = F(10, 3,−2, 2), that is, β = 10, t = 3, and −2 ≤ e ≤ 2.
Then:

23.4 = +102 (0.234) ∈ F

−53.8 = −102 (0.538) ∈ F

3.141 = +101 (0.3141) /∈ F (4 > 3 significant digits)

3.1 = +101 (0.310) ∈ F

⋄

It is important to keep in mind that the elements of F are not uniformly dis-
tributed on the real line.
Example: Nonnegative floating point numbers for β = 2, t = 3, emin = −1, emax =
3:

1.0 2.0 3.0 4.0 5.0 6.0 7.00

Lemma 1.8 For F = F(β, t, emin, emax) one has

xmin(F) :=min{x ∈ F : x > 0} = βemin−1, (1.2)

xmax(F) :=max{x ∈ F} = βemax(1− β−t) . (1.3)

Proof. In view of Definition 1.6, the verification of (1.2)–(1.3) comes down to deter-
mining the range of the mantissa. Consider x ∈ F with mantissa d =

∑t
k=1 dkβ

−k.
Because of d1 6= 0 we have

β−1 ≤ d ≤
t∑

k=1

β−k(β − 1) = 1− β−t

↑ ↑
d1 ≥ 1 dk ≤ β − 1 .

The smallest positive number is obtained by choosing the mantissa d1 = 1, d2 =
0, d3 = 0, . . . and the exponent e = emin. The largest number is obtained by choosing
the mantissa d1 = β− 1, d2 = β− 1, d3 = β− 1, . . . and the exponent e = emax.

Lemma 1.9 The distance between a floating point number x satisfying xmin(F) <
|x| < xmax(F) and the nearest floating point number is at least β−1ǫM |x| and at
most ǫM |x|, where ǫM = β1−t is the distance of 1 to the next larger floating point
number.

Proof. Without loss of generality, we may assume that x ∈ F is positive and that
e = 0, which implies that β−1 ≤ x ≤ 1−β−t . The next larger floating point number

1.2. Floating point numbers on computers Version May 27, 2025 7

x+ is obtaining by adding 1 to the last digit dt of the mantissa, which corresponds
to adding β−t to x. In turn, the relative distance between x and x+ satisifies

x+ − x

x
≤ β−tβ = ǫM ,

x+ − x

x
≥ β−t

1− β−t
≥ β−t = ǫM/β.

In the same manner, analogous bounds are shown for the relative distance between
x and the next smaller number x−.

Lemma 1.9 demonstrates that the length of the mantissa determines the relative
accuracy of F; the exponent bounds emin, emax determine the range of F but not its
accuracy. The number ǫM of Lemma 1.9 is usually called machine precision.

Subnormal numbers⋆

As visible in the picture above, there is a “gap” of βemin−1 between 0 and the
smallest nonnegative floating point number. This gap is caused by the normalization
d1 6= 0 of the mantissa when e = emin. The gap is bridged by adding the so called
subnormal numbers:

F̂ := F ∪
{
±βemin

(
d2
β2

+ · · ·+ dt
βt

)
: d2, . . . , dt ∈ {0, . . . , β − 1}

}
, (1.4)

where one excludes the case d2 = · · · = dt = 0. In other words, one adds numbers
with minimal exponent emin and d1 = 0.
Example: F̂ for β = 2, t = 3, emin = −1, emax = 3:

1.0 2.0 3.0 4.0 5.0 6.0 7.00

Two important remarks:

1. Lemma 1.9 does not hold for subnormal numbers, which have a lower relative
accuracy.

2. While subnormal numbers are supported by most processors; the computa-
tions can slow down significantly because processors are often not optimized
to work with subnormal numbers.

In the following, we will ignore subnormal numbers to simplify the discussion.

IEEE standard

IEEE 754 describes the standard for storing and operating with floating point num-
bers. It also describes the treatment of exceptions (1/0,∞·∞,∞−∞, . . .). These
are the two most widely used formats in base β = 2:

8 Version May 27, 2025 Chapter 1. Representation of numbers

Name Size Mantissa Exponent xmin xmax

Single precision 32 bits 24 bits 8 bits 10−38 10+38

Double precision 64 bits 53 bits 11 bits 10−308 10+308

Double precision corresponds to F(2, 53,−1022, 1023) and is the standard on central
processing units (CPUs) . One bit of the mantissa is used for the sign. On the other
hand, d1 is not saved because the normalization always implies d1 = 1 for β = 2.
In turn, there are t = 53 bits for the mantissa. The exponent field is an (unsigned)
integer from 0 to 2047; shifted such that it represents the range −1022 to +1023
(the fields all 0s and all 1 are reserved for special numbers).

In Python all operations with real numbers are executed in double precision by
default. Variables in single precision are generated with the command numpy.float32()
from the numpy package.

Python

import sys

sys.float_info.min # 2.2251e-308

sys.float_info.max # 1.7977e+308

1 / 0 # Divide by zero error

3 * float(’inf’) # inf

-1 / 0 # Divide by zero error

0 / 0 # Divide by zero error

float(’inf’) - float(’inf’) # nan

Somewhat surprisingly, and not in accordance with the IEEE 754 standard3, Python
throws an error when a division by zero occurs, instead of returning a signed∞. To
avoid this, one can use float64 from numpy. For example, 1/numpy.float64(0)
returns inf (as it should).

In machine learning, precision is much less important compared to typical ap-
plications in scientific computing. On the other hand, speed and memory are key,
which makes the bfloat16 format a popular choice that is utilized in many CPUs,
GPUs, and AI processors.

Name Size Mantissa Exponent xmin xmax

bfloat16 16 bits 8 bits 8 bits 10−38 10+38

FP8 8 bits 4 bits 4 bits 10−2 240

The use of FP8, which is not standardized yet, is partly responsible for the success
of Deepseek.4 The narrow range of numbers makes it quite difficult to work with.

1.3 Rounding

A real number x ∈ R (think of,
√
2 or π) can, in general, not be represented exactly

in the computer. The process of approximating x by a number in a floating point

3See also https://wusun.name/blog/2017-12-18-python-zerodiv/ for a discussion.
4See https://verticalserve.medium.com/how-deepseek-optimized-training-fp8-framework-74e3667a2d4a.

1.3. Rounding Version May 27, 2025 9

number in F = F(β, t, emin, emax) is called rounding. More concretely, rounding is
a function

fl : r(F)→ F

which maps x ∈ r(F) to the5 nearest element in F. Here, r(F) denotes the range of
F:

r(F) := {x ∈ R : xmin(F) ≤ |x| ≤ xmax(F)};

see also Lemma 1.8.
The map fl is not uniquely determined when x is exactly in the middle between

two floating point numbers (this not a rare event when β = 2). There are several
strategies to break the tie in this situation. According to the IEEE 754 standard, fl
chooses the element for which the last digit of the mantissa is even (for β = 2 this
is zero). The following example illustrates this convention.

Example 1.10 Let β = 10, t = 3. Then fl(0.9996) = 1.0, fl(0.3345) = 0.334,
fl(0.3355) = 0.336. ⋄

The following theorem provides a useful and tight estimate of the relative error of
fl.

Theorem 1.11 For every x ∈ r(F) there exists δ ≡ δ(x) ∈ R such that

fl(x) = x(1 + δ), |δ| ≤ u,

where u = u(F) := 1
2ǫM = 1

2β
1−t.

Proof. Without loss of generality, we may assume x > 0. According to Theorem 1.3
we can represent x as follows:

x = µ · βe−t, βt−1 ≤ µ < βt.

This shows that x is between the adjacent floating point numbers y1 = ⌊µ⌋βe−t,
y2 = ⌈µ⌉βe−t, and hence fl(x) ∈ {y1, y2}. Because x is rounded to the nearest
floating point number, we have |fl(x) − x| ≤ |y2 − y1|/2 = βe−t/2, where the last
equality follows from the definition of y1, y2. This implies that

∣∣∣∣
fl(x)− x

x

∣∣∣∣ ≤
βe−t

2

µ · βe−t
≤ 1

2
β1−t = u,

establishing the claim of the theorem.

5More precisely, one would need to write a nearest element.

10 Version May 27, 2025 Chapter 1. Representation of numbers

The quantity u = u(F) := 1
2β

1−t

of Theorem 1.11 is called unit
roundoff and features promi-
nently in every round-off error
analysis.

Example 1.12
Double u = 2−53 ≈ 1.11× 10−16

Single u = 2−24 ≈ 5.96× 10−8

In Python u is computed by
sys.float_info.epsilon/2 and
numpy.finfo(numpy.float32).eps/2,
respectively.

The following variation of Theorem 1.11 is sometimes useful.

Theorem 1.13 For every x ∈ r(F) there exists δ ∈ R such that

fl(x) =
x

1 + δ
, |δ| < u.

Proof. EFY.

It is important to keep in mind that the quantity δ in Theorems 1.11 and 1.13
depends on x. In a round-off error analysis one does not operate with its explicit
value but only with the property that |δ| < u.

1.4 Elementary operations in F and round-off error

We now let ‘◦’ denote any of the four elementary binary operations:

◦ ∈ {+,−, ∗, /} .

The set R is closed under these operations, that is, with the exception of division
by zero, ◦ maps two real numbers again to a real number. This closedness property
does not hold for F. To map the result back to F, one needs to round. It would
be reasonable to require a result of an elementary operation on a computer to be
equal to what would have been obtained from first computing the result exactly and
then rounding it afterwards. In practice, a slightly weaker requirements is imposed,
which follows from combining the “first computing exactly then rounding” paradigm
with Theorem 1.11.

Definition 1.14 (Standard model of rounding) For every x, y ∈ r(F) there
exists δ ∈ R such that

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u, ◦ ∈ {+,−, ∗, /}. (1.5)

In analogy to Theorem 1.13, an alternative to (1.5) is to require

fl(x ◦ y) = x ◦ y
1 + δ′

, |δ′| ≤ u, ◦ ∈ {+,−, ∗, /}. (1.6)

1.5. Round-off error analysis Version May 27, 2025 11

It is important to remark, once more, that the quantities δ, δ′ above depend
on the inputs x, y and, in particular, they may also depend on the order of x, y.
Although fl(x ◦ y) = fl(y ◦ x) often holds in practice, commutativity is not and
cannot be taken for granted when operating in floating point arithmetic. More
importantly, associativity is frequently violated - even under the stronger “first
computing exactly then rounding” paradigm.

Example 1.15 Let β = 10, t = 2. Then

fl(fl(70 + 74) + 74) = fl(140 + 74) = 210

6= fl(70 + fl(74 + 74)) = fl(70 + 150) = 220

and

fl(fl(110− 99)− 10) = fl(11− 10) = 1

6= fl(110 + fl(−99− 10)) = fl(110− 110) = 0.

⋄

The property (1.5) is also desirable for elementary functions f ∈ {exp, sin, cos, tan, . . .}:

fl(f(x)) = f(x)(1 + δ), |δ| ≤ u. (1.7)

The development and implementation of a numerical method that computes f(x) in
finite precision arithmetic such that the result satisfies (1.7) is by no means trivial.
It is very difficult predict how many digits of f(x) need to computed accurately
such that the result obtained after rounding satisfies (1.7).6

1.5 Round-off error analysis

The standard model of rounding allows us to estimate the propagation of roundoff
errors in a computation. As an important example let us consider the computation
of the inner product of two vectors x,y ∈ Rn, that is,

xTy =

n∑

k=1

xkyk .

For the partial sums si =
∑i

k=1 xkyk, i = 1, 2, ..., evaluated in floating point arith-
metic F according to the standard model, one obtains

ŝ1 = fl(x1y1) = x1y1(1 + δ1),

ŝ2 = fl(ŝ1 + x2y2) =
(
ŝ1 + x2y2(1 + δ2)

)
(1 + δ3)

= x1y1(1 + δ1)(1 + δ3) + x2y2(1 + δ2)(1 + δ3),

6In the literature this effect is called Table Maker’s Dilemma; see also http://perso.ens-lyon.

fr/jean-michel.muller/Intro-to-TMD.htm.

12 Version May 27, 2025 Chapter 1. Representation of numbers

where |δi| ≤ u holds for all δi. To simplify the notation, it is common practice to
drop indices and let δ denote an arbitrary real number with |δ| ≤ u. Using this
convention, one gets

ŝ3 = fl(ŝ2 + x3y3) =
(
ŝ2 + x3y3(1 + δ)

)
(1 + δ)

= x1y1(1 + δ)3 + x2y2(1 + δ)3 + x3y3(1 + δ)2.

By induction, we obtain

ŝn = x1y1(1 + δ)n + x2y2(1 + δ)n + x3y3(1 + δ)n−1 + · · ·+ xnyn(1 + δ)2. (1.8)

The following lemma can be used to simplify this expression.

Lemma 1.16 Let |δi| ≤ u(F) for i = 1, . . . , n and n < 1/u(F). Then there exists
θn ∈ R such that

n∏

i=1

(1 + δi) = 1 + θn, where |θn| ≤
nu(F)

1− nu(F)
=: γn(F). (1.9)

Proof. The proof proceeds by induction. For n = 1, the statement trivially holds.
Induction hypothesis: The statement holds for n− 1 with n ≥ 2.

Induction step: Using the induction hypothesis, one obtains

n∏

i=1

(1 + δi) = (1 + δn)(1 + θn−1) =: 1 + θn , θn := δn + (1 + δn)θn−1,

|θn| ≤ u+ (1 + u)
(n− 1)u

1− (n− 1)u
=

nu

1− (n− 1)u
≤ γn .

Applying Lemma 1.16 to (1.8) gives

ŝn = x1y1(1 + θn) + x2y2(1 + θ′n) + x3y3(1 + θn−1) + · · ·+ xnyn(1 + θ2), (1.10)

where |θj | ≤ γj and |θ′n| ≤ γn. Using monotonicity, 0 < γj ≤ γn, one therefore
obtains

ŝn = (x+△x)Ty = xT(y +△y), |△x| ≤ γn|x|, |△y| ≤ γn|y|, (1.11)

where |x| is the vector with elements |xi| and inequalities between vectors and
matrices are understood componentwise. Let us remark that the bounds in (1.11)
are – in contrast to (1.10) – independent of the order of summation.

The result (1.11) is an example for what is called a backward error. It states
that the computed result (inner product) is the exact inner product of slightly
perturbed input data (x and y). Since the inputs are usually perturbed by roundoff
error anyway (for example when storing the data as floating point numbers), a small
backward error is a very desirable property. It implies that the algorithm attains
an accuracy (nearly) at the level of the accuracy of the input data. The actual

1.6. Cancellation Version May 27, 2025 13

error in the computed result is called forward error. From (1.11) one obtains the
following bound on the forward error:

∣∣xTy − ŝn
∣∣ ≤ γn

n∑

i=1

|xiyi| = γn|x|T|y|. (1.12)

If |xTy| ≈ |x|T|y| then the relative error
∣∣xTy − fl(xTy)

∣∣/|xTy| is small. If, on the
other hand, |xTy| ≪ |x|T|y| then one cannot expect a small relative error.

1.6 Cancellation

Numerical cancellation happens when two numbers that are nearly equal and
already affected by roundoff error are subtracted from each other. Cancellation is
the number one reason to look for when errors get massively amplified in the course
of a computation.

Example 1.17 Consider

f(x) =
1− cos(x)

x2
, x = 1.2× 10−5.

Rounding cos(x) to 10 decimal digits gives

ĉ = 0.9999 9999 99 ,

and
1− ĉ = 0.0000 0000 01 .

Therefore (1 − ĉ)/x2 = 10−10/1.44× 10−10 = 0.6944 However, since we know
that 0 ≤ f(x) < 1

2 for x 6= 0 it is obvious that the computed result is completely
wrong. ⋄

To see the general picture, let us consider a, b ∈ R and

â = fl(a) = a(1 + δa), b̂ = fl(b) = b(1 + δb)

with |δa| ≤ u, |δb| ≤ u. Then x = a− b and x̂ = â− b̂ satisfy

∣∣∣x− x̂

x

∣∣∣ =
∣∣∣−aδa + bδb

a− b

∣∣∣ ≤ u
|a|+ |b|
|a− b| (1.13)

The relative error in the computation x = a− b is large when

|a− b| ≪ |a|+ |b|.

Let us emphasize that it is crucial in the discussion above that a and b are already
affected by roundoff error. The subtraction itself is carried out without roundoff
error for a ≈ b; it just amplifies the existing errors.

Roundoff errors can also cancel each other, that is, a very inaccurate interme-
diate result does not necessarily lead to very inaccurate final result. This effect is
demonstrated by the following example.

14 Version May 27, 2025 Chapter 1. Representation of numbers

x Alg. 1 Alg. 2
10−3 1.0005236 1.0005002
10−4 1.0001659 1.0000499
10−5 1.0013580 1.0000050
10−6 0.9536743 1.0000005
10−7 1.1920929 1.0000001

Table 1.2: Results of Algorithms 1 and 2 in single precision. Correctly computed
digts are italic.

Example 1.18 (Computation of (ex − 1)/x for x → 0+) We aim at comput-
ing

f(x) = (ex − 1)/x =

∞∑

i=0

xi

(i + 1)!
(1.14)

in IEEE single precision by two different methods:
Python

Algorithm 1

import numpy as np

if x == 0:

f = 1

else:

f = (np.exp(x) - 1) / x;

Python

Algorithm 2

import numpy as np

y = np.exp(x)

if y == 1:

f = 1

else:

f = (y - 1) / np.log(y);

The obtained results are shown in Table 1.2.7 To understand why Algorithm 1
yields much worse accuracy, we consider x = 9.0 × 10−8 and assume that the
implementations of the elementary functions exp(·) and log(·) satisfy the standard
model (1.7). The first 9 decimal digits of the exact result are

ex − 1

log ex
= 1.00000005 .

Algorithm 1 yields

fl
(fl(fl(ex)− 1)

x

)
= fl

(1.19209290× 10−7

9.0 × 10−8

)
= 1.32454766 ;

In contrast, Algorithm 2 yields

fl
(fl(ŷ − 1)

fl(log ŷ)

)
= fl

(1.19209290× 10−7

1.19209282× 10−7

)
= 1.00000006 .

7It can be difficult to reproduce these results, especially when working in compiled languages.
Some processors work internally (registers) with higher-precision 80-bit arithmetic; so the results
may depend on whether the registers are flushed, which in turn depends on the compiler, etc. The
behavior might also change when using a debugger or displaying intermediate results, leading to
the notorious heisenbugs.

1.6. Cancellation Version May 27, 2025 15

One observes that Algorithm 2 computes, because of cancellation, a very inaccurate
result for the numerator ex − 1 = 9.00000041× 10−8 and the denominator log ex =
9× 10−8; but most of the roundoff error vanishes during the division!

The described phenomenon can be explained by a roundoff error analysis of
Algorithm 2. We have ŷ = ex(1 + δ), |δ| ≤ u. If ŷ = 1, it follows that

ex(1 + δ) = 1⇐⇒ x = − log(1 + δ) = −δ + δ2/2− δ3/3 + . . . ,

and hence
f̂ = fl

(
1 + x/2 + x2/6 + . . .

∣∣
x=−δ+O(δ2)

)
= 1 . (1.15)

If ŷ 6= 1, it follows that

f̂ = fl
(
(ŷ − 1)/ log ŷ

)
=

(ŷ − 1)(1 + δ1)

log ŷ(1 + δ2)
(1 + δ3), |δi| ≤ u . (1.16)

Defining v := ŷ − 1, we obtain

g(ŷ) : =
ŷ − 1

log ŷ
=

v

log(1 + v)
=

v

v − v2/2 + v3/3− . . .

=
1

1− v/2 + v2/3− . . .
= 1 +

v

2
+O(v2) .

For small x, we have y ≈ 1 and

g(ŷ)− g(y) ≈ ŷ − y

2
≈ exδ

2
≈ δ

2
≈ g(y)

δ

2
.

By (1.16),
∣∣∣ f̂ − f

f

∣∣∣ ≤ 3.5 u . (1.17)

While ŷ − 1 and log ŷ are very inaccurate, the quantity (ŷ − 1)/ log ŷ is a very
accurate approximation of (y − 1)/ log y at y = 1, because g(y) := (y − 1)/ log y
varies “slowly” close to 1. ⋄

16 Version May 27, 2025 Chapter 1. Representation of numbers

Chapter 2

Numerical integration

This chapter is concerned with algorithms for approximating a definite integral

∫ b

a

f(x) dx , (2.1)

for a function f : [a, b] → R and specific values of a, b. In Calculus courses it is

common to calculate simple integrals like
∫ 1

0 ex dx or
∫ π

0 cos(x) dx using a closed-
form primitive for f obtained from a table of integrals or computer algebra systems
like Maple, Mathematica, the Symbolic Math Toolbox in Matlab (which is based
on MuPAD) or simply ask WolframAlpha / ChatGPT questions like “What is the
primitive of exp(−x2)?” When trying to compute more complicated expressions like∫ 1

0
ex

2

dx or
∫ π

0
cos(x2) dx, one quickly realizes the limitations of such approaches.

Indeed, in practice, it is usually not possible to find a closed form expression for a
primitive. Still, evaluating very complicated definite integrals is a common problem
arising in many areas of science and engineering. In these cases, one needs to resort
to numerical methods (and understand their limitations).

The goal of this chapter is to introduce and analyze the most popular numerical
methods for approximating definite integrals. In the following, unless otherwise
stated, we will assume that f is (at least) continuous on [a, b] and hence the integral
is well defined.

2.1 A first glimpse at polynomial interpolation

A common principle to derive numerical integration methods is to interpolate f
by a polynomial and obtain an approximation by computing the definite integral
for this polynomial. We will therefore first take a brief excursion to the world of
polynomial interpolation. We will discuss interpolation in more detail in the next
chapter.

17

18 Version May 27, 2025 Chapter 2. Numerical integration

lagrange.eps

132 × 44 mm

0.5 1 1.5 2 2.5 3 3.5 4

-3

-2

-1

0

1

2

Figure 2.1: The basis of 4 Lagrange polynomials for the nodes 1, 2, 3, 4.

We let Pn denote the vector space of real polynomials of degree at most n:

Pn := span{xi : i = 0, . . . , n} =
{ n∑

i=0

cix
i : ci ∈ R

}
.

Given interpolation data (xj , fj) with xj ∈ R and fj ∈ R for j = 0, . . . , n, the task
of polynomial interpolation is to find a polynomial pn ∈ Pn such that

pn(xj) = fj , j = 0, . . . , n. (2.2)

For n = 0 (constant p0), n = 1 (linear p1), and n = 2 (quadratic p2), it is quite
intuitive to see that (2.2) has a unique solution if and only if the interpolation
nodes xj are pairwise distinct. To verify this statement for general n, we first
need to define a suitable basis for Pn. The monomial basis {1, x, x2, . . . , xn} appears
to be the canonical choice, but it is actually not well suited for interpolation on the
real line because it turns (2.2) into an extremely ill-conditioned linear system. Later
on, We will learn more about the impediments of ill-conditioning.

Instead of monomials, we will use the following polynomials whose choice depends
on the interpolation nodes.

Definition 2.1 Given n+1 pairwise distinct nodes x0, . . . , xn ∈ R, the polynomials
ℓj ∈ Pn defined by

ℓj(x) :=
n∏

i=0,i6=j

x− xi

xj − xi
, j = 0, . . . , n, (2.3)

are called Lagrange polynomials.

The following relation is an important property of Lagrange polynomials:

ℓj(xi) = δij :=

{
1 if i = j,

0 otherwise.
(2.4)

2.1. A first glimpse at polynomial interpolation Version May 27, 2025 19

Because x0, . . . , xn ∈ R are pairwise distinct, this implies that {ℓ0, . . . , ℓn} is a
linearly independent family and, consequently, it is a basis of Pn+1 because Pn+1

has dimension n + 1. Moreover, it also proves the existence and uniqueness of
interpolating polynomials.

Theorem 2.2 Given interpolation data (xj , fj), j = 0, . . . , n, with pairwise distinct
interpolation nodes x0, . . . , xn, the polynomial

pn(x) :=
n∑

j=0

fjℓj(x) (2.5)

is the unique polynomial of degree at most n that satisfies the interpolation condi-
tions (2.2).

Proof. Because ℓj ∈ Pn, it follows that the polynomial pn defined in (2.5) is also
in Pn. Moreover, it follows from (2.4) that pn satisfies the interpolation condi-
tions (2.2).

It remains to show the uniqueness of the solution. For this purpose, let p̃n ∈ Pn

denote another polynomial satisfying (2.2). Then qn := pn − p̃n is a polynomial
of degree at most n. By definition, qn(xj) = 0 for j = 0, . . . , n, which shows that
qn has n + 1 has pairwise distinct zeros. According to the fundamental theorem
of algebra, the only polynomial of degree at most n having n+ 1 pairwise distinct
zeros is the zero polynomial qn ≡ 0. Hence, p̃n ≡ pn.

One important application of interpolation is to replace a complicated function f
by a polynomial. The following theorem provides an expression for the interpolation
error if f is sufficiently smooth.

Theorem 2.3 Let x0 < x1 < · · · < xn and let pn ∈ Pn denote the interpolating
polynomial satisfying pn(xj) = f(xj), j = 0, . . . , n, for some function

f ∈ Cn+1([x0, xn]).

Given x⋆ ∈ [x0, xn], there exists ξ ∈ [x0, xn] such that

En[f](x⋆) := f(x⋆)− pn(x⋆) =
f (n+1)(ξ)

(n+ 1)!
ωn+1(x⋆) , (2.6)

where
ωn+1(x) := (x− x0)(x− x1) · · · (x− xn) ∈ Pn+1 . (2.7)

Proof. If x⋆ equals one of the interpolation nodes xj then En[f](x⋆) = En[f](xj) =
0. Hence, we may assume that x⋆ 6= xj . For x ∈ I := [x0, xn] we define the function

g(x) := En[f](x)− ωn+1(x)En[f](x⋆)
/
ωn+1(x⋆) . (2.8)

20 Version May 27, 2025 Chapter 2. Numerical integration

Because f ∈ Cn+1([x0, xn]) and ωn+1 ∈ Pn+1 it follows that g ∈ Cn+1([x0, xn]).
Moreover, g has at least n+ 2 distinct zeros in [x0, xn] because

g(xj) = En[f](xj)− ωn+1(xj)En[f](x⋆)
/
ωn+1(x⋆) = 0, j = 0, . . . , n,

g(x⋆) = En[f](x⋆)− ωn+1(x⋆)En[f](x⋆)
/
ωn+1(x⋆) = 0 .

By Rolle’s theorem, g′ = dg

dx
has at least n+1 = n+2−1 zeros in [x0, xn]. Continuing

this argument, g(i) = dig

dxi has at least n+2−i zeros for i = 1, . . . , n+1. Hence, g(n+1)

has at least one zero, which we denote by ξ. Because E
(n+1)
n [f](x) = f (n+1)(x) and

ω
(n+1)
n+1 (x) ≡ (n+ 1)!, it follows from (2.8) that

0 = g(n+1)(ξ) = f (n+1)(ξ)− (n+ 1)!En[f](x⋆)
/
ωn+1(x⋆) .

Rearranging this relation yields (2.6).

Barycentric representation⋆ The straightforward use of the interpolating poly-
nomial pn(x) in the representation (2.5) would require O(n2) operations for each
evaluation of pn. This complexity can be reduced by first computing the following
quantities:

λj =
1

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
, j = 0, . . . , n.

This allows us to write

ℓj(x) = ωn+1(x)
λj

x− xj
,

with ωn+1(x) defined as in (2.7). It follows that

pn(x) =

n∑

j=0

fjℓj(x) = ωn+1(x)

n∑

j=0

λjfj
x− xj

. (2.9)

Now, only O(n) operations are needed for each operation (after λj has been com-
puted). We can simplify this even further. When considering the interpolation of
the constant function 1, the relation (2.9) reduces to

1 = ωn+1(x)

n∑

j=0

λj

x− xj
.

Inserted into (2.9), this yields the barycentric interpolation formula

pn(x) =
n∑

j=0

λjfj
x− xj

/
n∑

j=0

λj

x− xj
.

2.2. Newton-Cotes formulae Version May 27, 2025 21

Example Let x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6 and fj = cos(xj). Then the
parameters of the barycentric interpolation formula are given by

λ0 =
1

(x0 − x1)(x0 − x2)(x0 − x3)
= −20.8333,

λ1 =
1

(x1 − x0)(x1 − x2)(x1 − x3)
= 62.5000,

λ2 =
1

(x2 − x0)(x2 − x1)(x2 − x3)
= −62.5000,

λ3 =
1

(x2 − x0)(x2 − x1)(x2 − x3)
= 20.8333.

The interpolating polynomial in the Lagrange representation is given by

p3(x) = y0ℓ0(x) + y1ℓ1(x) + y2ℓ2(x) + y3ℓ3(x)

= y0λ0(x − x1)(x − x2)(x − x3) + y1λ1(x− x0)(x− x2)(x − x3)

+y2λ2(x− x0)(x− x1)(x− x3) + y3λ3(x − x0)(x − x1)(x− x2)

= −20.8333(x− x1)(x − x2)(x − x3) + 61.2542(x− x0)(x − x2)(x− x3)

−57.5663(x− x0)(x − x1)(x − x3) + 17.1945(x− x0)(x − x1)(x− x2).

cos (red) und p3(x) (blue) Interpolation error

lagrangecos.eps

54 × 40 mm

0 0.5 1 1.5
0

0.5

1

1.5

errcos.eps

54 × 40 mm

0 0.5 1 1.5
10

−8

10
−6

10
−4

10
−2

10
0

2.2 Newton-Cotes formulae

We now come back to the idea of approximating the definite integral (2.1) by in-
tegrating an interpolating polynomial. If the interpolation nodes are uniformly
distributed, the quadrature rule resulting from this approach is called a Newton-
Cotes formula. In the following, we first treat in detail the three classic cases before
discussing the general case.

1. Midpoint rule
The function f is interpolated by a constant polynomial p0 ∈ P0 in the middle
of the interval:

p0(x) ≡ f
(a+ b

2

)
.

22 Version May 27, 2025 Chapter 2. Numerical integration

mittelpunkt.eps

50 × 45 mm

a b

f(x)

trapez.eps

50 × 45 mm

a b

f(x)

Q
(0)
[a,b][f] = f((a+ b)/2)(b− a) Q

(1)
[a,b][f] = I[a,b][f] ≈ 1

2 (f(a) + f(b))(b − a)

Figure 2.2: Illustration of midpoint and trapezoidal rule for approximating the

definite integral
∫ b

a f(x) dx.

The resulting approximation of the integral is given by

∫ b

a

f(x) dx ≈
∫ b

a

p0(x) dx = (b− a) · f
(a+ b

2

)
=: Q

(0)
[a,b][f],

see Figure 2.2 for an illustration.

2. Trapezoidal rule
The linear polynomial p1 ∈ P1 interpolating f at the two end-points of the
interval [a, b] (that is, p1(a) = f(a) and p1(b) = f(b) holds) is given by

p1(x) =
x− b

a− b
f(a) +

x− a

b− a
f(b).

The resulting approximation of the integral is the trapezoidal rule given by

∫ b

a

f(x) dx ≈
∫ b

a

p1(x) dx = f(a)

∫ b

a

x− b

a− b
dx+ f(b)

∫ b

a

x− a

b− a
dx

= f(a)(b− a)

∫ 1

0

y dy + f(b)(b− a)

∫ 1

0

y dy

= (b− a)
(1
2
f(a) +

1

2
f(b)

)
=: Q

(1)
[a,b][f].

3. Simpson rule
Let p2 ∈ P2 be the quadratic polynomial interpolating f at the mid- and
end-points:

p2(a) = f(a), p2(x1) = f(x1), p2(b) = f(b), x1 =
a+ b

2
.

2.2. Newton-Cotes formulae Version May 27, 2025 23

This polynomial is given by

p2(x) =
(x − x1)(x − b)

(a− x1)(a− b)
f(a) +

(x − a)(x− b)

(x1 − a)(x1 − b)
f(x1) +

(x − a)(x− x1)

(b − a)(b− x1)
f(b).

To compute the definite integral of p2, we again use the variable substitution
y = x−a

b−a to obtain

∫ b

a

(x− x1)(x− b)

(a− x1)(a− b)
dx = (b− a)

∫ 1

0

(x− 1/2)(x− 1)

1/2
dy =

1

6
(b − a).

Similarly, one computes

∫ b

a

(x− a)(x− b)

(x1 − a)(x1 − b)
dx =

4

6
(b− a),

∫ b

a

(x − a)(x− x1)

(b − a)(b− x1)
dx =

1

6
(b − a).

In turn, the resulting approximation of the integral is the Simpson rule given
by

∫ b

a

f(x) dx ≈ (b− a)
(1
6
f(a) +

4

6
f
(a+ b

2

)
+

1

6
f(b)

)
=: Q

(2)
[a,b][f].

The calculations above can, in fact, be somewhat simplified by first performing
the variable substitution

∫ b

a

f(x) dx = (b− a)

∫ 0

1

f̃(y) dy, f̃(y) := f(a+ (b− a)y) (2.10)

and then applying interpolation to f̃ on the interval [0, 1]. This procedure
yields the same Simpson rule.

For the general case, we choose n+ 1 interpolation nodes

a ≤ x0 < x1 ≤ · · · < xn ≤ b.

We recall the Lagrange representation of the interpolating polynomial:

pn(x) =

n∑

j=0

f(xj)ℓj(x), ℓj(x) =

n∏

i=0
i6=j

x− xi

xj − xi
.

The definite integral of pn yields the approximation

∫ b

a

f(x) dx ≈ Q
(n)
[a,b][f] :=

∫ b

a

pn(x) dx =

∫ b

a

n∑

j=0

f(xj)ℓj(x) dx

=
n∑

j=0

f(xj)

∫ b

a

ℓj(x) dx =
n∑

j=0

αjf(xj),

(2.11)

24 Version May 27, 2025 Chapter 2. Numerical integration

n ξj αj/(b− a) Error

0 Midpoint rule 1
2 1 1

24 (b − a)3f (2)(ξ)

1 Trap. rule 0, 1 1
2 ,

1
2 − 1

12 (b − a)3f (2)(ξ)

2 Simpson rule 0, 1
2 , 1

1
6 ,

4
6 ,

1
6 − 1

90

(
b−a
2

)5
f (4)(ξ)

3 3
8 rule 0, 1

3 ,
2
3 , 1

1
8 ,

3
8 ,

3
8 ,

1
8 − 3

80

(
b−a
3

)5
f (4)(ξ)

4 Milne rule 0, 1
4 ,

1
2 ,

3
4 , 1

7
90 ,

32
90 ,

12
90 ,

32
90 ,

7
90 − 8

945

(
b−a
4

)7
f (6)(ξ)

Table 2.1: Newton-Cotes formulae (xj = a+ ξj(b− a)).

where the scalars αj :=
∫ b

a
ℓj(x) dx are called the weights of the quadrature rule

Q
(n)
[a,b][f]. Using the substitution (2.10), it can be seen that αj/(b − a) is a con-

stant not depending on a, b or f . As mentioned in the beginning, if the points are
uniformly distributed,

xj = a+ jh, j = 0, . . . , n, h =
b− a

n
,

for n ≥ 1 then Q
(n)
[a,b][f] is called a (closed) Newton-Cotes formula. Table 2.1 shows

the quadrature points xj = a+ ξj(b− a) und weights for n ≤ 4. The fourth column
contains the quadrature error, which will be discussed in the next section.

2.3 Order and error analysis

The order of a quadrature rule is determined by its ability to integrate polynomials
up to a certain degree exactly.

Definition 2.4 A quadrature rule Q[a,b] has order s+ 1, if

∫ b

a

ps(x) dx = Q[a,b][ps], ∀ps ∈ Ps.

Every commonly used quadrature rule Q[a,b] is a linear operator and, hence, Defi-
nition 2.4 is equivalent to verifying that

Q[0,1][1] = 1, Q[0,1][x] =
1

2
, . . . , Q[0,1][x

s] =
1

s+ 1
.

By construction, the Newton-Cotes formula Q
(n)
[a,b][f] has order at least n+1 because

polynomials of degree up to n are interpolated and, hence, integrated exactly. It is
easy to verify that the mid-point rule has, in fact, one order higher, order 2. The

2.3. Order and error analysis Version May 27, 2025 25

trapezoidal rule also has order 2 and the Simpson rule has order 4, again one order
higher.

The order has a pronounced influence on the quadrature error
∫ b

a
f dx−Q[a,b][f]

if f is sufficiently smooth and the interval [a, b] is small. To see this intuitively,
consider the (truncated) Taylor expansion of f at a

f(x) = ts(x) +
f (s+1)(ξx)

(s+ 1)!
(x− a)s+1, ts ∈ Πs.

Because ts is integrated exactly, the quadrature error is determined by the second
term. The absolute value of the second term is O(hs+1) for h := b − a → 0.
Integrating it over an interval of length h gives an integration error of O(hs+2) .
Finer estimates can be obtained by applying Theorem 2.3. The following theorem
and proof establish the quadrature error for n = 0 and n = 1; the other entries in
Table 2.1 can be established in an analogous fashion.

Theorem 2.5 Let f ∈ C2[a, b].

i) There is ξ ∈ [a, b] such that the error of the midpoint rule satisfies

∫ b

a

f(x) dx− (b− a) f
(a+ b

2

)
=

(b− a)3

24
f ′′(ξ).

ii) There is ξ ∈ [a, b] such that the error of the trapezoidal rule satisfies

∫ b

a

f(x) dx− b − a

2

[
f(a) + f(b)

]
= − (b− a)3

12
f ′′(ξ).

Proof. ii) We first prove the second part, because it follows directly from Theo-
rem 2.3:

f(x) − p1(x) =
f ′′(ξx)

2
(x− a)(x − b).

for some ξx ∈ [a, b] (depending on x). Integrating both sides yields

∫ b

a

f(x) dx−Q
(1)
[a,b][f] =

∫ b

a

f ′′(ξx)

2
(x− a)(x− b) dx. (2.12)

Let

c =

∫ b

a
f ′′(ξx)

2 (x− a)(x− b) dx

1
2

∫ b

a (x− a)(x− b) dx
=

∫ b

a
f ′′(ξx)(x − a)(x− b) dx

− 1
6 (b− a)3

.

Because (x− a)(x− b) ≤ 0 for every x in [a, b], it follows that

min
x∈[a,b]

f ′′(x) ≤ c ≤ max
x∈[a,b]

f ′′(x).

Since f ′′ is continuous, the intermediate value theorem shows that there exists
ξ ∈ [a, b] (not depending on x) such that c = f ′′(ξ). Inserting this into (2.12)
completes the proof of part ii).

26 Version May 27, 2025 Chapter 2. Numerical integration

i) Let x0 = a+b
2 . Using Taylor expansion at x0, it follows that

f(x) = f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(ξx)(x− x0)

2

for some ξx between x0 and x. In turn, the quadrature error satisfies

∫ b

a

f(x) dx−Q
(0)
[a,b][f] = f ′(x0)

∫ b

a

(x− x0) dx+
1

2

∫ b

a

f ′′(ξx)(x− x0)
2 dx.

Note that the first term vanishes because
∫ b

a
(x−x0) dx = 0. Because (x−x0)

2 ≥ 0,
we can apply the intermediate value theorem as in part ii) to conclude that there
exists ξ ∈ [a, b] such that

1

2

∫ b

a

f ′′(ξx)(x− x0)
2 dx =

1

2
f ′′(ξ)

∫ b

a

(x− x0)
2 dx =

1

24
f ′′(ξ)(b − a)3.

Table 2.1 might suggest that it is a good idea to go even further and use very
large for n (on relatively small intervals). However, for n = 8 and larger some of
the weights become negative, which leads to numerical cancellation and limits the
usefulness of such high-order Newton-Cotes formulae.

2.4 Composite Newton-Cotes formulae

As mentioned above, the gains in accuracy by increasing the order of Newton-
Cotes formulae are limited due to the influence of roundoff error. A more effective
approach to increasing accuracy is to partition the interval [a, b] in N subintervals
and approximate I[a,b][f] by applying a quadrature rule to each subinterval.

Notation: From now on, xi, i = 0, . . . , N , denote the boundaries of the subinter-
vals, N denotes the number of subintervals, and n denotes (as before) the maximum
polynomial degree used in the integration of subintervals.

A uniform partition of [a, b] into N subintervals corresponds to

xj = a+ jh, j = 0, . . . , N, h =
b− a

N
.

Applying the quadrature rule Q
(n)
[xi,xi+1]

[f] to each subinterval und summing the

obtained values yields the corresponding composite quadrature rule:

Q
(n)
h [f] :=

N−1∑

i=0

Q
(n)
[xi,xi+1]

[f]. (2.13)

For n = 1 we obtain the composite trapezoidal rule:

Q
(1)
h [f] =

N−1∑

i=0

xi+1 − xi

2
[f(xi) + f(xi+1)] =

h

2

[
f(a) + 2

N−1∑

i=1

f(xi) + f(b)
]
.

2.4. Composite Newton-Cotes formulae Version May 27, 2025 27

For n = 1 we obtain the composite Simpson rule:

Q
(2)
h [f] =

N−1∑

i=0

xi+1 − xi

6
[f(xi) + 4f

(xi + xi+1

2

)
+ f(xi+1)

]

=
h

6

[
f(a) + 2

N−1∑

i=1

f(xi) + 4

N−1∑

i=0

f
(xi + xi+1

2

)
+ f(b)

]
.

Theorem 2.6 For the composite trapezoidal and Simpson rules it holds that

∣∣I[a,b][f]−Q
(1)
h [f]

∣∣ ≤ h2

12
(b − a) max

x∈[a,b]
|f ′′(x)|, f ∈ C2[a, b],

∣∣I[a,b][f]−Q
(2)
h [f]

∣∣ ≤ h4

2880
(b− a) max

x∈[a,b]
|f (4)(x)|, f ∈ C4[a, b].

Proof. Applying Theorem 2.5 to each subinterval yields

∣∣I[a,b][f]−Q
(1)
h [f]

∣∣ =
∣∣∣
N−1∑

i=0

(xi+1 − xi)
3

12
f ′′(ξi)

∣∣∣

≤
N−1∑

i=0

h3

12
|f ′′(ξi)| ≤

h2

12
(b − a) max

x∈[a,b]
|f ′′(x)|.

The proof for the Simpson rule proceeds analogously.

Example 2.7 Figure 2.3 shows the implementations and the errors obtained when
applying the composite trapezoidal and Simpson rules to approximating

∫ π

0

sin(x) dx = 2. (2.14)

As expected, the error of the (composite) Simpson rule converges much faster to
zero than the error of the trapezoidal rule. The asymptotic behavior is clearly O(h4)
and O(h2), as predicted by Theorem 2.6. As a consequence, the Simpson rule needs
much fewer function evaluations to attain the same accuracy.

If f is not smooth, the advantage of the Simpson rule becomes less important.
To see this, consider ∫ 1

0

√
x dx =

2

3
. (2.15)

Figure 2.4 shows the error of the composite trapezoidal and Simpson rules. For
both rules, the asymptotic behavior of the error is O(hp) with p = 3/2 (but with a
smaller constant for the Simpson rule). ⋄

28 Version May 27, 2025 Chapter 2. Numerical integration

Python

import numpy as np

import matplotlib.pyplot as plt

def trapez(fun, a, b, n):

x = np.linspace(a,b,n+1)

vecfun = np.vectorize(fun)

f = vecfun(x)

f[0] = f[0]/2

f[-1] = f[-1]/2

T = (b-a) * sum(f) / n

return T

nn = 100; err = np.zeros(nn)

for n in range(nn):

err[n] = np.abs(2 -

trapez(np.sin, 0, np.pi, n + 1))

plt.loglog(range(1,nn+1), err)

Python

def simpson(fun,a,b,n):

x = np.linspace(a,b,2*n+1)

vecfun = np.vectorize(fun)

f = vecfun(x)

end = len(f) - 1

f[1:end: 2] = 4*f[1:end:2]

f[2:end-1:2] = 2*f[2:end-1:2]

T = (b-a) * sum(f) / n / 6

return T

sintrapez.eps

48 × 37 mm

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

p=3/2p=2p=4

sinsimpson.eps

48 × 37 mm

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

p=3/2p=2p=4

Figure 2.3: Errors of composite Simpson rule (left) and trapezoidal rule (right) vs.
N = O(h−1) when approximating smooth integral (2.14).

The composite midpoint rule,

Q
(0)
h [f] =

N−1∑

i=0

(xi+1 − xi)f
(xi + xi+1

2

)

is of interest for functions with singularities at the interval boundaries; see Sec-
tion 2.6.2 below.

2.5 Gauss formulae

In the Newton-Cotes formulae, we have chosen the interpolation points to be uni-
formly distributed. In this section, we modify these points in order to obtain a
quadrature rule of higher order.

Remark 2.8 There is no quadrature rule (2.11) with n + 1 points x0, . . . , xn of
order higher than 2n + 2. If Q(n)[p] was such a quadrature rule it would be exact

2.5. Gauss formulae Version May 27, 2025 29

roughquadratur.eps

48 × 37 mm

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p=3/2p=2p=4

Trapez

Simpson

Figure 2.4: Errors of composite Simpson and trapezoidal rules vs. N = O(h−1)
when approximating non-smooth integral (2.15).

for the polynomial

p(x) =

n∏

i=0

(x− xi)
2 ∈ P2n+2 ,

which leads to the contradiction

0 <

∫ b

a

p(x) dx = Q(n)[p] = 0 .

In the following, we construct quadrature rules that attain the highest possible
order according to Remark 2.8, the so called Gauss formulae. As an additional
benefit, these formulae always have nonnegative weights and therefore avoid the
numerical problems associated with high orders for the Newton-Cotes formulae.

To construct Gauss formulae, we have to choose the quadrature points x0, . . . , xn

such that Q(n) exactly integrates all polynomials of degree at most 2n+1. Because
of linearity, it suffices to verify this property for any basis P2n+1. When choosing
the monomial basis this leads to the 2n+ 2 (nonlinear) equations

∫ 1

−1

xk dx = α0x
k
0 + · · ·+ αnx

k
n, k = 0, . . . , 2n+ 1. (2.16)

Here and in the following, we assume for simplicity that [a, b] = [−1, 1]. The
solution of the nonlinear equations (2.16) by hand or computer algebra becomes
quickly infeasible for larger n. There is a much simpler and more elegant approach,
which will be discussed in the following. Polynomial division provides the starting
point of this approach.

Theorem 2.9 (Polynomial division) Let p ∈ P2n+1 and q ∈ Pn+1. There exist
unique polynomials h ∈ Pn and r ∈ Pn such that p = hq + r.

30 Version May 27, 2025 Chapter 2. Numerical integration

For integrating a polynomial p ∈ P2n+1 exactly, it must hold that

0 =

∫ 1

−1

p(x) dx−
n∑

j=0

αjp(xj)

=

∫ 1

−1

h(x)q(x) dx−
n∑

j=0

αjh(xj)q(xj) +

(∫ 1

−1

r(x) dx−
n∑

j=0

αjr(xj)

)
.(2.17)

Because r ∈ Pn, the third term (in brackets) is always zero when using an interpo-
lating quadrature rule with n+1 points. For addressing the first two terms, we will
make a clever choice of q via Legendre polynomials.

Definition 2.10 The Legendre polynomial (of order n+ 1) is the polynomial
qn+1 ∈ Pn+1 satisfying

∫ 1

−1

qn+1(x)h(x) dx = 0 ∀h ∈ Pn, qn+1(1) = 1. (2.18)

Defining the L2 inner product

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx

on the vector space Pn+1, the first condition in (2.18) states that qn+1 is orthog-
onal to the subspace Pn. In turn, this shows that Legendre polynomials can be
constructed by applying the Gram-Schmidt procedure to the monomial basis 1,
x, . . ., xn+1. The next result provides a more direct characterization of Legendre
polynomials.

Theorem 2.11 The polynomial qk defined by

qk(x) = ck
dk

dxk

[
(x2 − 1)k

]
, ck :=

1

2kk!
, (2.19)

is the kth Legendre polynomial.

Proof. First, we note that qk ∈ Pk, since it is obtained by computing k derivatives
of a polynomial of degree 2k. Also, it is straightforward to see that qk(1) = 1. To
show that qk is orthogonal to every g ∈ Pk−1 we proceed via integration by parts:

ck

∫ 1

−1

dk

dxk

[
(x2 − 1)k

]
g(x) dx =− ck

∫ 1

−1

dk−1

dxk−1

[
(x2 − 1)k

] d

dx
g(x) dx

+ ck

[
dk−1

dxk−1
(x2 − 1)kg(x)

]1

−1

2.5. Gauss formulae Version May 27, 2025 31

Note that the second term vanishes because (x2 − 1)k has a zero of multiplicity k
at ±1. To treat the first term, we again integrate by parts:

−ck
∫ 1

−1

dk−1

dxk−1

[
(x2 − 1)k

] d

dx
g(x) dx =ck

∫ 1

−1

dk−2

dxk−2

[
(x2 − 1)k

] d2

dx2
g(x) dx

− ck

[
dk−2

dxk−2
(x2 − 1)k

d

dx
g(x)

]1

−1

.

Once again, the second term vanishes. Continuing this procedure and integrating
by parts k times, we obtain

ck

∫ 1

−1

dk

dxk

[
(x2 − 1)

]k
g(x) dx = (−1)kck

∫ 1

−1

(
x2 − 1

) dk

dxk
g(x) dx.

Since g has degree at most Pk−1 its kth derivative vanishes and, hence,

ck

∫ 1

−1

dk

dxk

[
(x2 − 1)

]k
g(x) dx = 0.

Theorem 2.11 implies a recurrence relation, which is convenient for computing
Legendre polynomials.

Theorem 2.12 The Legendre polynomials q0, q1, . . . satisfy the three-term recur-
rence relation

qn+1(x) =
2n+ 1

n+ 1
xqn(x)−

n

n+ 1
qn−1(x), q0(x) = 1, q1(x) = x.

Proof. EFY.

According to Theorem 2.12, the first five Legendre polynomials are given by

q0(x) = 1

q1(x) = x

q2(x) =
1

2
(3x2 − 1)

q3(x) =
1

2
(5x3 − 3x)

q4(x) =
1

8
(35x4 − 30x2 + 3)

q5(x) =
1

8
(63x5 − 70x3 + 15x).

Choosing q = qn+1, the first term in (2.17) vanishes. Choosing x0, . . . , xn+1 as zeros
of qn+1 then the second term vanishes as well.

Theorem 2.13 The Legendre polynomial qn+1 has n+ 1 simple zeros in (−1, 1).

32 Version May 27, 2025 Chapter 2. Numerical integration

Proof. Let us define the set

N := {λ ∈ (−1, 1) : λ is a zero of odd multiplicity of qn+1}

and
h(x) := 1 for N = ∅, and

h(x) :=
m∏
i=1

(x− λi) for N = {λ1, . . . , λm} .

Then qn+1 · h ∈ Pn+m+1 is real and all its roots in (−1, 1) have even order. In
particular, it has no change of sign in (−1, 1) and therefore

(qn+1, h) =

∫ 1

−1

qn+1(x)h(x) dx 6= 0 .

If m ≤ n this contradicts qn+1 ⊥ Pn. In turn, m > n and qn+1 has at least n + 1
zeros in (−1, 1). By the fundamental lemma of algebra, qn+1 has exactly n+1 zeros
in (−1, 1).

The following theorem summarizes our observations.

Theorem 2.14 Let x0, . . . , xn ∈ (−1, 1) be the zeros of the Legendre polynomials
qn+1 let ℓ0, . . . , ℓn be the corresponding Lagrange polynomials. Choosing αj =∫ 1

−1
ℓj(x) dx the Gauss formula

Q(n)[f] = α0f(x0) + · · ·+ αnf(xn)

has order 2n+ 2.

For n = 1 and n = 2 we obtain the quadrature rules

Q(1)[f] = f(−
√
1/3) + f(

√
1/3),

Q(2)[f] =
1

9

{
5f(−

√
3/5) + 8f(0) + 5f(

√
3/5)

}
.

Because of

0 <

∫ 1

−1

ℓi(x)
2 dx =

n∑

j=0

αj ℓi(xj)
2

︸ ︷︷ ︸
δij

= αi,

it follows that the weights are always positive and we avoid the numerical instability
associated with high-order Newton-Cotes formulae. For general n, one can obtain
the weights from the following linear system of equations:

n∑

j=0

αjx
i
j =

∫ 1

−1

xi dx =
1

i+ 1
(1− (−1)i+1), i = 0, . . . , n.

2.5. Gauss formulae Version May 27, 2025 33

The computation of the zeros of qn+1 is more difficult; the following result yields a
simple implementation.8

Theorem 2.15 (Golub/Welsh) The zeros x0, . . . , xn of qn+1 are the eigenvalues
of the matrix

J =




0 b1

b1 0
. . .

. . .
. . . bn
bn 0




,

where

bj =
j√

4j2 − 1
.

Python

import numpy as np

def gaussQuad(n):

b = np.arange(1,n+1)

b = b / np.sqrt(4*b*b-1)

J = np.diag(b,-1) + np.diag(b,1)

x, ev = np.linalg.eigh(J) # eigh stands for symmetric EVP

a = np.array(2*(ev[0,:]*ev[0,:]))

return x,a

The following theorem establishes an expression for the error of the Gauss for-
mulae, which highlights (once more) their advantages compared to Newton-Cotes
formulae.

Theorem 2.16 (Error of Gauss quadrature) For f ∈ C2n+2[−1, 1] there ex-
ists ξ ∈ (−1, 1) such that

R(n)[f] := Q(n)[f]−
∫ 1

−1

f(x) dx =
f (2n+2)(ξ)

(2n+ 2)!

∫ 1

−1

n∏

j=0

(x− xj)
2 dx

=
22n+3[(n+ 1)!]4

(2n+ 3)[(2n+ 2)!]3
f (2n+2)(ξ).

Example 2.17 For the trapezoidal rule, Theorem 2.5 yields an error of the form
2/3 f ′′(ξ) on the interval [a, b] = [−1, 1]. For the Gauss quadrature for n = 1 (which
requires the same number of function evaluations), Theorem 2.16 establishes an
error of the form 1/135 f (4)(ξ). ⋄

By a linear transformation, one obtains Gauss quadrature rules on an arbitrary

8See https://pi.math.cornell.edu/~ajt/papers/QuadratureEssay.pdf for a nice account of
the history of methods for computing Gauss quadrature nodes/weights.

34 Version May 27, 2025 Chapter 2. Numerical integration

interval [a, b]. For n = 1 and n = 2 one obtains

Q(1)[f] =
b− a

2

[
f
(
c− h̃

√
1/3
)
+ f

(
c+ h̃

√
1/3
)]

,

Q(2)[f] =
b− a

18

[
5f
(
c− h̃

√
3/5
)
+ 8f

(
c) + 5f

(
c+ h̃

√
3/5
)]

,

with c = b+a
2 and h̃ = b−a

2 . Setting xj = a+jh for j = 0, . . . , N and h = (b−a)/N),
the corresponding composite rules are given by

Q
(1)
h [f] =

h

2

N−1∑

j=0

[f(xj + h′) + f(xj+1 − h′)]

with h′ = (12 − 1
2
√
3
)h ∼ 0.2113249 h, and

Q
(2)
h [f] =

h

18

N−1∑

j=0

[
5f(xj + h′) + 8f

(
xj + 1

2
h
)
+ 5f(xj+1 − h′)

]

with h′ = (12 − 1
2

√
3
5)h ∼ 0.1127012 h.

2.6 Miscellaneous⋆

2.6.1 Periodic functions

The composite trapezoidal rule has excellent convergence properties for (smooth)
periodic functions. For example, consider the function

f(x) =
1√

1− a sin(x− 1)
, (2.20)

which is periodic on the interval [0, 2π]. Für a = 1, the function has a singularity
at 2π/4 + 1 ≈ 2.57.

In the left part of Figure 2.5, the interval is chosen such that it matches a period
of the function. Note that the x axis is not scaled logarithmically; the quadrature
error converges exponentially fast to 0 as N increases. The speed of convergence
clearly depends on a; as a gets very close 1 one suffers from the non-smoothness of
the function for a = 1. In the right part of Figure 2.5 the interval does not match
the period of the function. Note that the x axis is scaled logarithmically. In this
situation, the quadrature error converges much more slowly and in accordance with
the result of Theorem 2.6. On the other hand, choosing a close to 1 has a less
dramatic impact on the convergence speed.

The fast convergence of the composite trapezoidal rule for a periodic function is
connected to favorable properties of the Fourier expansion, which will be discussed
later on.

For a periodic function, the composite trapezoidal rule is the method of choice. It
would do more harm than good to choose higher order quadrature rules.

2.6. Miscellaneous⋆ Version May 27, 2025 35

pertrapez1.eps

54 × 40 mm

5 10 15 20 25
10

−15

10
−10

10
−5

10
0

a = 0.5

a = 0.9

a = 0.99

pertrapez2.eps

54 × 40 mm

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

a = 0.5

a = 0.9

a = 0.99

∫ 2π

0 f(x) dx
∫ π

0 f(x) dx

Figure 2.5: Quadrature error vs. N for composite trapezoidal rule applied to
integrating f from (2.20) for a ∈ {0.5, 0.9, 0.99} on two different intervals.

2.6.2 Singular integrals

Functions with singularities (leading to singular/improper integrals) can also be
integrated numerically, but some care is needed in the choice of quadrature rule.
For example, the composite midpoint rule converges for

∫ 1

0

1√
x

dx = 2.

Python

import numpy as np

import matplotlib.pyplot as plt

def sing(x):

return 1/np.sqrt(x)

def midpoint(fun,a,b,n):

h = (b-a)/n;

x = np.arange(a+h/2,b-h/2+h,h)

fun_vec = np.vectorize(fun)

f = fun_vec(x)

return h * sum(f)

nn = 2**np.arange(1,19,1)

err = []

for n in nn:

err.append(abs(2 -

midpoint(sing,0,1,n)))

plt.loglog(nn,err)

The following figure shows the observed
error vs. N :

singmidpoint.eps

57 × 43 mm

10
0

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

The observed convergence order 1/2 is not very satisfying; halving the error requires
to increase the number of points by a factor four. More effective approaches to
singularities are variable transformation techniques or adaptive quadrature.

36 Version May 27, 2025 Chapter 2. Numerical integration

2.6.3 Two-dimensional integrals

In practice, one is often interested in integrals in 2D, 3D or, more generally, on
domains in Rd. By domain decomposition and transformation one typically reduces
such problems to standard domains like the unit cube. To illustrate the development
of quadrature rules for such standard domains we discuss the unit square and the
unit triangle.

Unit square. Consider the integral

∫ 1

0

∫ 1

0

f(x, y) dxdy. (2.21)

Let

Qm[g] =

m∑

i=0

αig(xi)

be a quadrature rule for
∫ 1

0
g(x) dx. Denoting

F (y) =

∫ 1

0

f(x, y) dx,

we obtain from the application of Qm to the x and y variables the following product

quadrature rule Q
(m×m)
[0,1]×[0,1][f]:

∫ 1

0

∫ 1

0

f(x, y) dx dy =

∫ 1

0

F (y) dy ≈
m∑

j=0

αjF (xj)

=
m∑

j=0

αj

∫ 1

0

f(x, xj) dx ≈
m∑

j=0

αj

m∑

i=0

αif(xi, xj)

=

m∑

i,j=0

αiαjf(xi, xj) =: Qm×m[f].

For the hypercube in Rd the approach above would result in md terms. Hence,
the cost grows very quickly with d. This so called curse of dimensionality can
sometimes be countered with Monte Carlo methods or sparse grids.

Unit triangle. The approach for the unit square has no meaningful extension
to triangles. Instead one aims at finding quadrature rule which exactly integrate
xk1yk2 , k1+k2 ≤M for a certain integer M . Typical examples for the unit triangle
{(x, y) : x+ y ≤ 1}:

1. Q[f] = 1
2f(1/3, 1/3),

2. Q[f] = 1
6

[
f(0, 0) + f(1, 0) + f(0, 1)

]
,

3. Q[f] = 1
6

[
f(1/2, 0) + f(0, 1/2) + f(1/2, 1/2)

]
,

2.6. Miscellaneous⋆ Version May 27, 2025 37

4. Q[f] = 1
6

[
f(1/6, 1/6) + f(2/3, 1/6)+ f(1/6, 2/3)

]
.

One verifies that 1 and 2 exactly integrate 1, x, y (M = 1), while 3 and 4 exactly
integrate 1, x, y, xy, x2, y2 (M = 2).

38 Version May 27, 2025 Chapter 2. Numerical integration

Chapter 3

Polynomial interpolation

We are getting back to the topic of (polynomial) interpolation from Section 2.1.
First, a short summary of what we learned in that section. Given interpolation
data (xj , yj) with xj ∈ R and yj ∈ R for j = 0, . . . , n, we have shown that there is
a unique polynomial pn of degree at most n such that

pn(xj) = yj , j = 0, . . . , n,

if (and only if) the interpolation nodes xj are pairwise distinct. The Lagrange
representation of pn is given by

pn(x) =

n∑

j=0

yjℓj(x), ℓj(x) :=

n∏

i=0,i6=j

x− xi

xj − xi
. (3.1)

In the following, we let ‖ · ‖∞ denote the uniform (or L∞) norm of a function
g : [a, b] → ∞, that is, ‖g‖∞ := supx∈[a,b] |g(x)|. Then Theorem 2.3 implies the
error bound

‖f − pn‖∞ ≤
1

(n+ 1)!
‖ωn+1‖∞‖f (n+1)‖∞ (3.2)

when yj = f(xj) for an n + 1 times continuously differentiable function f . Apart
from properties of the function f , the norm of ωn+1(x) = (x−x0)(x−x1) · · · (x−xn)
on [a, b] also enters this error bound.

By the Weierstrass approximation theorem, for any continuous function f there is
a sequence of polynomials p̃n such that ‖f−p̃n‖∞ converges to zero as n→∞. This,
however, does not necessarily hold for the polynomials pn defined in (3.1), even when
assuming that f is infinitely often differentiable. To see this, consider the function
f(x) = 1/

(
1 + 25x2

)
and equidistant nodes on [−1, 1], that is, xj = −1 + 2j/n

for j = 0, . . . , n. As n increases, the accuracy of the polynomial interpolation
deteriorates at the neighborhoods of the end points of the interval; see Figure 3.1.
In particular, the ‖f − pn‖∞ grows (quite quickly) instead of converging to zero.
This problem has been observed for the first time in 1901 by Runge and, for this
reason, is called Runge phenomenon. Both, the growth of the derivatives of f and

39

40 Version May 27, 2025 Chapter 3. Polynomial interpolation

the strong oscillations of ωn+1 near the end points of the interval contribute to this
phenomenon.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p2f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p4f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p6f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p8f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p10f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p12f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p14f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p16f (x)
(xi, yi)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p18f (x)
(xi, yi)

Figure 3.1: The Runge phenomenon for f(x) = 1
1+25x2 .

Much of this chapter is concerned with finding better interpolation nodes that
avoid the Runge phenomenon for sufficiently nice functions. We will also discuss
links to stability and best approximation.

3.1 Chebyshev nodes

Motivated by the error bound (3.2) we now aim at determining interpolation nodes
x0, . . . , xn that minimize

‖ωn+1‖∞ = max
x∈[a,b]

|(x − x0)(x − x1) · · · (x − xn)|.

By an affine linear transformation of the interval and the interpolation nodes, we
may assume without loss of generality that [a, b] = [−1, 1]. Minimizing ‖ωn+1‖∞
directly by brute force would be a daunting task. We therefore approach it indirectly
via Chebyshev polynomials.

Definition 3.1 Given n ∈ N, the nth Chebyshev polynomial is defined as

Tn(x) = cos(n arccosx) ∀ x ∈ [−1, 1].

3.1. Chebyshev nodes Version May 27, 2025 41

Note that for every n ∈ N and x ∈ [−1, 1] we have |Tn(x)| ≤ 1. Moreover, in
spite of the unusual definition, it will follow from Lemma 3.2 below that Tn ∈ Pn

for every n ∈ N. By computing the first few examples, we obtain indeed:

n = 0 : T0(x) = cos(0 arccosx) = cos(0) = 1,

n = 1 : T1(x) = cos(1 arccosx) = x,

n = 2 : T2(x) = cos(2 arccosx) = 2 cos2(arccosx)− 1 = 2x2 − 1.

Theorem 3.2 The Chebyshev polynomials satisfy the following recurrence rela-
tion:

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x) n ∈ N, n ≥ 1.

Proof. For every n ∈ N, n ≥ 1, the following trigonometric identity holds:

cos ((n+ 1)ϕ) + cos ((n− 1)ϕ) = 2 cosϕ cos (nϕ) ∀ ϕ ∈ R.

Setting ϕ = arccosx, this implies

Tn+1(x) + Tn−1(x) = 2T1(x)Tn(x) = 2xTn(x) ∀ x ∈ [−1, 1],

which completes the proof.

Note that the result of Theorem 3.2 also implies that the leading coefficient of
Tn+1 is 2n.

Lemma 3.3 The roots of Tn are

xk = cos

(
(2k + 1)π

2n

)
, k = 0, . . . , n− 1,

which are called Chebyshev nodes.

Proof. A direct calculation yields, for every k ∈ N, 0 ≤ k ≤ n− 1,

Tn (xk) = cos

(
n arccos cos

(
(2k + 1)π

2n

))
= cos

(
(2k + 1)π

2

)
= 0.

These are all the roots of Tn because, by Theorem 3.2, Tn is a (nonzero) polynomial
of degree n.

Lemma 3.3 shows that Tn has n real, pairwise distinct roots in the open interval
(−1, 1). Moreover, it can be seen from Figure 3.2 that the roots tend to cluster at
the end points of [−1, 1].9

By looking at the extremal properties of Tn, we are getting closer to our goal of
optimizing ‖ωn+1‖∞.

9EFY: Show that the Chebyshev nodes are the real parts of points uniformly distributed on
the upper part of the unit circle.

42 Version May 27, 2025 Chapter 3. Polynomial interpolation

tscheb.eps

57 × 43 mm

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

T0

T1

T2

T3

T4

tscheb2.eps

57 × 43 mm

−1 −0.5 0 0.5 1
0

5

10

15

20

Figure 3.2: Left: Chebyshev polynomials T0, . . . , T4. Right: Roots of Chebyshev
polynomials T1, . . . , T20.

Lemma 3.4 For n ≥ 1 the Chebyshev polynomial Tn takes alternatingly the values
+1 and −1 exactly n+ 1 times:

Tn

(
cos

(
kπ

n

))
= (−1)k , ∀ k = 0, . . . , n.

Proof. By differentiation, it is easy to show that Tn attains at the points cos

(
kπ

n

)
,

k = 0, . . . n, a local minimum for k odd and a local maximum for k even. Since, by
construction, ‖Tn‖∞ ≤ 1, these are global extrema.

We are now ready to solve our optimization problem.

Lemma 3.5 Among all polynomials of degree n+ 1 with leading coefficient 1, the
rescaled Chebyshev polynomial T̃n+1 := 2−nTn+1 minimizes the uniform norm on
[−1, 1].
Proof. From Lemma 3.4 we have that T̃n+1 alternates at the values +2−n and−2−n

exactly n+2 times. We assume, in contradiction to the statement of the lemma, that
there exists q ∈ Pn+1 with leading coefficient 1 such that ‖q‖∞ < 2−n and define
p(x) := q(x) − 2−nTn+1(x) for every x ∈ [−1, 1]. Note that p ∈ Pn since the terms
xn+1 cancel. Note, also, that p is nonzero because otherwise ‖q‖∞ = 2−n. Moreover,
p changes sign in each interval (zi, zi+1) for i = 0, . . . , n, where z0, . . . , zn+1 are the
points where Tn+1 attains its extreme values. In turn, by the intermediate value
theorem and continuity of polynomials, p admits n+ 1 distinct roots, which is not
possible for a nonzero polynomial of degree n.

The result of Lemma 3.5 tells us that choosing the Chebyshev nodes (that is, the
roots of Tn+1) as interpolation nodes leads to the ωn+1 of smallest uniform norm.
Mapping the Chebyshev nodes to a general interval [a, b], we arrive at the following
result.

3.1. Chebyshev nodes Version May 27, 2025 43

Theorem 3.6 The expression maxx∈[a,b] |(x − x0) . . . (x − xn)| is minimized for
the interpolation nodes

xk =
a+ b

2
+

b− a

2
cos

(
(2k + 1)π

2n+ 2

)
, k = 0, . . . , n.

For this choice of interpolation nodes, the interpolating polynomial pn satisfies

‖f − pn‖∞ ≤
1

2n(n+ 1)!

(
b− a

2

)n+1

‖f (n+1)‖∞.

Proof. The proof proceeds, similarly to what has been used in Chapter 2, by an
affine linear mapping from the reference interval to the interval of interest. In this
case, the reference interval is [−1, 1] and the interval of interest is [a, b], and the
mapping takes the form

ϕ : [−1, 1]→ [a, b], ϕ : x 7→ a+ b

2
+

b− a

2
x.

Note that this map is invertible, with the inverse map given by

ϕ−1 : [a, b]→ [−1, 1], ϕ−1 : y 7→ 2

b− a

(
y − a+ b

2

)
.

We can use ϕ to map interpolation nodes x̃0, . . . , x̃n ∈ [−1, 1], to the interval [a, b]:
xk = ϕ(x̃k) for k = 0, . . . , n. Setting x̃ = ϕ−1(x) ∈ [−1, 1], we obtain

ωn+1(x) = (x− x0)(x− x1) · · · (x− xn)

= (ϕ(x̃)− ϕ(x̃0))(ϕ(x̃)− ϕ(x̃1)) · · · (ϕ(x̃)− ϕ(x̃n))

=

(
b− a

2

)n+1

(x̃− x̃0)(x̃− x̃1) · · · (x̃− x̃n)︸ ︷︷ ︸
=:ω̃n+1(x̃)

.

By Lemma 3.5, we know that the maximum norm of ω̃n+1 on [−1, 1] is minimized by
choosing x̃k = cos((2k+1)π/(2n+2)), the roots of the Chebyshev polynomial Tn+1.
The relation above shows that the maximum norm of ωn+1 on [a, b] is minimized
by setting xk = ϕ(x̃k) = ϕ(cos((2k + 1)π/(2n+ 2)), which proves the first part of
the theorem. The second part follows directly from the error bound (3.2):

‖f − pn‖∞ ≤ 1

(n+ 1)!
‖ωn+1‖∞‖f (n+1)‖∞

=
1

(n+ 1)!

(
b− a

2

)n+1

‖ω̃n+1‖∞‖f (n+1)‖∞

=
1

2n(n+ 1)!

(
b− a

2

)n+1

‖f (n+1)‖∞,

44 Version May 27, 2025 Chapter 3. Polynomial interpolation

where the last inequality uses ω̃n+1(x̃) = 2−nTn+1(x̃).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p8f (x)
(xi, yi)

(a) Interpolating on equidistant
points, n = 8, f(x) = 1

1+25x2 .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f (x)
p8f (x)
(xi, yi)

(b) Interpolating on Chebyshev nodes,
n = 8, f(x) = 1

1+25x2 .

Figure 3.3: Comparison of polynomial interpolation with equidistant and Chebyshev
nodes.

Figure 3.3 confirms that Chebyshev nodes compare favorably with equidistant
nodes for the Runge function.

It can be shown that the error ‖f − pn‖∞ converges to zero for any Lipschitz
function f when choosing Chebyshev nodes. For a real analytic function f , the
error converges exponentially fast, that is, it is bounded by a constant times ρ−n,
where ρ > 1 depends on the domain of analyticity of f . We highly recommend
Trefethen’s book [6] and the associated Chebfun software package for many more
fascinating facts and uses of Chebyshev polynomials.10

3.2 Sensitivity and best uniform approximation

Building and evaluating interpolating polynomials is subject to roundoff error on a
computer. Figures 3.4 and 3.5 show the results of interpolating f(x) = sin(x) on
[−π, π]. Theoretically, for both equidistant and Chebyshev nodes, we expect that
‖f − pn‖∞ converges to zero as n increases. Instead, Figure 3.4 shows “wiggles”
for large n in the case of equidistant nodes. These wiggles are due to roundoff error
caused by numerical instabilities when using equidistant nodes.

Roundoff error already occurs when evaluating and storing the function values
yi = f(xi) on the computer. Let us investigate the effect of this error on the
interpolating polynomial. For this purpose, suppose that

f̂ (xi) = f (xi) (1 + δi) , where |δi| ≤ ǫ.

For elementary functions, we know that ǫ = u, the unit roundoff. For more complex
functions, this can be larger, but often one still has ǫ ≈ 10−16. The interpolating

10EFY: Download Chebfun / ApproxFun / pychebfun and play with it!

3.2. Sensitivity and best uniform approximation Version May 27, 2025 45

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f (x)
p50f (x)

(a) n = 50

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f (x)
p60f (x)

(b) n = 60

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f (x)
p70f (x)

(c) n = 70

Figure 3.4: Interpolation of f(x) = sin(x) on equidistant nodes.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f (x)
p50f (x)

(a) n = 50

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f (x)
p60f (x)

(b) n = 60

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f (x)
p70f (x)

(c) n = 70

Figure 3.5: Interpolating of f(x) = sin(x) on Chebyshev nodes.

polynomials for f and f̂ are given by

pn(x) =

n∑

i=0

f (xi) ℓi(x), p̂n(x) =

n∑

i=0

f̂ (xi) ℓi(x). (3.3)

respectively. Then for every x ∈ [a, b] we have that

|pn(x) − p̂n(x)| =
∣∣∣

n∑

i=0

(
f(xi)− f̂(xi)

)
ℓi(x)

∣∣∣

≤
n∑

i=0

ǫ|f (xi) | |ℓi(x)| ≤ ǫ ‖f‖∞
n∑

i=0

|ℓi(x)|.
(3.4)

Definition 3.7 The quantity

Λn := max
x∈[a,b]

n∑

i=0

|ℓi(x)|

is called Lebesgue constant associated with the interpolation nodes x0, . . . , xn.

46 Version May 27, 2025 Chapter 3. Polynomial interpolation

Table 3.1: Lebesgue constant Λn for equidistant and Chebyshev nodes on [−1, 1].

n equidistant Chebyshev
5 3.106 2.104

10 29.89 2.489
15 512.05 2.728
20 10986.53 2.901

By the discussion above, we have

‖pn − p̂n‖∞ ≤ ǫΛn ‖f‖∞ .

Hence, Λn measures the sensitivity of the interpolating polynomial with respect
to perturbations in the interpolation data. Table 3.1 shows that the Lebesgue
constant grows much more rapidly for equidistant nodes than for Chebyshev nodes,
explaining the effect observed in Figure 3.4. It has been shown that

Λn ∼
2n

e(n− 1) lnn
n→ +∞

for equidistant nodes and

Λn ∼
2

π
lnn n→ +∞ (3.5)

for Chebyshev nodes. There is a dramatic difference; exponential vs. logarithmic
growth!

The Lebesgue constant also measures how far one is away from the best uniform
approximation of a function.

Theorem 3.8 Let f ∈ C0([a, b]) and consider the interpolating polynomial pn for
f on interpolation nodes x0, . . . , xn ∈ [a, b]. Then

inf
q∈Pn

‖f − q‖∞ ≤ ‖f − pn‖∞ ≤ (1 + Λn) inf
q∈Pn

‖f − q‖∞.

Proof. The first inequality holds trivially because pn ∈ Pn. We first note the trivial
fact that the interpolation of a polynomial p of degree at most n by a polynomial
of degree n is the polynomial p itself. This implies

f(x)− pn(x) = f(x)− q(x) + q(x) − pn(x)

= f(x)− q(x) +

n∑

i=0

(q(xi)− pn(xi))ℓi(x).

for any q ∈ Pn. Hence,

‖f − pn‖∞ ≤ ‖f − q‖∞ + ‖f − q‖∞
∥∥∥

n∑

j=0

|ℓj(x)|
∥∥∥
∞

= (1 + Λn)‖f − q‖∞.

3.3. Best approximation in L2 norm⋆ Version May 27, 2025 47

Because this holds for arbitrary q ∈ Pn, this completes the proof.

Using Theorem 3.8 and (3.5), we see that Chebyshev interpolation attains nearly
the best uniform approximation. In practice, being nearly best is usually sufficient.
If one wants to achieve the truly best approximation in the L∞ norm, one needs to
resort to the so called Remez algorithm.

3.3 Best approximation in L2 norm⋆

We now consider the best approximation in the L2 norm on [−1, 1]:

‖u‖2 :=
(∫ 1

−1

|u|2 dt
)1/2

(3.6)

for a function u : [−1, 1] → ∞. More specifically, we aim at solving the following
minimization problem. Given f ∈ C0 ([−1, 1]), determine

p∗ = argmin
qn∈Pn

‖f − qn‖22 . (3.7)

What makes (3.7) fundamentally different (and simpler) compared to best uniform
approximation is that ‖ · ‖2 is induced by the L2 inner product

(u, v)2 =

∫ 1

−1

u(t)v(t) dt.

It is instructive to frame (3.7) in an abstract setting: Let V be a (possibly
infinite-dimensional) real vector space with an inner product (·, ·)V . Letting U be
a finite-dimensional subspace of V , we consider for given v ∈ V the approximation
problem

u∗ = argmin
u∈U

‖v − u‖2V . (3.8)

Here, ‖·‖2V denotes the norm induced by the inner product, that is, ‖w‖2V = (w,w)V .
We let vU denote the orthogonal projection of v ∈ V onto U , that is, the unique
vector vU ∈ U in the decomposition

v = vU + v⊥, vU ∈ U, (v⊥, u)V = 0 ∀u ∈ U. (3.9)

Then for any vector u ∈ U it holds that

‖v−u‖2V = ‖v⊥+(vu−u)‖2V = ‖v⊥‖2V +2(v⊥, vu−u)+‖vu−u‖2V = ‖v⊥‖2V +‖vu−u‖2V .

The last expression is minimized by setting u = vu. This yields the following
theorem.

Theorem 3.9 The unique solution to the minimization problem (3.8) is the or-
thogonal projection of v onto U .

48 Version May 27, 2025 Chapter 3. Polynomial interpolation

An explicit expression for u∗ = vU is obtained when choosing an orthonormal
basis u0, u1, . . . , un of U , where dimU =: n+ 1. Then

vU =

n∑

k=0

(uk, v)uk. (3.10)

To see this, we need to verify that (3.9) is satisfied for v⊥ = v−vU . First, it directly
follows that vu ∈ U . Second, for every uj orthonormality implies

(v⊥, uj) = (v − vU , uj) = (v, uj)−
n∑

k=0

(uk, v)(uk, uj) = (v, uj)− (v, uj) = 0.

Hence, v⊥ is orthogonal to every u ∈ U .
To apply Theorem 3.8 and (3.10) to polynomial approximation on [−1, 1], we re-

call that, by Definition 2.10, the Legendre polynomials q0, . . . , qn form an orthogonal
basis of Πn in the L2 inner product. It can be shown that

‖qk‖22 =
2

2k + 1
.

Hence the scaled Legendre polynomials q̃0, . . . , q̃n with q̃k :=
√

2k+1
2 qk form an

orthonormal basis of Πn. As a corollary of Theorem 3.9 we now obtain the solution
of (3.7).

Corollary 3.10 Given f ∈ C0 ([−1, 1]), the approximation problem (3.7) is solved
by

p∗(x) =
n∑

k=0

(q̃k, f)2q̃k,

with the scaled Legendre polynomials q̃0, . . . , q̃n.

In order to construct p∗ we need to compute

(q̃k, f)2 =

∫ 1

−1

f q̃k dt, k = 0, . . . , n.

In general, one cannot calculate these quantities exactly . Instead, one can employ
a Gauss quadrature with n+ 1 points in order to approximate them.

3.4 A note on piece-wise interpolation⋆

Similar to composite numerical quadrature, piece-wise interpolation partitions the
interval into subintervals and applies polynomial interpolation to every subinterval.
For n = 1 (that is, piece-wise linear interpolation) this will yield a continuous,
polygonal curve when choosing on each subinterval the end points as interpolation
nodes. For larger n, the additional degrees of freedom are not used to interpolate
additional nodes in each subinterval but to achieve smoothness at the end points
of subintervals. For n = 3, this yields the concept of (cubic) splines, which are two
times differentiable on the whole interval. Constructing such splines involves the
solution of linear systems; the details of the construction are beyond the scope of
this lecture.

Chapter 4

Linear Systems – Small
Matrices

The solution of a linear system of equations

Ax = b

with a square invertible matrix A ∈ Rn×n and a right-hand side vector b ∈ Rn is
one of the most frequent tasks in numerical analysis. The matrix A and the vectors
x, b have the entries

A =




a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
. . .

...
...

...
. . .

...
an1 an2 · · · · · · ann




, x =




x1

x2

...

...
xn




, b =




b1
b2
...
...
bn




.

Example 4.1 Consider the following system of 3 linear equations:

2x1 −2x2 +4x3 = 6
−5x1 +6x2 −7x3 = −7
3x1 +2x2 +x3 = 9

Using the definition of the matrix-vector product, this can be written in matrix-
vector form as 


2 −2 4
−5 6 −7
3 2 1






x1

x2

x3


 =




6
−7
9


 .

Example 4.2 Figure 4.1 shows a hydraulic network11 of 10 pipelines. It is fed
by a water reservoir having a constant pressure of p = 10 bar. Here and in the
following, pressure values refer to the difference between the real pressure and the
atmospheric pressure. The flow rate Qj (in m3/s) of the jth pipeline is proportional

11Example taken from [A. Quarteroni, F. Saleri, and P. Gervasi. Springer, 2010].

49

50 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

p=10 bar

1

2

3

4

p=0

p=0

p=0

p=0

Q1

Q2

Q3

Q4 Q5

Q6

Q7

Q8

Q10

Q9

Figure 4.1: Hydraulic network from Example 4.2.

to the length Lj (in m) of the pipeline and the pressure difference ∆pj at both ends
of the pipeline:

Qj = kjLj∆pj (4.1)

The constant kj denotes the hydraulic resistance (in m/(bar s)), which depends on
the shape of the pipe and the fluid viscosity. It is assumed that the water flows from
outlets (marked by ⊗ in the figure) at atmospheric pressure, and hence p = 0 at
the exterior nodes of the network. To determine the pressure at the internal nodes
1, 2, 3, 4, we can use that the flow rates at each internal node must sum up to zero.
Denoting these pressures by p = [p1, p2, p3, p4]

T , this implies for node 1:

Q1 −Q2 −Q3 −Q4 = 0
(4.1)
=⇒ k1L1(p1 − 10)− k2L2(p2 − p1)− k4L4(p3 − p1)− k3L3(p4 − p1) = 0

=⇒ −10k1L1 = −(k1L1 + k2L2 + k3L3 + k4L4)p1 + k2L2p2 + k4L4p3 + k3L3p4

To proceed, we choose concrete values for kj and Lj as follows.

pipeline kj Lj pipeline kj Lj pipeline kj Lj

1 0.01 20 2 0.005 10 3 0.005 14
4 0.005 10 5 0.005 10 6 0.002 8
7 0.002 8 8 0.002 8 9 0.005 10
10 0.002 8

Inserting these values into the equation above gives

−2 = −0.37 p1 + 0.05 p2 + 0.05 p3 + 0.07 p4.

4.1. Triangular Matrices Version May 27, 2025 51

Similarly, linear equations can be derived for the other internal nodes 2, 3, 4. In
summary, this yields the linear system Ap = b with

A =




−0.370 0.050 0.050 0.070
0.050 −0.116 0 0.050
0.050 0 −0.116 0.050
0.070 0.050 0.050 −0.202


 , b =




−2
0
0
0


 .

The solution of this linear system will be presented in Example 4.11. ⋄

4.1 Triangular Matrices

Before coming to the solution of a general linear system Ax = b, we first consider
two special cases for the matrix A.
A lower triangular matrix A is a square matrix satisfying

aij = 0 for all i, j with i < j.

An upper triangular matrix A is a square matrix satisfying

aij = 0 for all i, j with i > j.

Often, we will denote lower triangular matrices with the letter L and upper trian-
gular matrices with the letter U . The definitions imply the shapes

L =




ℓ11 0 · · · · · · 0
ℓ21 ℓ22 0 · · ·
ℓ31 ℓ32

. . .
. . .

...
...

...
. . .

. . . 0
ℓn1 ℓn2 · · · ℓnn−1 ℓnn




, U =




u11 u12 · · · · · · u1n

0 u22 · · · · · · u2n

0 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0 unn




.

Pictorially:

L =❅, U =❅.

The solution of linear systems with (lower or upper) triangular matrices is quite
simple. For example, consider




1 2 −1
0 2 1
0 0 2






x1

x2

x3


 =




2
3
2


 ⇔

x1 + 2x2 − x3 = 2
2x2 + x3 = 3

2x3 = 2

The last equation can be immediately solved: x3 = 2/2 = 1. Inserting this into the
second equation gives

2x2 + 2x3 = 3 ⇒ x2 =
1

2
(3 − x3) = 1.

52 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

Finally, inserting x2 = 1 and x3 = 1 into the first equation gives

x1 + 2x2 − x3 = 2 ⇒ x1 = 2− 2x2 + x3 = 1.

This process of eliminating the variables xn, xn−1, . . . is called backward substitution.
Similarly, a linear system with a lower triangular matrix can be solved by eliminating
the variables x1, x2, This process is called forward substitution.

For general triangular matrices, forward and backward substitution are given by
the following two algorithms.

Algorithm 4.3
Forward substitution
Input: Invertible lower triangular

L ∈ Rn×n, b ∈ Rn.
Output: Solution x of Lx = b.

for i = 1, 2, . . . , n do

xi :=
1

ℓii

(
bi −

i−1∑

k=1

ℓikxk

)

end for

Algorithm 4.4
Backward substitution
Input: Invertible upper triangu-

lar U ∈ Rn×n, b ∈ Rn.
Output: Solution x of Ux = b.

for i = n, n− 1, . . . , 1 do

xi :=
1

uii

(
bi −

n∑

k=i+1

uikxk

)

end for

It is a good exercise to convince yourself that the right-hand side of the assignment
in both algorithms only contains terms that are already known.

Remark 4.5 In Python, linear systems can be solved with the commands

numpy.linalg.solve(A, b) or scipy.linalg.solve(A, b)

for a square, invertible matrix A. However, these functions do not automatically
check whether A is triangular and, therefore, they are unnecessarily slow in such
situations. To solve triangular linear systems, one should call scipy.linalg.solve
with the option assume_a set to ‘upper triangular’ or ‘lower triangular’. Alterna-
tively, one can also call scipy.linalg.solve_triangular.

Let us perform a complexity analysis for Algorithm 4.3. The cost of an algorithm is
determined by the number of elementary operations +,−, ∗, / and elementary func-
tion evaluations. Each operation / evaluation is counted as one flop (floating point
operation). The ith loop of Algorithm 4.3 performs 1 division, i−1 multiplications,
and i− 1 additions/subtractions; a total of 2i− 1 flops. Therefore, the total cost of
Algorithm 4.3 is given by

n∑

i=1

(2i− 1) = n2 flops. (4.2)

The cost of Algorithm 4.4 is the same.

4.2 LU factorization

Knowing that a linear system with a triangular matrix is considerably simple to
solve, we now try to reduce a general system to this case. To be more precise, we

4.2. LU factorization Version May 27, 2025 53

will use a variant of Gaussian elimination to write the matrix A as a product of
triangular matrices:

A = LU =❅ ·❅. (4.3)

Once we know such a factorization, we can solve the linear system Ax = b with
forward and backward substitution. If we introduce the auxiliary vector y = Ux
then b = Ax = LUx = L(Ux) = Ly. Hence, we can solve (LU)x = b in two steps:

1. solve Ly = b for y with Algorithm 4.3;

2. solve Ux = y for x with Algorithm 4.4.

The LU factorization of a matrix A ∈ Rn×n proceeds in n−1 steps, by eliminating
column-by-column the entries of A below the diagonal.

Example 4.6 We illustrate the computation of an LU factorization for the matrix
from Example 4.1:

A =




2 −2 4
−5 6 −7
3 2 1




In Step 1, we eliminate the entries below the first diagonal entry, by adding 5/2×
row 1 to row 2, and subtracting 3/2× row 1 from row 3. As a result, we obtain the
modified matrix

A(1) :=




2 −2 4
0 1 3
0 5 −5


 .

The crucial observation is that this step can be written as a matrix-matrix multi-
plication:

A(1) := L1A = L1




2 −2 4
−5 6 −7
3 2 1


 , with L1 =




1 0 0
5/2 1 0
−3/2 0 1


 .

In Step 2, we eliminate the remaining entry 5 in A(1) below the second diagonal
element. This can be achieved by subtracting 5× row 2 from row 3, leading to

A(2) :=




2 −2 4
0 1 3
0 0 −20




Again, this can be written as a matrix-matrix product

A(2) := L2A
(1) = L2




2 −2 4
0 1 3
0 5 −5


 , with L2 =




1 0 0
0 1 0
0 −5 1


 .

Setting U := A(2), the two steps above can be summarized as

A = LU, with L = L−1
1 L−1

2 .

54 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

It turns out that – due to their very special structure – the inverses of L1 and L2

can be simply obtained by negating the elements below the diagonal:

L−1
1 =




1 0 0
−5/2 1 0
3/2 0 1


 , L−1

2 =




1 0 0
0 1 0
0 5 1


 .

This can be easily verified by checking L1L
−1
1 = I3 and L2L

−1
2 = I3. Moreover,

again due the very special structure, the product L−1
1 L−1

2 is simply obtained by
collecting all nonzero sub-diagonal elements:

L = L−1
1 L−1

2 =




1 0 0
−5/2 1 0
3/2 5 1




Hence,

A = LU, with L =




1 0 0
−5/2 1 0
3/2 5 1


 , U =




2 −2 4
0 1 3
0 0 −20


 .

which is the LU factorization of A. ⋄
The procedure from Example 4.6 easily extends to a general matrix A. Before

Step k, the modified matrix A takes the form

A(k−1) =




a11 a12 a13 · · · · · · a1n

a
(1)
22 a

(1)
23 · · · · · · a

(1)
2n

. . .
. . .

...

a
(k−1)
kk · · · a

(k−1)
kn

...
...

a
(k−1)
nk · · · a

(k−1)
nn




. (4.4)

(For Step 1, we formally set A(0) := A.) For performing Step k, the coefficients

ℓik :=
a
(k−1)
ik

a
(k−1)
kk

, i = k + 1, . . . , n,

are computed. Of course, this is only possible if the so called pivot element a
(k−1)
kk

is nonzero. We will come back to this limitation below, in Section 4.3.
The multiplication of the matrix

Lk :=




1
. . .

1
−ℓk+1,k 1

...
. . .

−ℓnk 1




(4.5)

4.2. LU factorization Version May 27, 2025 55

with A(k−1) performs Step k and eliminates all entries below the (k− 1)th diagonal
entry. The whole procedure is then repeated with the resulting matrix

A(k) = LkA
(k−1). (4.6)

After n− 1 steps, we obtain

A(n−1) = Ln−1Ln−2 · · ·L1A
(0) = Ln−1Ln−2 · · ·L1A.

This can be rewritten as
LU = A,

where
L := L−1

1 L−1
2 · · ·L−1

n−1, U = A(n−1).

Note that U is upper triangular by construction. The factors L−1
k of the matrix L

are given by

L−1
k =




1
. . .

1
ℓk+1,k 1

...
. . .

ℓnk 1




, (4.7)

which can be verified by checking L−1
k Lk = I. Due to the special structure of these

factors, the sub-diagonal entries of L are obtained from collecting the subdiagonal
entries of all L−1

k :

L = L−1
1 L−1

2 · · ·L−1
n−1 =




1

ℓ21
. . .

ℓ31
. . . 1

... ℓk+1,k 1

...
...

. . .
. . .

ℓn1 · · · ℓnk · · · ℓn,n−1 1




. (4.8)

The procedure above is summarized in the following algorithm.

Algorithm 4.7 (Abstract form of LU factorization)
Input: Invertible matrix A ∈ Rn×n.

Output: LU factorization A = LU with U = A(n−1) and L as in (4.8).

A(0) := A
for k = 1, . . . , n− 1 do
Determine matrix Lk (see (4.5)) by computing the coefficients

ℓik :=
a
(k−1)
ik

a
(k−1)
kk

, i = k + 1, . . . , n.

56 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

Set A(k) := LkA
(k−1).

end for

Not every invertible matrix A has an LU factorization, that is A = LU with L
lower triangular with ones and the diagonal and U upper triangular. The following
theorem characterizes which ones have.

Theorem 4.8 Let A ∈ Rn×n be invertible. Then A has an LU factorization if
and only all leading principal submatrices

Ak =




a11 a12 · · · · · · a1k
a21 a22 · · · · · · a2k
...

...
. . .

...
...

...
. . .

...
ak1 ak2 · · · · · · akk




, k = 1, . . . , n− 1,

are also invertible.

Proof. Given an LU factorization A = LU , we partition

L =

(
L11 0
L12 L22

)
, U =

(
U11 U12

0 U22

)
, L11, U11 ∈ R

k×k.

Then
Ak = L11U11 ⇒ det(Ak) = det(L11) det(U11) = det(U11),

where we used that L has ones on the diagonal. Because 0 6= det(A) = det(U) =∏n
i=1 uii, it follows that det(U11) =

∏k
i=1 uii 6= 0 and hence Ak is invertible.

To show the other direction we use the construction above of the LU factorization.
For Algorithm 4.7 to succeed we need to have a

(k−1)
kk 6= 0. Suppose that the first k−1

steps of Algorithm 4.7 have succeeded (that is, a11 6= 0, a
(1)
22 6= 0 . . . , a

(k−2)
k−1,k−1 6= 0).

Then

Ak =




1

l21
. . .

...
. . . 1

lk1 · · · lk,k−1 1







a11 a12 · · · a1k

a
(1)
22 · · · a

(1)
2n

. . .
...

a
(k−1)
kk


 .

Hence it follows from 0 6= det(Ak) = a11a
(1)
22 · · ·a

(k−1)
kk that a

(k−1)
kk 6= 0. Therefore

the kth step of Algorithm 4.7 succeeds as well and the claim follows by induction.

To come up with a reasonable implementation of Algorithm 4.7, the matrix-
matrix multiplications need to be replaced, as an explicit multiplication would be
much too expensive. Moreover, to save memory, we will operate directly on the
matrix A instead of creating temporary matrices A(1), A(2),

4.2. LU factorization Version May 27, 2025 57

Algorithm 4.9 (LU factorization)
Input: Invertible matrix A ∈ Rn×n.
Output: Factors L,U of LU factorization A = LU .

Set L := In.
for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

ℓik ←
aik
akk

for j = k + 1, . . . , n do
aij ← aij − ℓikakj

end for
end for

end for
Set U to upper triangular part of A.

Python

import numpy as np

def mylu(A):

n = A.shape[0]

L = np.eye(n)

for k in range(n):

L[k+1:n, k] = A[k+1:n, k] / A[k,k]

A[k+1:n, k+1:n] = A[k+1:n, k+1:n]

- np.outer(L[k+1:n, k], A[k, k+1:n])

U = np.triu(A)

return L, U

The complexity of Algorithm 4.9 is given by

n−1∑

k=1

(
1 + 2(n− k)

)
(n− k) =

2

3
n3 − 1

2
n2 − 1

6
n =

2

3
n3 +O(n2) flops.

In summary, a linear system Ax = b is solved with the following procedure.

Algorithm 4.10 (Solution of Ax = b with LU factorization)

1. Compute LU factorization of A = LU with Algorithm 4.9.

2. Solve Ly = b by forward substitution (Algorithm 4.3).

3. Solve Ux = y by backward substitution (Algorithm 4.4).

Example 4.11 We apply Algorithm 4.10 to Example 4.2:

import numpy as np, scipy as sp

A = np.array([[-0.370, 0.050, 0.050, 0.070],

58 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

[0.050, -0.116, 0.000, 0.050],

[0.050, 0.000, -0.116, 0.050],

[0.070, 0.050, 0.050, -0.202]])

b = np.array([[-2], [0], [0], [0]])

L, U = mylu(A)

y = sp.linalg.solve_triangular(L, b, lower=True, unit_diagonal=True)

x = sp.linalg.solve_triangular(U, y)

This produces the output

x =

8.1172

5.9893

5.9893

5.7779

Of course, we could also have obtained the solution by directly calling linalg.solve
from NumPy or SciPy. ⋄

4.3 LU factorization with pivoting

Algorithm 4.9 will clearly fail whenever it encounters a zero pivot element. For
example,

A =




0 1 1
0 1 −1
1 0 0




has a zero diagonal entry in the first position and immediately leads to a division by
zero in Algorithm 4.9, although A is an invertible matrix. This situation is easy to
spot, but it is important to keep in mind that – except for the first step – the pivot
elements are computed in the course of the algorithm and it is in general impossible
to “see” whether a matrix might lead to zero pivot elements.

The situation for the matrix A above is easy to resolve: We simply exchange
rows 1 and 3 before attempting to compute the LU factorization. This corresponds
to the multiplication of A with a permutation matrix12:

Ã = PA =




1 0 0
0 1 −1
0 1 1


 , with P =




0 0 1
0 1 0
1 0 0


 .

The LU factorization of Ã is then given by

Ã = PA = LU with L =




1 0 0
0 1 0
0 1 1


 , U =




1 0 0
0 1 −1
0 0 2


 .

12A permutation matrix has exactly one entry 1 in each row and column, and is otherwise zero.

4.3. LU factorization with pivoting Version May 27, 2025 59

There is an even more important reason to perform such permutations. Consider
a slight modification of A:

A =




10−16 1 1
0 1 −1
1 0 0




Then Algorithm 4.9 does not fail and Python returns

L =

1.0000e+00 0 0

0 1.0000e+00 0

1.0000e+16 -1.0000e+16 1.0000e+00

U =

1.0000e-16 1.0000e+00 1.0000e+00

0 1.0000e+00 -1.0000e+00

0 0 -2.0000e+16

Moreover, solving the linear system for the right-hand side b = [2, 2, 1]T with these
triangular factoriuation gives the “solution”

x =

0

2

0

However, this is totally wrong; the exact solution is x = [1, 2, 0]T (up to roundoff
error 10−16). What happened? The very large entries in L and U gave rise to
massive numerical cancellation, which eventually destroyed the numerical accuracy
of the solution completely. The large entries are due to the very small pivot element
10−16 in the first step of the LU factorization. To avoid such small pivot elements, we
perform a row permutation in each step of the LU factorization such that
the entry of largest magnitude in the active column below the diagonal
becomes the pivot element. The realization of this idea is illustrated by the
following example.

Example 4.12 Let

A =




1 2 2
2 −7 2
1 24 0


 .

According to the idea above, we exchange the first and second rows by a permuta-
tion:

Ã(0) := P1A =




2 −7 2
1 2 2
1 24 0


 , with P1 =




0 1 0
1 0 0
0 0 1


 .

We now apply the usual elimination step to Ã(0), resulting in ℓ21 = 0.5, ℓ31 = 0.5,
and

A(1) =




2 −7 2
0 5.5 1
0 27.5 −1


 .

60 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

Since a
(1)
32 is larger than a

(1)
22 , we have to exchange rows 2 and 3 before applying the

next step of LU factorization:

Ã(1) := P2A
(1) =




2 −7 2
0 27.5 −1
0 5.5 1


 , with P2 =




1 0 0
0 0 1
0 1 0


 .

The usual elimination step applied to Ã(1), results in ℓ32 = 5.5
27.5 = 0.2, and

U = A(2) =




2 −7 2
0 27.5 −1
0 0 1.2


 ,

Moreover,

L =




1 0 0
0.5 1 0
0.5 0.2 1


 .

It remains to collect the permutations:

P = P2P1 =




0 1 0
0 0 1
1 0 0


 .

This can and should be performed without explicit multiplication by applying the
row exchange described by P2 to the rows of P1. In summary, we obtain the following
LU factorization with pivoting:

PA = LU,

where P is a permutation matrix and L/U are lower/upper triangular matrices. ⋄

4.4. Symmetric positive definite matrices⋆ Version May 27, 2025 61

The extension of the procedure outlined in Example 4.12 to general matrices is
given by the following algorithm.

Algorithm 4.13 (LU factorization with pivoting)
Input: Invertible matrix A ∈ Rn×n.
Output: Factors P,L, U of LU factorization with pivoting PA = LU .

for k = 1, . . . , n− 1 do
Search i ∈ {k, . . . , n} such that |aik| ≥ |ai′k| for all i′ ∈ {k, . . . , n}
Define Pk as permutation matrix that exchanges rows i and k.
Exchange rows: A← PkA
for i = k + 1, . . . , n do

aik ←
aik
akk

for j = k + 1, . . . , n do
aij ← aij − aikakj

end for
end for

end for
Set U to upper triangular part of A.
Set L to lower triangular part of A and diagonal entries 1.
Set P := Pn−1Pn−2 · · ·P2P1.

In Python, Algorithm 4.13 is performed by the function

P,L,U = scipy.linalg.lu(A)

If implemented well, the cost of Algorithm 4.13 is essentially identical with Algo-
rithm 4.9. An algorithm for solving a linear system Ax = b can be obtained from
a slight modification of Algorithm 4.10:

1. Compute LU factorization with pivoting PA = LU with Algorithm 4.13.

2. Set b̃ := Pb and solve Ly = b̃ by forward substitution (Algorithm 4.3).

3. Solve Ux = y by backward substitution (Algorithm 4.4).

4.4 Symmetric positive definite matrices⋆

Matrices from applications often have additional properties that facilitate the solu-
tion of the associated linear systems. A quite common property is positive definite-
ness.

Definition 4.14 A symmetric matrix A ∈ Rn×n is called

1. positive definite, if xTAx > 0 ∀x ∈ Rn\{0};
2. positive semi-definite, if xTAx ≥ 0 ∀x ∈ Rn.

62 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

A symmetric matrix is positive definite (semi-definite) if all its eigenvalues are
positive (non-negative). The following theorem collects some simpler necessary
conditions for positive definiteness.

Theorem 4.15 Let A ∈ Rn×n be symmetric positive definite. Then the following
statements hold:

1. A is invertible;

2. aii > 0 for all i ∈ {1, . . . , n};

3. |aij | < 1
2 (aii + ajj) for i 6= j and hence maxij |aij | = maxi aii;

4. if X ∈ Rn×n is invertible, then XTAX is again symmetric positive definite.

Setting A = I, it follows from Theorem 4.15.4 that XTX is symmetric positive
for every invertible matrix X . The converse is also true: every symmetric positive
matrix can be written in the form XTX .

Theorem 4.16 Let A ∈ Rn×n be symmetric positive definite. Then there exists
an upper triangular matrix R ∈ Rn×n such that A = RTR.

The factorization A = RTR from Theorem 4.16, with an upper triangular matrix R
having positive diagonal entries, is called Cholesky factorization. Note that this
is a special case of an LU factorization A = LU , with L = RT and U = R. In fact,
the Cholesky factorization could be extracted from an LU factorization. However,
the following algorithm is more direct and more efficient.

Algorithm 4.17 (Cholesky factorization)
Input: Symmetric positive matrix A ∈ Rn×n.
Output: Cholesky factor R such that A = RTR.

for j = 1, . . . , n do
for i = 1, . . . , j − 1 do

rij =

(
aij −

i−1∑
k=1

rkirkj

)
/rii

end for

rjj =

√
ajj −

j−1∑
k=1

r2kj

end for

Algorithm 4.17 requires n3/3 +O(n2) flops and is therefore half as expensive as
computing the LU factorization. This is due to the fact that only one factor instead
of two need to be computed.

4.4. Symmetric positive definite matrices⋆ Version May 27, 2025 63

Remark 4.18 Algorithm 4.17 will break down if the matrix A is not positive defi-

nite. In this case, the expression ajj −
j−1∑
k=1

r2kj will become negative at one point of

the algorithm and no (real) square root can be determined.
Note that Algorithm 4.17 does not perform any pivoting/permutations. It turns

out that this is not necessary; the Cholesky factorization of a symmetric positive
definite matrix can always be computed in a numerically reliable way without pivot-
ing.

Recap on norms

Before we continue, we will recall basic definitions and facts about vector and matrix
norms, which will be important for the rest of this chapter and next chapter. A
(vector) norm on Rn is a real-valued function ‖ · ‖ : Rn → R that satisfies the
following three axioms:

Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rn;

Homogeneity: ‖αx‖ ≤ |α|‖x‖ for all α ∈ R, x ∈ Rn;

Positivity: ‖x‖ ≥ 0 for all x ∈ Rn and ‖x‖ = 0 if and only if x = 0.

The most common examples are the Euclidean norm ‖x‖2 =
√
x2
1 + · · ·+ x2

n, the 1-
norm ‖x‖1 = |x1|+ · · ·+ |xn|, and the∞-norm ‖x‖∞ = max{|xi| : i = 1, . . . , n}. On
the other hand, the function ‖x‖0 = #{i : xi 6= 0}, where # denotes the cardinality
of a set, is not a norm.

A matrix norm on Rm×n is a real-valued function ‖ · ‖ : Rm×n → R that satisfies
the vector norm axioms on the vector space Rm×n ∼= Rm·n:

Triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Rm×n;

Homogeneity: ‖αA‖ ≤ |α|‖A‖ for all α ∈ R, A ∈ Rm×n;

Positivity: ‖A‖ ≥ 0 for all A ∈ Rm×n and ‖A‖ = 0 if and only if A = 0.

In order to be useful for the analysis of algorithms, a matrix norm should also be
sub-multiplicative. More precisely, a family of matrix norms ‖ · ‖ on Rm×n, defined
for all m,n ∈ N, is called sub-multiplicative if

‖AB‖ ≤ ‖A‖‖B‖, ∀A ∈ R
m×n, B ∈ R

n×p, m, n, p ∈ N.

The most simple way to define a matrix norm is to just take a vector norm on
Rm×n ∼= Rm·n. For example, the Euclidean norm gives rise to the Frobenius norm

‖A‖F =
(n∑

i=1

m∑

j=1

a2ij

)1/2

One can show that the Frobenius norm is sub-multiplicative. In contrast, the max-
imum norm

‖A‖max = max{|aij | : i = 1, . . . , n, j = 1, . . . ,m}

64 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

is a matrix norm but it is not sub-multiplicative.
Another popular way to define a matrix norm on Rm×n is the operator norm

induced by a vector norm ‖ · ‖ on Rm,Rn:

‖A‖ := sup
x∈Rn

x6=0

‖Ax‖
‖x‖ = sup

x∈Rn

‖x‖=1

‖Ax‖

One easily verifies the three matrix norm axioms. Additionally, any operator norm
is sub-multiplicative because

‖AB‖ = sup
x∈Rn

x6=0

‖ABx‖
‖x‖ = sup

x∈Rn

x6=0

‖ABx‖
‖x‖

‖Bx‖
‖Bx‖ = sup

x∈Rn

x6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖

≤ sup
x∈Rn

x6=0

‖ABx‖
‖Bx‖ sup

x∈Rn

x6=0

‖Bx‖
‖x‖ ≤ sup

y∈Rn

y 6=0

‖Ay‖
‖y‖ · supx∈Rn

x6=0

‖Bx‖
‖x‖ = ‖A‖‖B‖.

The usefulness of an operator norm in practice also depends on how easy it is to
determine the supremum. For the following three situations, the operator norm can
be computed explicitly

Spectral norm: The operator norm induced by the Euclidean norm ‖ · ‖ ≡ ‖ · ‖2
is called spectral norm and satisfies ‖A‖2 = σ1(A), where σ1(·) denotes the
largest singular value of a matrix.

Maximum column sum: The operator norm induced by the 1-norm ‖ · ‖ ≡ ‖ · ‖1
can be shown to satisfy

‖A‖1 = max
{ m∑

i=1

|aij | : j = 1, . . . , n
}
,

that is, the maximum 1-norm of the columns of A.

Maximum row sum: The operator norm induced by the ∞-norm ‖ · ‖ ≡ ‖ · ‖∞
can be shown to satisfy

‖A‖∞ = max
{ n∑

j=1

|aij | : i = 1, . . . ,m
}
,

that is, the maximum 1-norm of the rows of A.

By definition, any operator norm satisfies ‖In‖ = 1, where In is the n×n identity
matrix. This shows that the Frobenius norm cannot be expressed as an operator
norm because ‖In‖F =

√
n.

4.5 Error analysis: Conditioning

Solving linear systems on the computer in finite precision arithmetic is subject to
roundoff error. Already storing the matrix A and the vector b will usually cause

4.5. Error analysis: Conditioning Version May 27, 2025 65

some error. To verify the accuracy of a computed (approximate) solution x̂ one
often computes the norm of the residual r = b − Ax̂. One major philosophy in
numerical analysis is backward error analysis, to view a computed solution of a
given linear system as the exact solution of a perturbed linear system. The norm of
the residual corresponds to the minimal perturbation.

Theorem 4.19 Let x̂ 6= 0 be an approximate solution of the linear system Ax = b.
Then

min {‖△A‖2 : (A+△A)x̂ = b} = ‖r‖2‖x̂‖2
,

where r = b−Ax̂.

Proof. The relation (A+△A)x̂ = b yields

‖△A‖2‖x̂‖2 ≥ ‖△Ax̂‖2 = ‖r‖2,

and hence min {‖△A‖2 : (A+△A)x̂ = b} ≥ ‖r‖2/‖x̂‖2. To establish equality, we
still need an admissible perturbation△0A with ‖△0A‖2 = ‖r‖2/‖x̂‖2. This is given
by

△0A =
1

‖x̂‖22
r x̂T,

because (A+△0A)x̂ = Ax̂+ r = b.

When storing the entries of A in double precision one causes an error of order
10−16‖A‖2, which in turn leads to a residual norm ‖r‖2 of order 10−16‖A‖2‖x‖2
even if the rest of the computations was carried out exactly. For this reason, the
best we can reasonably hope from a numerical algorithm for solving linear system is
that it achieves ‖r‖2 ∼ 10−16‖A‖2‖x‖2. Such algorithms are called backward stable.
However, this does not necessarily imply a small error ‖x̂−x‖2 of the solution itself.

Example 4.20 Let A = (aij) with aij =
1

i+ j − 1
be the n× n Hilbert matrix

and b = (1, . . . , 1)T. We compute the solution of Ax = b with \ and compare it with
the “exact” solution, which is computed in 100 decimal digits arithmetic, using the
mpmath library for performing floating-point arithmetic with arbitrary precision.

Python

import matplotlib.pyplot as plt

import numpy as np, scipy.linalg as spla

from mpmath import hilbert, lu_solve, mp, ones

mp.dps = 100, ns = range(5, 21)

xrel, res = [], []

for n in ns:

Anp, Amp = spla.hilbert(n), hilbert(n)

rhsnp, rhsmp = np.ones(n), ones(n, 1)

xnp, xmp = spla.solve(Anp, rhsnp), lu_solve(Amp, rhsmp)

res.append(spla.norm(Anp @ xnp - rhsnp) / spla.norm(xnp))

66 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

xrel.append(float(spla.norm(xnp - xmp)) / spla.norm(xnp))

plt.semilogy(ns, res, "b", ns, xrel, "r--")

plt.legend(["Rel residual", "Rel error"])

plt.grid(axis="y", which="major", linestyle="--")

plt.show()

hilbert.eps

113 × 56 mm

6 8 10 12 14 16 18 20

10−15

10−12

10−9

10−6

10−3

100

103

106
Rel residual
Rel error

The red dashed line shows the relative error of the solution x̂ computed in double
precision and the blue solid line shows the relative norm of the residual as n in-
creases. The error of x̂ grows rapidly, despite the fact that it is the solution of a
very slightly perturbed linear system, according to Theorem 4.19. ⋄

4.5.1 Condition of a function

To explain the phenomenon observed in Example 4.20 we will first consider the
sensitivity analysis in a more abstract framework. A computation can be viewed
as a function f : Input 7→ Output. We assume that the admissible inputs are in a
finite dimensional vector space Vi with norm ‖ · ‖Vi

. The Outputs are in a vector
space Vo with norm ‖ · ‖Vo

. A computation is the evaluation f(x) ∈ Vo for some
admissible x ∈ Vi (x can be a matrix; Vi = Rn×n). Because of roundoff error the
representation of x is corrupted by an error △x. We now want to understand how
much this error is potentially increased when evaluating the function, that is, when
considering f(x+△x) instead of f(x). For this purpose we assume that f is defined
and two times continuously differentiable in ab open ball containing x ∈ Vi. Using
Taylor expansion, we have

x 7→ f(x), x+△x 7→ f(x+△x) = f(x) + f ′(x)△x +O(‖△x‖2Vi
)

as △x→ 0. The norm of the differential f ′ at x, that is,

‖f ′(x)‖L(Vi,Vo) := max{‖f ′(x)△x‖Vo
: ‖△x‖Vi

= 1}

4.5. Error analysis: Conditioning Version May 27, 2025 67

measures the absolute sensitivity or condition of f(x) with respect to a (small)
perturbation △x of x.

Often, it is more reasonable to consider the relative error, which is independent
of scaling of x or f(x): For f(x) 6= 0, x 6= 0, △x→ 0 we have

‖f(x+△x)− f(x)‖Vo

‖f(x)‖Vo

=
‖f ′(x)△x‖Vo

+O(‖△x‖2Vi
)

‖f(x)‖Vo

=⇒

‖f(x+△x)− f(x)‖Vo

‖f(x)‖Vo︸ ︷︷ ︸
rel. error in f

≤
(‖f ′(x)‖L(Vi,Vo)

‖f(x)‖Vo

‖x‖Vi

)‖△x‖Vi

‖x‖Vi︸ ︷︷ ︸
rel. error in x

+O(‖△x‖2Vi
).

Definition 4.21 The (relative) condition of the function x 7→ f(x) at x is

cond(f, x) :=
‖f ′(x)‖L(Vi,Vo)

‖f(x)‖Vo

‖x‖Vi
.

As an example, consider the subtraction of two numbers a, b ∈ R. Then Vi = R2

(with norm ‖ · ‖1) and Vo = R. Moreover, f : Vi → Vo with f : (a, b) 7→ a− b and

‖f ′(a0, b0)‖L(Vi,Vo) =

∥∥∥∥
(
∂f

∂a
|(a0,b0),

∂f

∂b
|(a0,b0)

)∥∥∥∥
∞

= ‖(1,−1)‖∞ = 1.

Hence the relative condition of f at (a0, b0) is

cond(f, (a0, b0)) =
|a0|+ |b0|
|a0 − b0|

.

As expected, this is large when a0 ≈ b0.

4.5.2 Condition number of a matrix

In the following, ‖ · ‖ : Rn×n → R denotes the operator norm induced by a vector
norm ‖ · ‖ : Rn → R (e.g., the spectral norm induced by the Euclidean norm). The
following proposition studies the relative condition of matrix inversion, that is, the
f(X) = X−1 at an invertible matrix X = A.

Proposition 4.22 (Sensitivity of matrix inversion) Let A ∈ Rn×n be invert-
ible. If ‖A−1△A‖ < 1 then A+△A is invertible and

‖(A+△A)−1 −A−1‖
‖A−1‖︸ ︷︷ ︸

rel. error in A−1

≤ ‖A‖ ‖A−1‖
1− ‖A−1△A‖

‖△A‖
‖A‖ .

︸ ︷︷ ︸
rel. error in A

68 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

Proof. For ‖X‖ < 1, the so called Neumann series

∞∑

k=0

Xk = I +X +X2 + · · · = I + Y, Y :=

∞∑

k=1

Xk (4.9)

converges because ‖∑∞
k=0 X

k‖ ≤ ∑∞
k=0 ‖X‖k = 1/(1 − ‖X‖). This series is the

inverse of I −X because

(I −X)(I + Y) = (I −X)
(∞∑

k=0

Xk
)
=

∞∑

k=0

Xk −
∞∑

k=1

Xk = I.

Moreover,

‖Y ‖ =
∥∥∥X

∞∑

k=0

Xk
∥∥∥ ≤ ‖X‖

1− ‖X‖ .

Now we can write

A+△A = A(I +A−1△A).

Setting X = −A−1△A, the discussion above shows that (I +A−1△A) is invertible
when ‖A−1△A‖ < 1 with the inverse given by I + Y for some Y with ‖Y ‖ ≤
‖A−1△A‖/(1− ‖A−1△A‖). In turn A+△A is also invertible and

‖(A+△A)−1−A−1‖ = ‖(I+Y)A−1−A−1 ≤ ‖Y ‖‖A−1‖ ≤ ‖A−1‖2 ‖△A‖
1− ‖A−1△A‖ .

Proposition 4.22 shows that ‖A‖ ‖A−1‖ governs the condition of matrix inversion.
This quantity is called condition number of A:

κ(A) := ‖A‖ ‖A−1‖. (4.10)

Note that the condition number depends on the operator norm ‖ · ‖. We write
κ2(A) = ‖A‖2 ‖A−1‖2.

Python

from numpy import linalg as LA

LA.cond(A) # condition number of A in the spectral norm

LA.cond(A,p) # condition number of A in the p-norm with p = 1,2,inf

LA.cond(A,’fro’) # condition number of A in the Frobenius norm

4.5.3 Sensitivity of linear systems

As a direct consequence of Proposition 4.22 we obtain the following result on the
sensitivity of the solution of a linear system to perturbations in A and b.

4.5. Error analysis: Conditioning Version May 27, 2025 69

Theorem 4.23 Let A ∈ Rn×n be invertible and consider △A ∈ Rn×n satisfying
‖A−1△A‖ < 1. Then

(A+△A)x̂ = b+△b (4.11)

has a unique solution and

‖x̂− x‖
‖x‖ ≤ κ(A)

1− ‖A−1△A‖
(‖△A‖
‖A‖ +

‖△b‖
‖b‖

)
. (4.12)

Proof. Using the notation from the proof of Proposition 4.22 we have

x̂ = (A+△A)−1(b+△b) = (I + Y)(x +A−1△b).

Hence, x̂− x = Y x+ (I + Y)A−1△b and, in turn,

‖x̂− x‖ ≤ ‖Y ‖ ‖x‖+ (1 + ‖Y ‖)‖A−1‖‖△b‖

≤ ‖A−1△A‖
1− ‖A−1△A‖‖x‖+

1

1− ‖A−1△A‖‖A
−1‖‖△b‖

≤ κ(A)

1− ‖A−1△A‖
(‖△A‖
‖A‖ +

‖△b‖
‖A‖‖x‖

)
‖x‖

The proof is completed using ‖A‖‖x‖ ≥ ‖b‖.

Remark 4.24 The inequality (4.12) can be weakened to the asymptotic bound

‖x̂− x‖
‖x‖ ≤ κ(A)

(‖△A‖
‖A‖ +

‖△b‖
‖b‖

)
+O(ǫ2)

for ǫ = max{‖△A‖, ‖△b‖} → 0.

This analysis explains the strong growth of the error of x̂ in Example 4.20. As n
increases, the condition number of the Hilbert matrix increases exponentially fast.13

The following figure shows the condition number for the spectral norm vs n.

condhilb.eps

59 × 44 mm

5 10 15 20
10

0

10
10

10
20

10
30

13See Beckermann, B. The condition number of real Vandermonde, Krylov and positive definite
Hankel matrices. Numer. Math. 85 (2000), no. 4, 553–577.

70 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

4.6 Error analysis: Solution by LU factorization⋆

We have now understood the effect of error in the data (matrix A and vector b) on
the quality of the solution. This effect is independent of any algorithm; in fact, no
algorithm can reasonably undo the effect of rounding A and b. Therefore, the best
we can hope for is that our algorithm does not introduce a much larger error. This
leads to the idea of backward error analysis ; relate the error conducted during the
algorithm back to the original data and hope that it is not much larger than what
happened due to rounding anyway.

In the following, we will provide the analysis of the forward/backward substitu-
tion step and only state the result for the solution via the LU decomposition. In the
following lemma, |A| will denote the matrix obtained from A by replacing each en-
try by its absolute value. Comparison between matrices is understood elementwise.

Also, we recall the quantity γn ≡ γn(F) :=
nu(F)

1−nu(F) = nu(F) + O(u(F)2) defined in

Lemma 1.16.

Lemma 4.25 Let x̂ denote the solution computed by Algorithm 4.3 in floating
point arithmetic F. Then there exists a matrix △L with

|△L| ≤ γn|L|,

such that
(L+△L)x̂ = b.

Proof. To simplify the notation, we let θi denote an undetermined generic variable
satisfying |θi| ≤ γi. Using the models (1.5) and (1.6) of floating point arithmetic,
the first loop of Algorithm 4.3 satisfies

ℓ11(1 + θ1)x̂1 = b1,

and the second loop satisfies

ℓ22(1 + θ2)x̂2 = b2 − ℓ21x̂1(1 + θ1) .

More generally, in the ith loop we have

ℓii(1 + θ2)x̂i = bi − ℓi1x̂1(1 + θi−1)− ℓi2x̂2(1 + θi−2)− · · · − ℓi,i−1x̂i−1(1 + θ1) .

Setting △ℓii := ℓiiθ2 and △ℓik := ℓikθi−k yields the result.

An immediate consequence of the result of Lemma 4.25 is that

‖△L‖2 ≤ cLu‖L‖2

for some constant cL mildly growing with n. An analogous result holds, of course,
for Algorithm 4.4. More importantly, this also holds for Ax = b; the solution x̂

4.6. Error analysis: Solution by LU factorization⋆ Version May 27, 2025 71

computed by the LU factorization (with or without pivoting) satisfies (A+△A)x̂ = b
for some △A with

‖△A‖2 ≤ cAu‖L‖2‖U‖2
for some constant cA mildly growing with n; see [3]. It is important to observe
that ‖L‖2‖U‖2 can be significantly larger than ‖A‖. When using pivoting (that is,
Algorithm 4.13) then all entries of L are bounded by one in magnitude, while the
norm of U is critically determined whether the algorithm encounters small pivot
elements. Even with pivoting, there are examples for which the pivot elements can
become very small (much smaller than ‖A−1‖) but this is a rare event; see [3] for
more details.

72 Version May 27, 2025 Chapter 4. Linear Systems – Small Matrices

Chapter 5

Linear Systems – Large
Matrices

In practice, one often encounters linear systems with large sparse matrices. It is
not uncommon to meet a 100, 000× 100, 000 matrix with only about 106 nonzero
entries. When A is tridiagonal (or, more generally, banded) it was already discussed
in the exercises that the solution of such large linear systems is still feasible through
an LU factorization. However, in practice one often encounters more complicated
sparsity patterns for which it is not possible to carry out the LU factorization
without excessive cost. In the following, we discuss several iterative methods that
only involve matrix-vector products with sparse matrices.

5.1 Jacobi and Gauss-Seidel methods

The Jacobi method is the simplest iterative method for Ax = b. Its idea consists
of considering the jth equation and considering all but the jth variable fixed. This
computation is performed repeatedly for j = 1, . . . , n. For example, for n = 3, this
corresponds to rewriting Ax = b as

x1 = (b1 − a12x2 − a13x3)/a11

x2 = (b2 − a21x1 − a23x3)/a22

x3 = (b3 − a31x1 − a32x2)/a33 .

Let x(0) be given14 then the Jacobi method is the recursion defined by

x
(k+1)
i :=

(
bi −

i−1∑

j=1

aij x
(k)
j −

n∑

j=i+1

aij x
(k)
j

)/
aii, i = 1, . . . , n. (5.1)

One obvious possibility for improvement of (5.1) is to use the newest available

14The starting vector x
(0) is often set to zero or chosen randomly.

73

74 Version May 27, 2025 Chapter 5. Linear Systems – Large Matrices

information, that is to use x
(k+1)
j instead of x

(k)
j for j < i:

x
(k+1)
i :=

(
bi −

i−1∑

j=1

aij x
(k+1)
j −

n∑

j=i+1

aij x
(k)
j

)/
aii . (5.2)

⋄
For the purpose of analysis, it is better to rewrite (5.1) and (5.2) in the form of

matrix operations. We write
A = L+D + U (5.3)

where

D =



a11 0

. . .

0 ann


 , L =




0 0

a21
. . .

. . .

an1 an,n−1 0




, U =




0 a12 a1n
. . .

...
. . . an−1,n

0 0




.

Jacobi method: From (5.1) it follows that

Dx(k+1) = b− Lx(k) − Ux(k) ⇐⇒

x(k+1) = D−1
(
b− Lx(k) − Ux(k)

)

= −D−1(L+ U)︸ ︷︷ ︸ x(k) +D−1 b

= BJ x(k) + f .

(5.4)

Gauss-Seidel method: From (5.2) it follows that

x(k+1) = D−1
(
b− Lx(k+1) − Ux(k)

)
⇐⇒

(D + L) x(k+1) = −Ux(k) + b ⇐⇒
x(k+1) = −(D + L)−1 Ux(k) + (D + L)−1b ⇐⇒
x(k+1) = BGS x(k) + f

(5.5)

with
BGS = −(D + L)−1 U, f = (D + L)−1 b.

5.2 Splitting methods

Both, the Jacobi and Gauss-Seidel methods are splitting methods. Consider some
splitting of A:

A = P −N, P,N ∈ R
n×n, (5.6)

where P is usually called preconditioner and it is assumed that it is relatively easy
to solve linear systems with P . Given such a splitting, we reformulate Ax = b as
the fixed point equation

x = Bx+ f , B := P−1N. (5.7)

5.2. Splitting methods Version May 27, 2025 75

The corresponding fixed point iteration is given by

x(k+1) = Bx(k) + f , (5.8)

with f = P−1b. Equivalently, this corresponds to solving the linear system

Px(k+1) = Nx(k) + b

in each step.
It is easy to check that (5.8) corresponds to the Jacobi and Gauss-Seidel methods

when choosing P = D (diagonal preconditioner) and P = D + L, respectively.
For analyzing the convergence of (5.8), we let ρ(A) denote the spectral radius of

A, that is,

ρ(A) := max{|λ| : λ ∈ C is an eigenvalue of A}.

Lemma 5.1 Let A ∈ Rn×n. Then Ak → 0 for k →∞ if and only if ρ(A) < 1.

Proof. EFY.

By subtracting x = Bx+ f from (5.8), we obtain the error recurrence

e(k+1) = Be(k), k = 0, 1, 2, ..., where e(k) := x(k) − x. (5.9)

We have x(k) → x if and only if ‖e(k)‖ = ‖x(k) − x‖ → 0. Because of

e(k) = Be(k−1) = B2e(k−2) = . . . = Bke(0)

we obtain convergence for every starting vector x(0) ∈ Rn, if Bk → 0 for k → ∞.
By Lemma 5.1, this holds if and only if the spectral radius ρ(B) is smaller than 1.

Proving statements about the spectral radius is usually very difficult. Instead
one uses the well-known fact that the spectral radius is bounded by any operator
norm. We will illustrate this principle by showing that the Jacobi method converges
for strictly diagonally dominant matrices.

Definition 5.2 A matrix A ∈ Rn×n is called strictly diagonally dominant by
rows if

|aii| >
n∑

j=1
j 6=i

|aij |, i = 1, . . . , n ,

and strictly diagonally dominant by columns if

|aii| >
n∑

j=1
j 6=i

|aji|, i = 1, . . . , n .

76 Version May 27, 2025 Chapter 5. Linear Systems – Large Matrices

Theorem 5.3 Let A be strictly diagonally dominant by rows or columns. Then
the Jacobi method converges.

Proof. We will prove the statement when A is strictly diagonally dominant by
rows; the column case is handled analogously. We recall that the iteration matrix
for the Jacobi method is given by BJ = −D−1(L+ U) and hence

‖BJ‖∞ = max
i=1,...,n

n∑

j=1
j 6=i

|aij | / |aii| < 1 .

By the discussion above, this implies ρ(BJ) ≤ ‖BJ‖∞ < 1 and hence the Jacobi
method converges.

Theorem 5.3 also holds for the Gauss-Seidel method but the proof is more dif-
ficult. Moreover, one can show that the Gauss-Seidel method converges for every
symmetric positive definite matrix A.

5.3 Richardson method

The Richardson method for approximating the solution of Ax = b takes the form

x(k+1) = x(k) + αP−1 r(k) , (5.10)

where α > 0 is an acceleration parameter, P is a preconditioner (that is easy to
solve linear systems with), and r(k) is the residual x(k) defined by

r(k) = b−Ax(k). (5.11)

We again get an error recurrence of the form (5.9), with the iteration matrix B =
I−αP−1A. Note that the Jacobi and Gauss-Seidel methods can be viewed as special
cases of the Richardson method if α = 1. However, in contrast to the Jacobi and
Gauss-Seidel methods, the Richardson method can always be made convergent by
choosing α appropriately. When A,P are symmetric positive definite then P−1A has
positive real eigenvalues (Proof EFY) and the following result can be established.

Theorem 5.4 Given an invertible preconditioner P , assume that P−1A has posi-
tive real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn > 0 .

Then the Richardson method (5.10) converges if and only if 0 < α < 2/λ1.
The choice α = αopt := 2/(λ1 + λn) minimizes the spectral radius of B, that is,

ρopt = min
α>0
| ρ(Bα)| =

λ1 − λn

λ1 + λn
. (5.12)

5.4. Gradient method Version May 27, 2025 77

ααopt
2
λ1

1
λ1

1
λn

ρopt

|1− αλ1|

|1− αλk|

|1− αλn|

ρ = 1

Figure 5.1: Spectral radius of Bα as a function of the eigenvalues of P−1A.

Proof. The eigenvalues of Bα are given by λi(Bα) = 1 − αλi for i = 1, . . . , n.
Hence, (5.10) converges if and only if |λi(Bα)| < 1 for i = 1, . . . , n, or, equivalently, if
0 < α < 2/λ1. It follows (see Figure 5.1) that ρ(Bα) is minimal for 1−αλn = αλ1−1,
which is satisfied when choosing α = 2/(λ1 + λn).

Remark 5.5 When A,P are symmetric positive definite we set κλ(P
−1 A) :=

λ1/λn. For P = I, this is the standard condition number κ2(A) of A. Otherwise,
κλ(P

−1 A) = κ2(P
−1/2 AP−1/2) (proof EFY). By this definition,

ρopt =
λ1/λn − 1

λ1/λn + 1
=

κλ(P
−1A)− 1

κλ(P−1A) + 1
(5.13)

It follows that the convergence rate of the Richardson method depends only on
κλ(P

−1A).
This explains the wording “preconditioner” for P . The construction of cheap

and effective preconditioners is an art by itself. First choices are D (the diagonal
part of A) or incomplete LU/Cholesky decompositions of A.

5.4 Gradient method

The optimal choice of α in the Richardson method depends on the eigenvalues of A,
which are usually unknown (and can be more expensive to compute than solving the
linear system!). We will now take an “optimization perspective” of the Richardson

78 Version May 27, 2025 Chapter 5. Linear Systems – Large Matrices

method for symmetric positive definite A (with P = I for simplicity), which allows
choose α optimally in each step, without knowledge of the eigenvalues of A.

Theorem 5.6 Let A be symmetric positive definite. Then x is the solution of
Ax = b if and only if it solves the optimization problem

x = arg min
y∈Rn

Φ(y), with Φ(y) :=
1

2
y⊤Ay − y⊤b. (5.14)

Proof. For △y ∈ Rn we consider

Φ(y +△y)− Φ(y) =
1

2
△y⊤Ay +

1

2
y⊤A△y −△y⊤b+O(‖△y‖22)

= △y⊤(Ay − b) +O(‖△y‖22). (5.15)

By the uniqueness of the Taylor expansion, it follows that Ay − b is the gradient
of Φ at y.

If x solves (5.14) then the gradient of Φ at x is zero, that is, Ax − b.15 In the
other direction, if x is solution of the linear system, then

Φ (y) = Φ (x+ (y − x))

=
1

2
xTAx− xTb+ (y − x)T (Ax− b) +

1

2
(y − x)T A (y − x)

= Φ (x) +
1

2
(y − x)T A (y − x) ,

and since 1
2 (y − x)

T
A (y − x) ≥ 0, it follows that Φ(y) ≥ Φ(x) and hence x

minimizes Φ.

The idea behind the gradient method is to proceed in every step in the negative
direction of the gradient. Let x(k) denote the kth iterate of the method. The
(k + 1)th iterate is obtained by setting

x(k+1) = x(k) + αkp
(k).

The search direction p(k) is chosen such that it minimizes the first-order term
(p(k))⊤(Ay − b) in the Taylor expansion (5.15) among all vectors of the same
2-norm. By the Cauchy-Schwarz inequality the best choice is

p(k) = −∇Φ
(
x(k)

)
= b−Ax(k) =: r(k). (5.16)

15One could complete the proof with the observation that f is strictly convex and, hence, a zero
gradient characterizes the (global) minimum. We include a direct proof of the other direction for
illustration.

5.5. The method of conjugate gradients (CG) Version May 27, 2025 79

The step size αk is chosen such that Φ
(
x(k) + αkp

(k)
)
= Φ

(
x(k+1)

)
is minimal

among all choices of α, that is,

0 =
d

dα
Φ
(
x(k) + αp(k)

)∣∣∣∣∣
α=αk

=
d

dα

[
1

2

〈
x(k) + αr(k), A(x(k) + αr(k))

〉
−
〈
x(k) + αr(k),b

〉
]∣∣∣∣∣

α=αk

= −
〈
r(k), r(k)

〉
+ αk

〈
r(k), Ar(k)

〉
, (5.17)

or, equivalently,

αk =

〈
r(k), r(k)

〉
〈
Ar(k), r(k)

〉 .

In summary, the gradient method reads as follows: Given x(0) ∈ Rn, let r(0) =
b− Ax(0). Then for all k ≥ 0,





αk =

〈
r(k),r(k)

〉
〈
Ar(k),r(k)

〉 ,

x(k+1) = x(k) + αkr
(k),

r(k+1) = r(k) − αkAr
(k).

The gradient method is thus a variant of the Richardson method (with P = I) for
which the acceleration parameter is chosen adaptively in every iteration.

Figure 5.2 gives a visual representation of the gradient method. In particular,
it seems that each direction p(k+1) = r(k+1) for k ≥ 0 is orthogonal to the descent
direction at the previous iteration, p(k) = r(k). Indeed, from equation (5.17),

0 = −
〈
r(k), r(k)

〉
+ αk

〈
r(k), Ar(k)

〉
=
〈
r(k),−r(k) + αkAr

(k)
〉
= −

〈
r(k), r(k+1)

〉
.

(5.18)
Therefore,

〈
r(k), r(k+1)

〉
= 0. However, in general,

〈
r(k), r(k+2)

〉
6= 0. Indeed, in

Figure 5.2, any two directions r(k) and r(k+2) are parallel.
Using the Kantorovich inequality, it can be shown that the gradient method

converges at the rate (5.13), the convergence rate of the Richardson iteration with
optimally chosen α.

5.5 The method of conjugate gradients (CG)

For ill-conditioned matrices, the gradient method makes little progress because the
search directions p(0),p(1),p(2), . . . are too similar across several iterations. For
n = 2 this can be nicely illustrated by the “zigzag” behavior of the gradient method.

We continue to assume that A ∈ Rn×n is symmetric positive definite. The idea
of the CG method is to chose search directions that are orthogonal to each other in
the inner product induced by A: 〈y, z〉A := y⊤Az = 〈y, Az〉 = 〈Ay, z〉. In the first

80 Version May 27, 2025 Chapter 5. Linear Systems – Large Matrices

Figure 5.2: Illustration of the gradient method. In red are the descent directions
p(k). The red dots represent the intermediate solutions x(k), k ≥ 0. The ellipsoids
represent some level curves of Φ; note that they are centered on the exact solution
x, and that the descent directions arrive tangentially towards them.

iterate, we still choose p(0) = r(0) = b−Ax(0), as in the gradient method, and set
x(1) := x(0) + α0p

(0). To choose the next search direction, we set

p(1) = r(1) − β0p
(0),

where the parameter β0 is chosen such that p(1) is orthogonal (conjugate) to p(0).
This corresponds to one step of the Gram-Schmidt process in the A-inner product:

β0 =
〈r(1),p(0)〉A
〈p(0),p(0)〉A

.

More generally, we choose

p(k+1) = r(k+1) −
k∑

i=0

〈r(k+1),p(i)〉A
〈p(i),p(i)〉A

p(i), (5.19)

As for the gradient method, for all k ≥ 0, x(k+1) = x(k) + αkp
(k), and αk is chosen

so that Φ
(
x(k) + αkp

(k)
)
= Φ

(
x(k+1)

)
is minimal. By following the exact same

steps as in (5.17), we obtain:

αk =
〈p(k), r(k)〉
〈p(k), Ap(k)〉 .

5.5. The method of conjugate gradients (CG) Version May 27, 2025 81

The crucial observation, which makes CG efficient for larger k, is that most terms
in (5.19) vanish.

Lemma 5.7 With the notation introduced above, assume that αi 6= 0 for i =
0, . . . , k. Then

〈r(k+1),p(0)〉A = · · · = 〈r(k+1),p(k−1)〉A = 0.

Proof. We start by noting that x(k+1) = x(k)+αkp
(k) implies the residual recursion

r(k+1) = r(k) − αkAp
(k). (5.20)

Step 1: Alternative formula for αk. Using the definition of αk, it follows
from (5.20) that

〈r(k+1),p(k)〉 = 〈r(k),p(k)〉 − αk〈p(k),p(k)〉A = 0.

Because {p(0), . . . ,p(k)} is an A-orthogonal basis, we have for i < k that

〈r(k+1),p(i)〉 = 〈r(k),p(i)〉+ αk〈p(k),p(i)〉A = 〈r(k),p(i)〉,

and we can conclude inductively that

〈r(k+1),p(i)〉 = 0, i = 0, . . . , k. (5.21)

EFY: Show that this relation implies

αk =
〈r(k), r(k)〉
〈p(k), Ap(k)〉 . (5.22)

Step 2: Orthogonality of residuals. Note that

〈r(k),p(k)〉A = 〈p(k),p(k)〉A.

For k = 0, this follows from p(0) = r(0). For k > 0, this follows from applying the
A-inner product with p(k+1) to both sides of (5.19), exploiting A-orthogonality, and
shift k + 1 to k. Together with (5.22) it follows from (5.20) that

〈r(k+1), r(k)〉 = 〈r(k), r(k)〉 − αk〈r(k), Ap(k)〉 = 〈r(k), r(k)〉 − αk〈p(k), Ap(k)〉 = 0.

For i < k, it follows from (5.19) that 〈pk, ri〉A = 0. We conclude from (5.20) that

〈r(k+1), r(i)〉 = 0, i < k.

In other words, {r(0), . . . , r(k+1)} is an orthogonal basis.
Step 3: Conclusion. Using once more (5.20) we obtain

〈r(k+1),p(i)〉A = 〈r(k+1), Ap(i)〉 = 1

αk
〈r(k+1), r(i) − r(i+1)〉 = 0.

82 Version May 27, 2025 Chapter 5. Linear Systems – Large Matrices

The result of Lemma 5.7 allows us to rewrite (5.19) as

p(k+1) = r(k+1) − βkp
(k), βk =

〈r(k+1),p(k)〉A
〈p(k),p(k)〉A

.

In summary, the CG method reads as follows. Given x(0) ∈ Rn, let r(0) = b−Ax(0)

and p(0) = r(0). Then for all k ≥ 0,




αk = 〈p(k),r(k)〉
〈p(k),Ap(k)〉 ;

x(k+1) = x(k) + αkp
(k);

r(k+1) = r(k) − αkAp
(k);

βk = 〈r(k+1), Ap(k)〉
〈p(k), Ap(k)〉 ;

p(k+1) = r(k+1) − βkp
(k).

Remark 5.8

• For CG to be well-defined, p(k) has to be different from 0 at each iteration
k ≥ 0. But if for some k ≥ 0, p(k) = 0, then x(k) = x.

• At each iteration, the CG method considers a descent direction that is linearly
independent from (since A-orthogonal to) the previous descent directions, and
minimizes the quadratic form Φ in this new descent direction.

Theorem 5.9 Let A ∈ Rn×n be a symmetric positive definite matrix. Then the
CG method yields after at most n iterations the exact solution (assuming exact
arithmetic).

Proof. As discussed above, in the unlikely case that p(k) = 0 for k ≤ n − 1 then
CG has found already the exact solution. Otherwise,

{
p(0),p(1), . . . ,p(n−1)

}
forms

an A-orthogonal basis of Rn. Because of (5.21), the vector r(n) is orthogonal to the
space span

{
p(0),p(1), . . . ,p(n−1)

}
= Rn. Consequently, r(n) = 0, which implies

x(n) = x.

Theorem 5.9 is misleading because in practice one never wants to run n iterations
of CG. Instead, one hopes to stop the method much earlier, as soon as the error
is below a certain tolerance. The following theorem shows that the error of CG
decreases quickly (and thus CG can be stopped after a few iterations) if the condition
number of A is not too high.

Theorem 5.10 Let A ∈ Rn×n be symmetric positive definite and consider the lin-
ear system Ax = b. For k ≥ 0, let e(k) := x(k) − x ∈ Rn, where x(k) is the k-th
iterate of CG. Then,

∥∥e(k)
∥∥
A
≤ 2

Ck

1 + C2k

∥∥e(0)
∥∥
A
, with C :=

√
κ2 (A)− 1√
κ2 (A) + 1

.

Proof. See Theorem 3.1.1 in [A. Greenbaum. Iterative methods for solving linear
systems. SIAM, 1987].

Chapter 6

Regression and Least
Squares

Regression refers to the problem of finding a function that best fits a set of data
points. That is, given m data points (t1, y1), (t2, y2), . . . , (tm, ym), one is looking for
a function f that best approximates f(ti) ≈ yi, where “best” has to be mathemat-
ically defined and corresponds to an optimization problem. Unlike interpolation,
the number of data points in classical regression is larger than the number of pa-
rameters in the function used to fit the data16, and thus in general, one cannot (or
does not even want to) obtain f(ti) = yi for all i = 1, . . . , n. Examples of regression
problems are illustrated in Figure 6.1.

6.1 Regression: Introduction

To carry out regression, we need to specify two ingredients: The class of functions
that is believed to fit the data well and the error that quantifies the fit.

6.1.1 Model function

In parametric regression, one considers a class of functions containing a model func-
tion that depends on n parameters. Typically, n≪ m in order to avoid overfitting.
Some examples are presented below; we call xi, i = 1, . . . , n, the parameters deter-
mined by fitting the function to the given data, t the problem variable, and g the
model function.

16In regimes (statistical/machine learning) not covered in this lecture, the number of parameters
is often (much) larger than the number of data points. In this case, the problem needs to be regu-
larized, either explicitly by adding penalties/constraints or implicitly by terminating optimization
methods early.

83

84 Version May 27, 2025 Chapter 6. Regression and Least Squares

data (xi, yi)
linear regression

(a) Linear regression

data (xi, yi)
non-linear regression

(b) Non-linear regression

Figure 6.1: Examples of regression.

• Linear Regression: g depends (affine) linearly on the parameters

g(t) = x1 + x2t (6.1)

g(t) = x1 + x2t+ x3t
2

g(t) = x1 + x2x+ . . .+ xnt
n−1

g(t) = x1e
t + x2e

−t

• Nonlinear Regression:

g(t) = x1 + x2e
x3t asymptotic regression function

g(t) =
x1t

x2 + t
Michaelis-Menten function

g(t) =
x1

1 + x2e−x3t
logistic function (6.2)

It is the application that determines a priori which model function to use, either
by inspecting the data or by theoretical considerations. For example, in Figure 6.1a,
the data looks to be approximately linear, so one would be inclined to use (6.1), while
theoretical linear relationships can be given by Hooke’s law, Ohm’s law, or Fick’s
law for example. Nonlinear functions can also come from theoretical considerations;
for example, the model function (6.2) is called logistic function (leading to logistic
regression) because it is the solution of the logistic equation given by

dg

dt
= rg(1− g) in R

+; f(0) = α,

for some r, α > 0.

6.1.2 Error function

The error function, also called objective or loss function, is used to assess the quality
of the approximation of the data, which in turn drives the parameter selection.

6.1. Regression: Introduction Version May 27, 2025 85

x

y

d1
d2

d3

(a) Vertical distance.

x

y

D1 D2

D3

(b) Euclidean distance.

Figure 6.2: Examples of different measures for the error.

For measuring the error at individual data points ti, one can for example use
vertical distances

di := |g(ti)− yi| , i = 1, . . . ,m, (6.3)

as in the left plot of Figure 6.2, or Euclidean distances as in the right plot of
Figure 6.2. One disadvantage of the Euclidean distance is that it depends on the
parameters, which complicates fitting. For example, when considering the linear
function (6.1), one can show that the Euclidean distance is

Di :=
di√
1 + x2

1

, i = 1, . . . ,m. (6.4)

In the following, we will therefore focus on vertical distances.
By choosing a norm on Rm, one combines the m individual distances in a single

quantity for measuring the error. The most common choices are:

1. Maximum error:

max
i=1,...,m

di = max
i=1,...,m

|g(ti)− yi| = ‖g − y‖∞ , (6.5)

where g :=
(
g(t1), . . . , g(tm)

)
and y := (y1, . . . , ym).

2. Error in 1-norm:

m∑

i=1

di =

m∑

i=1

|g(ti)− yi| = ‖g− y‖1 . (6.6)

3. (Squared) Error in 2-norm:

m∑

i=1

d2i =

m∑

i=1

|g(ti)− yi|2 = ‖g − y‖22 . (6.7)

When this norm is used, the resulting regressionmethod is called least-squares.
This is the most common choice because the error function has the advantage

86 Version May 27, 2025 Chapter 6. Regression and Least Squares

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 6.3: Examples of maximum (left) and 2-norm (right) error functions, respec-
tively, both as surfaces and contour plots, for an example of linear regression.

of being differentiable if g(ti) is a differentiable function of the parameters. It
also has a meaninful statistical intepretation.

Example 6.1 Consider the linear regression defined in (6.1), and the maximum
and 2-norm error functions. Figure 6.3 gives the contour plots of these error func-
tions in an example. We can easily see the smoothness of the 2-norm while the
maximum norm results in edges and corners. Note that the parameters that mini-
mize E2 are (usually) not equal to the ones that minimize E∞.

6.2 Linear least-squares

In this section, we will focus on the error function given by the 2-norm, defined in
(6.7). We assume that the model function g depends linearly on the parameters to
be fitted to the data, that is we can write

g(t) = x1φ1(t) + x2φ2(t) + . . .+ xnφn(t), (6.8)

where the functions φj , j = 1, . . . , n, are given functions, and xj , j = 1, . . . , n, are
the parameters. For example, if g(t) = x1 + x2t, then φ1(t) = 1 and φ2(t) = t.
It will always be assumed that n < m, that is, there are more data points than
unknown parameters.

6.3. Normal equations Version May 27, 2025 87

The parameters x1, . . . , xn are determined by minimizing the error

f(x) :=

m∑

i=1

(g(ti)− yi)
2
= ‖Ax− y‖22 , (6.9)

where

A :=




φ1(t1) φ2(t1) · · · φn(t1)
φ1(t2) φ2(t2) · · · φn(t2)

...
...

. . .
...

φ1(tm) φ2(tm) · · · φn(tm)


 , x =




x1

x2

...
xn


 , y =




y1
y2
...
ym


 .

In the following, we will study two different ways of finding the values of the
parameters x that minimize (6.9): the normal equations and the QR factorization.
We will assume that the matrix A has full rank n, that is, its columns are linearly
independent.

6.3 Normal equations

We start by computing the gradient of f at x by perturbing x:

f(x+ h)− f(x) = ‖A(x+ h)− y‖22 − ‖Ax− y‖22
=

(
A(x + h)− y

)⊤(
A(x + h)− y

)
−
(
Ax− y

)⊤(
Ax− y

)

= 2h⊤A⊤Ax− 2h⊤A⊤y +O(‖h‖22).

Hence,
∇f(x) = 2(A⊤Ax−A⊤y)

and thus the gradient is zero if and only if the so called normal equations are
satisfied:

A⊤Ax = A⊤y. (6.10)

Lemma 6.2 If A ∈ Rm×n has rank n then A⊤A is symmetric positive definite.

Proof. EFY.

As a consequence of Lemma 6.2, the matrix A⊤A is invertible and (6.10) has a
unique solution. Since zero gradient is a necessary condition, this implies that zero
gradient is also a sufficient condition for being a global minimizer of f .17

Theorem 6.3 Suppose that A ∈ Rm×n has rank n. Then x is a minimizer of
f(x) = ‖Ax− y‖22 if and only if it solves the normal equations (6.10).

The linear system (6.10) can be solved using the Cholesky factorization of ATA,
leading to Algorithm 6.4.

17Another way of seeing this is to note that f is (strictly) convex.

88 Version May 27, 2025 Chapter 6. Regression and Least Squares

Computation of ATA n(n+ 1)m

Cholesky factorization of ATA 1
3n

3

Computation of ATy 2mn

Forward substitution n2

Backward substitution n2

Table 6.1: Number of floating point operations for each step of Algorithm 6.4.

Algorithm 6.4 (Least-squares via normal equations)

1. C := ATA,

2. Compute Cholesky factor R of C using Alg. 4.17 (that is, RTR = C).

3. b := ATy.

4. Solve RTz = b using forward substitution (Alg. 4.3).

5. Solve Rx = z using backward substitution (Alg. 4.4).

The computational complexity of Algorithm 6.4 is summarized in Table 6.1. The
computation of ATA exploits that ATA is symmetric. One observes that for m≫ n
the computations of ATA and ATy dominate the cost.

Remark 6.5 The normal equations (6.10) have a simple geometric interpretation.
From

AT (b−Ax) = 0

it follows that the residual r = y − Ax is orthogonal to the columns of A, that
is, the the residual r is normal to the span of A. It is instructive to connect this
interpretation to the discussion in Section 3.3.

6.4 Method of Orthogonalization

The normal equations have a significant disadvantage; they are numerically unstable
when κ2(A)≫ 1.18

Example 6.6 For m = n and φi(t) = ti and uniformly distributed points ti, we
obtain the Vandermonde matrix

A =




t00 t10 · · · tn−1
0

t01 t11 · · · tn−1
1

...
...

...
t0n−1 t1n−1 · · · tn−1

n−1,


 , ti = i/(n− 1).

18The 2-norm condition number of a rectangular matrix is defined as the ration between the
largest and the smallest singular value.

6.4. Method of Orthogonalization Version May 27, 2025 89

The linear system Ax = y with randomly chosen right-hand side y is solved using
(a) the LU factorization with column pivoting and (b) the Cholesky factorization
applied to the normal equations (6.10), For each computed solution x̂ we measured
the relative residual norm

‖r‖2
‖A‖2‖x̂‖2 + ‖y‖2

,

with
r = y −Ax̂.

vander1.eps

50 × 38 mm

5 10 15 20
10

−20

10
−15

10
−10

10
−5

LU with pivoting

Normal equations

It is clearly visible that the normal equations are numerically unstable; the relative
residual is significantly larger than 10−16. ⋄

The effect observed in Example 6.6 is due to κ(ATA) = κ(A)2 and hence this effect
is unavoidable when working with normal equations. Note that the LU factorization
has no meaningful extension to m > n for least-squares problems and cannot be
used as an alternative. Instead, we will use orthogonalization to reduce A to simpler
form.

First, we consider the special case that the matrix A ∈ Rm×n is already upper
triangular, that is,

A =

(
R
0

)
(6.11)

for an upper triangular matrix R ∈ Rn×n. The vector y ∈ Rm is partitioned
analogously:

y =

(
y1

y2

)
, y1 ∈ R

n, y2 ∈ R
m−n.

We compute

f(x) = ‖y −Ax‖22 =

∥∥∥∥
(

y1

y2

)
−
(

R
0

)
x

∥∥∥∥
2

2

=

∥∥∥∥
(

y1 −Rx
y2 − 0x

)∥∥∥∥
2

2

= ‖y1 −Rx‖22 + ‖y2‖22.

If R ∈ Rn×n is invertible then f is obviously minimized by the solution x ∈ Rn of
Rx = y1, which can be determined using backward substitution.

Using orthogonal matrices we transform A ∈ Rm×n successively to the upper
triangular form (6.11).

90 Version May 27, 2025 Chapter 6. Regression and Least Squares

Theorem 6.7 Consider m ≥ n, A ∈ Rm×n with rank(A) = n, y ∈ Rm. Let
Q ∈ Rm×m be orthogonal and R ∈ Rn×n be upper triangular such that

A = Q

(
R
0

)
. (6.12)

Partition ỹ = QTy ∈ Rm as follows:

QTy =

(
ỹ1

ỹ2

)
, y1 ∈ R

n, y2 ∈ R
m−n.

Then the solution x ∈ Rn of
Rx = ỹ1

minimizes ‖Ax− y‖22.

Proof. Because the application of an orthogonal matrix QT does not change the
Euclidean norm of a vector we obtain

‖y −Ax‖2 = ‖QT(y −Ax)‖2 = ‖QTy −QTAx‖2 =

∥∥∥∥
(

ỹ1

ỹ2

)
−
(

R
0

)
x

∥∥∥∥
2

.

Hence the least-squares problem is equivalent to one in the upper triangular form
discussed above. Because the rank of A is n, it follows that R is invertible, which
completes the proof.

It remains to actually compute the matrix Q from Theorem 6.7. A factorization
of the form (6.12) is called QR factorization. In Python, this factorization can
be computed using Q,R = numpy.linalg.qr(A,‘complete’). For m ≫ n, having
to compute and store the m×m matrix Q creates substantial overhead, which can
be avoided. The so called economic QR factorization takes the form

A = Q1R,

where Q1 ∈ Rm×n satisfies QT
1Q1 = In and R ∈ Rn×n is upper triangular. This

factorization completely suffices to solve the linear least-squares problem, which
only requires to know R and ỹ1 = QT

1y. In Python, this economic QR factoriza-
tion is computed by Q1,R = numpy.linalg.qr(A,‘reduced’)with numpy package.
Note that the default mode for numpy.linalg.qr is actually ‘reduced’, that is, the
economic QR.

6.5 QR factorization via Gram-Schmidt

The Gram-Schmidt process is a simple way to compute the economic QR factoriza-
tion.

Given n ≥ 1 linearly independent vectors

a1, . . . , an ∈ R
m,

6.5. QR factorization via Gram-Schmidt Version May 27, 2025 91

the aim of the Gram-Schmidt process is to find n vectors

q1, . . . ,qn ∈ R
m

such that ‖qi‖2 = 1 for i = 1, . . . , n and

span{a1, . . . , aℓ} = span{q1, . . . ,qℓ}, ∀1 ≤ ℓ ≤ n. (6.13)

Moreover, all vectors qi are mutually orthogonal :

qi ⊥ qj , i 6= j . (6.14)

The idea of the Gram-Schmidt process
is as follows. Suppose we have already
computed ℓ − 1 vectors q1, . . . ,qℓ−1 sat-
isfying the conditions above. Then the
ℓth vector qℓ is obtained by projecting
aℓ onto the orthogonal complement of
span{q1, . . . ,qℓ−1} and normalizing:

q̂ℓ = (I − (q1, . . . ,qℓ−1)(q1, . . . ,qℓ−1)
T)aℓ,

qℓ = q̂ℓ/‖q̂ℓ‖2.

q1

q2

a3
q̂3

q3

span{q1, q2}

span{q1, q2}⊥
This leads to the following algorithm.

Algorithm 6.8 (Gram-Schmidt)
Input: Linearly independent vectors a1, . . . , an ∈ Rm.
Output: Orthonormal basis q1, . . . ,qn, such that (6.13) is satisfied.

for ℓ = 1, . . . , n do

q̂ℓ := aℓ −
ℓ−1∑
j=1

(qT

j aℓ)qj

qℓ :=
q̂ℓ

‖q̂ℓ‖2

end for
Python

% The columns of A containing a_1, ..., a_n are replaced by

% q_1, ..., q_n.

import numpy as np

for l in range(n):

qlhat = np.zeros((n,1))

if l!=0:

sl = A[:,:l].T @ A[:,l]

qlhat = A[:,l]-A[:,:l]@sl

else:

qlhat = A[:,l]

92 Version May 27, 2025 Chapter 6. Regression and Least Squares

rll = np.linalg.norm(qlhat)

A[:,l] = qlhat / rll

The Gram-Schmidt process produces an economic QR factorization of the m × n
matrix A = (a1, . . . , an). This can be seen as follows. Let rℓℓ := ‖q̂ℓ‖2 and rjℓ :=
qTj aℓ. Then Algorithm 6.8 implies the relation

aℓ = q̂ℓ +

ℓ−1∑

j=1

〈qj , aℓ〉qj =

ℓ∑

j=1

rjℓqj

for ℓ = 1, . . . , n. Collecting these relations into a single matrix yields

A = Q1R, with R =




r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn


 . (6.15)

But this happens to be an economic QR factorization, as

QT

1Q1 =




qT

1q1 qT

1q2 · · · qT

1qn

qT

2q1 qT

2q2
. . .

...
...

. . .
. . . qT

n−1qn

qT

nq1 · · · qT

nqn−1 qT

nqn




=




1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




Remark 6.9 Due to roundoff error, the basis produced by the Gram-Schmidt pro-
cess may lose orthogonality to a large extent, especially if the columns of A are
nearly linearly dependent. A simple but effective cure is to perform orthogonaliza-
tion twice:

Python

import numpy as np

for l in range(n):

qlhat = np.zeros((n,1))

if l!=0:

sl = A[:,:l].T @ A[:,l]

A[:,l] = A[:,l] - A[:,:l] @ sl # Standard orth step.

sl = A[:,:l].T @ A[:,l]

qlhat = A[:,l] - A[:,:l] @ sl # Extra orth step.

else:

qlhat = A[:,l]

rll = np.linalg.norm(qlhat)

A[:,l] = qlhat / rll

6.6. QR factorization via Householder reflectors⋆ Version May 27, 2025 93

Example 6.10 Let us consider the 25× n matrix

A =




1 t11 · · · tn1
1 t12 · · · tn2
...

...
...

1 t125 · · · tn25,


 , ti = (i − 1)/24,

which arises when fitting a polynomial of degree n. We apply the Gram-Schmidt
process (Algorithm 6.8) as well as the modification discussed in Remark 6.9. To

measure the loss of orthogonality in the computed matrix Q̂1, we compute

‖In − Q̂T

1 Q̂1‖2.
Ideally, this quantity should not be much larger than 10−16. The following two
figures show this quantity for n = 1, . . . , 25:

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

10
5

0 5 10 15 20 25

10
−15

10
−10

10
−5

10
0

Gram-Schmidt Improved Gram-Schmidt
Algorithm 6.8 Remark 6.9

It turns out that orthogonality is completely lost in the Gram-Schmidt process for
n = 7 or larger. On the other hand, the improved Gram-Schmidt process maintains
orthogonality nearly perfectly, with a loss of only ≈ 10−16. ⋄

6.6 QR factorization via Householder reflectors⋆

The Matlab command qr does not use Gram-Schmidt but a different approach
for computing the QR factorization, which completely avoids any issue with

In the Householder based QR factorization one constructs the matrix Q as a com-
position of simple orthogonal matrices. There are two types of elementary matrices,
Givens rotations and Householder reflectors, and both are suitable for constructing
QR factorizations. We will focus our discussion on Householder reflectors.

6.6.1 Construction

Theorem 6.11 (Properties of Householder reflectors) Let 0 6= v ∈ Rm. Then
the Householder reflector

Q := Im −
2

vTv
vvT

94 Version May 27, 2025 Chapter 6. Regression and Least Squares

has the following properties:

1. Q is symmetric,

2. Q is orthogonal,

3. Q2 = Im.

Proof. EFY.

Remark 6.12 Householder reflectors have a geometric interpretation. When ap-
plied to a vector, they correspond to reflecting the vector at the hyperplane {x ∈
Rm |xTv = 0}.

A QR factorization of A ∈ Rm×n is produced by successively reducing the columns
of the matrix using Householder reflections. The following result is essential for this
purpose.

Lemma 6.13 Let 0 6= a ∈ Rm and let e1 ∈ Rm denote the first unit vector. Let

α = ‖a‖2 or α = −‖a‖2.

(If a = βe1 one uses α = −‖a‖2 = −|β|.) Then with v := a− αe1 it holds that

Q = Im −
2

vTv
vvT ⇒ Qa = αe1. (6.16)

Proof. The choice of α implies that v 6= 0 and thus Q is well defined. The claim
Qa = αe1 is verified by direct calculation.

Remark 6.14 In practice, one chooses α = −sign(a1)
√
aTa, v = (a1−α, a2, . . . , ak)T

to avoid numerical cancellation19.

Now, let a1 denote the first column of A ∈ Rm×n. In the first step of the House-
holder based QR factorization A we use Lemma 6.13 to construct a Householder
reflector Q(1) such that

Q(1)a1 =




r11
0
...
0




for some r11 ∈ R. Applied to A we obtain

Q(1)A =




r11 r12 · · · r1n
0
... A(1)

0


 , (6.17)

19We define sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0

6.6. QR factorization via Householder reflectors⋆ Version May 27, 2025 95

with A(1) ∈ R(m−1)×(n−1).
In the next step, we repeat this procedure for the submatrix A(1) and embed the

transformations as follows:

Q(2) :=




1 0 · · · 0
0
... Q̃(2)

0


 ,

and




1 0 · · · 0
0
... Q̃(2)

0







r11 r12 · · · r1n
0
... A(1)

0


 =




r11 r12 · · · r1n
0
... Q̃(2)A(1)

0


 .

Letting a2 denote the first column of A(1), we choose Q̃(2) as a Householder reflector
that maps a2 to a scalar multiple of e1 ∈ Rm−1. Then

Q(2)Q(1)A =




r11 r12 r13 · · · r1n
0 r22 r23 · · · r2n
0 0
...

... A(2)

0 0




,

It is now clear how to continue this process until the matrix Q(n)Q(n−1) · · ·Q(1)A
is in upper triangular form (if m = n one can skip the last step, Q(n)).

In summary, the QR factorization of A ∈ Rn×n is given by

A = (Q(1))T · · · (Q(n))TR = Q(1) · · ·Q(n)

︸ ︷︷ ︸
=:Q

(
R
0

)
,

where R ∈ Rn×n us upper triangular and the orthogonal matrices Q(k) ∈ Rm×m

take the following form:

Q(k) =




Ik−1 0 · · · 0
0
... Im−k+1 −

2

vT

kvk
vkv

T

k

0




, vk ∈ R
m−k+1. (6.18)

Algorithm 6.15 summarizes the described procedure.

96 Version May 27, 2025 Chapter 6. Regression and Least Squares

Algorithm 6.15 (QR factorization)
Input: Matrix A ∈ Rm×n.

Output: QR factorization A = Q

(
R
0

)
with Q orthogonal and R upper

triangular.

Q = Im
for k = 1, . . . ,min{n,m− 1} do
Determine (embedded) Householder reflector Q(k) (see (6.18)) such that the
trailing m− k entries of the kth column of Q(k)A are zero.
Replace A← Q(k)A.
Replace Q← Q(k)Q.

end for
Return R as the first n rows of A.

Example 6.16 For

A =




−4 −2− 2

√
6 −6− 3

√
2−

√
6

0 −2
√
3 9−

√
3

−4
√
2 −2

√
2 + 2

√
3 3− 6

√
2 +

√
3





we compute its QR factorization using Algorithm 6.15. The first column of A is

a1 =




−4
0

−4
√
2


 , ‖a1‖2 =

√
16 + 16 · 2 =

√
48 = 4

√
3.

For the corresponding Householder reflector, we compute α = −sign(a1)‖a‖2 = −sign(−4)4
√
3 =

4
√
3 and hence

v1 = a1 − αe1 =




−4
0

−4
√
2



− 4
√
3




1
0
0



 =




−4− 4

√
3

0

−4
√
2



 , ‖v1‖22 = 16(6 + 2
√
3),

Q
(1) = I3 − 2

‖v1‖22
v1v

T

1 = I3 − 2

16(6 + 2
√
3)




−4− 4
√
3

0

−4
√
2


 ·

(
−4− 4

√
3, 0, −4

√
2

)

= I3 −
1

3 +
√
3




−1−
√
3

0

−
√
2


 ·

(
−1−

√
3, 0, −

√
2

)

=




1 0 0
0 1 0
0 0 1


− 1√

3(1 +
√
3)




4 + 2
√
3 0

√
2(1 +

√
3)

0 0 0√
2(1 +

√
3) 0 2




=
1√
3




−1 0 −

√
2

0
√
3 0

−
√
2 0 1



 .

6.6. QR factorization via Householder reflectors⋆ Version May 27, 2025 97

Evidently, Q(1) is – as expected – an orthogonal matrix. We obtain

Q
(1)

A =
1√
3




−1 0 −

√
2

0
√
3 0

−
√
2 0 1



 ·




−4 −2− 2

√
6 −6− 3

√
2−

√
6

0 −2
√
3 9−

√
3

−4
√
2 −2

√
2 + 2

√
3 3− 6

√
2 +

√
3





=
1√
3




12 6 18

0 −6 −3 + 9
√
3

0 6
√
3 9 + 3

√
3



 =
√
3




4 2 6

0 −2 −1 + 3
√
3

0 2
√
3 3 +

√
3



 .

The first column Q(1)A equals αe1, as desired.
We repeat this procedure for the submatrix

A
(1) =

√
3

(
−2 −1 + 3

√
3

2
√
3 3 +

√
3

)
.

It is first column is

a2 =

(
−2

√
3

6

)
, ‖a2‖2 =

√
12 + 36 = 4

√
3.

In turn, α = −sign(a1)‖a2‖2 = −sign(−2
√
3) ·4

√
3 = 4

√
3 and for v2 = a2−αe1 we obtain

v2 =

(
−2

√
3

6

)
− 4

√
3

(
1
0

)
=

(
−6

√
3

6

)
, ‖v2‖22 = 144.

Therefore Q̃(2) is given by

Q̃
(2) = I2 − 2

‖v‖22
v · vT = I2 − 2

144
·
(

−6
√
3

6

)
·
(

−6
√
3, 6

)

= I2 −
1

2
·
(

−
√
3

1

)
·
(

−
√
3, 1

)

=

(
1 0
0 1

)
− 1

2

(
3 −

√
3

−
√
3 1

)
=

1

2

(
−1

√
3√

3 1

)

and we obtain

Q̃
(2)

A
(1) =

1

2

(
−1

√
3√

3 1

)
·
√
3

(
−2 −1 + 3

√
3

2
√
3 3 +

√
3

)
=

√
3

2

(
8 4
0 12

)
.

This already gives the upper triangular matrix R:

R =
√
3




4 2 6
0 4 2
0 0 6


 .

The orthogonal matrix QT with QTA = R is given by

Q
T =




1 0 0

0

0
Q̃(2)


Q

(1) =




1 0 0

0 − 1
2

1
2

√
3

0 1
2

√
3 1

2


 · 1√

3




−1 0 −
√
2

0
√
3 0

−
√
2 0 1




=
1

2
√
3




−2 0 −2

√
2

−
√
6 −

√
3

√
3

−
√
2 3 1



 .

98 Version May 27, 2025 Chapter 6. Regression and Least Squares

For verification we compute

QR =
1

2
√
3




−2 −

√
6 −

√
2

0 −
√
3 3

−2
√
2

√
3 1



 ·
√
3




4 2 6
0 4 2
0 0 6





=




−4 −2− 2
√
6 −6− 3

√
2−

√
6

0 −2
√
3 9−

√
3

−4
√
2 −2

√
2 + 2

√
3 3− 6

√
2 +

√
3


 = A.

⋄

It would be quite inefficient to implement Algorithm 6.15 literally. In particular,
the matrix Q(k) is never formed but only applied implicitly via the vector vk. To

apply Q(k) to matrix

(
B1

B2

)
with B1 ∈ R(k−1)×ℓ and B2 ∈ R(m−k+1)×ℓ, one notes

that

Q(k)

(
B1

B2

)
=

(
B1

B2 − 2
vT

k
vk

vkv
T

kB2

)
.

One first computes the vector w = 2
vT

k
vk

BT

2 vk (≈ 2(m− k+1)ℓ flops) and then the

rank-one update B2 − vkw
T (≈ 2(m− k + 1)ℓ flops). Using the structure of A the

operation A ← Q(k)A in Algorithm 6.15 only costs 4(m − k + 1)(n − k + 1) flops.
Altogether the updates of A cost

4

n∑

k=1

(m− k + 1)(n− k + 1) ≈ 2mn2 − 2

3
n3 (6.19)

flops. The computation of Q is executed analogously.

6.6.2 Application to linear least-squares problems

In principle, Algorithm 6.15 together with Theorem 6.7 provide all the tools needed
to solve least-squares problems. However, one can avoid the (expensive) computa-
tion of Q if one instead directly computes QTy; see Algorithm 6.17.

Algorithm 6.17 (Least-squares problems via QR factorization)
Input: Matrix A ∈ Rm×n with rank(A) = n, y ∈ Rm

Output: Solution x ∈ Rn of least-square problem min ‖Ax− y‖22.

for k = 1, . . . ,min{n,m− 1} do
Determine (embedded) Householder reflector Q(k) (see (6.18)) such that the
trailing m− k entries of the kth column of Q(k)A are zero.
Replace A← Q(k)A.
Replace y← Q(k)y.

end for

Partition A =

(
R
0

)
and y =

(
y1

y2

)
.

Compute x = R−1y1 using Algorithm 4.4.

6.6. QR factorization via Householder reflectors⋆ Version May 27, 2025 99

Since all other costs are negligible, the overall cost of Algorithm 6.17 is given by
the cost for updating A (see (6.19)), that is, 2mn2− 2

3n
3 flops. Compared with the

approach via normal equations, see Table 6.1, the cost is at most a factor 2 larger.

100 Version May 27, 2025 Chapter 6. Regression and Least Squares

Chapter 7

Fourier transform

7.1 Recap of Fourier analysis

This section recalls material from the Analysis IV course.

Definition 7.1 Let L > 0. A function f : R→ R or f : R→ C is called L-periodic
if

f(x+ L) = f(x) ∀ x ∈ R.

In principle, any function on a bounded interval, f : [a, b)→ R, could be extended
to an L-periodic function with L = b− a by setting f(x+ kL) = f(x) for x ∈ [a, b)
and k ∈ Z. However, this is not a very useful way to think about periodic functions,
because such extensions will rarely turn out to be continuous, differentiable, ... on
R.

Clearly, the functions sin(x), cos(x), eix are 2π-periodic. In the following, we will
assume that L = 2π without loss of generality (after a suitable rescaling of x).

For a 2π-periodic function f : R → R we can identify f with its restriction on
any interval of length 2π. Let us take, for instance, [0, 2π]. In the following, we will
simply say “periodic function f : [0, 2π]→ R”.

From the Analysis IV course, it is known that the Fourier series

+∞∑

k=−∞
cke

ikx, ck =
1

2π

∫ 2π

0

f(x)e−ikx dx, ∀ k ∈ Z. (7.1)

converges to f under certain conditions in a certain sense. For example, if f ∈
L2(0, 2π) then the truncated functions

fN(x) :=

N∑

k=−N

cke
ikx (7.2)

converge to f in the L2-norm.

101

102 Version May 27, 2025 Chapter 7. Fourier transform

Lemma 7.2 (Orthogonality relations) For every k, ℓ ∈ Z,

〈eiℓ·, eik·〉L2 :=

∫ 2π

0

e−iℓxeikx dx =

{
0 if k 6= ℓ,

2π if k = ℓ.

Proof. See Analysis IV.

Lemma 7.2 implies that
(
eikx

)
k∈Z

is an orthogonal basis of L2(0, 2π). By the

Plancherel / Parseval theorem20, we obtain for f ∈ L2(0, 2π) that

‖f‖2L2
= 2π

∞∑

k=−∞
|ck|2,

with the Fourier coefficients ck defined as in (7.1). As a consequence, approximating
f with the truncated Fourier series fN in (7.2) results in the approximation error

‖f − fN‖2L2
= 2π

∑

|k|>N

|ck|2. (7.3)

Note that fN can be represented by the 2N + 1 complex numbers c−N , . . . , cN ,
where c−k = ck (and c0 ∈ R). It is worth noting that fN is still real; using Euler’s
formula one has for x ∈ R that

fN(x) =

N∑

k=−N

cke
ikx =

N∑

k=−N

ck(cos(kx) + i sin(kx))

= c0 +

N∑

k=1

(ck + ck) cos(kx) + i(ck − ck) sin(kx)

=
a0
2

+

∞∑

k=1

ak cos(kx) + bk sin(kx), (7.4)

where a0 = 2c0, ak = 2 · Re(ck), bk = −2 · Im(ck).
Let us recall the definition of the most famous integral transform.

Definition 7.3 Given f ∈ L1(0, 2π), we define the Fourier transform of f as

f̂(ξ) :=
1

2π

∫ 2π

0

f(x)e−iξx dx ∀ x ∈ R. (7.5)

Comparing (7.1) and (7.5), we observe that ck = f̂(k) for every k ∈ Z.

7.2 Regularity and Fourier coefficients⋆

As we have seen in (7.3), the size of the Fourier coefficients for k →∞ determines
how well f can be approximated by truncated Fourier series. From the Riemann-
Lebesgue Lemma we know that f̂(k) → 0 as |k| → +∞ for f ∈ L1(0, 2π). If

20In Analysis IV, this theorem might have been presented for the period L = 1, for which the
pre-factor 2π is not needed.

7.3. The discrete Fourier transform (DFT) Version May 27, 2025 103

extra regularity on f is assumed then it is possible to say more about the speed of
convergence of its Fourier coefficients.

Proposition 7.4 Let f be 2π-periodic and m+ 1 times continuously differentiable
on R. Then

|f̂(k)| ≤ Cm|k|−m−1 ∀ k ∈ Z,

where Cm := 1
2π

∫ 2π

0
|f (m+1)(x)| dx.

Proof. Given k ∈ Z, one computes

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikx dx =
1

2πik

∫ 2π

0

f ′(x)e−ikx dx =
1

ik
f̂ ′(k),

where we used that the boundary term from the integration by parts vanishes
because f and e−ikx are 2π-periodic. By reiterating this procedure, it follows that

f̂(k) =
1

(ik)m+1 f̂
(m+1)(k),

Because f (m+1) is continuous it is also in L1. In turn, we can estimate

|f̂(k)| ≤ 1

2π|k|m+1

∫ 2π

0

|f (m+1)(x)| dx,

which completes the proof.

If f is infinitely often differentiable then it follows from Proposition 7.4 that ck =
f̂(k) decays faster than |k|−m for any m ∈ N. This superpolynomial convergence
is improved further under the stronger assumption that f is real analytic. In this
case, using tools from complex/harmonic analysis, it can be shown that there exist
constants ρ > 1 and C > 0 such that

|f̂(k)| ≤ Cρ−|k| ∀ k ∈ Z. (7.6)

7.3 The discrete Fourier transform (DFT)

The discrete Fourier transform (DFT) is a discrete analogue of the formula (7.5),
that is, the transformation of a vector instead of a function.

Let us assume that the function f is sampled uniformly, that is, f is only known
at the following set of n points in [0, 2π]:

xj =
2πj

n
, yj = f(xj), ∀ j = 0, 1, . . . , n− 1.

In analogy to (7.5), the DFT transforms these n function values into

zk =
n−1∑

j=0

yjω
kj
n ∀ k = 0, . . . , n− 1, (7.7)

104 Version May 27, 2025 Chapter 7. Fourier transform

where ωn := e−
2πi
n is an nth root of unity. Up to scaling, the DFT can be obtained by

applying the composite trapezoidal rule to approximate (7.5) using the integration

nodes (xj)
n−1
j=0 (EFY).

Let us recall that
(
ω−k
n

)n−1

k=0
forms an Abelian group, the so called group of

nth roots of unity. Another important property is the discrete analogue of the
orthogonality relations shown in Lemma 7.2.

Lemma 7.5 (Discrete orthogonality relations) For every k, ℓ = 0, 1, . . . , n −
1, it holds that

n−1∑

j=0

ωkj
n ω−ℓj

n =

{
0 if k 6= ℓ,

n if k = ℓ.

Proof. EFY.

By defining the vectors z =
(
z0 z1 · · · zn−1

)⊤
and y =

(
y0 y1 · · · yn−1

)⊤
,

the DFT (7.7) can be expressed as the matrix-vector product

z = Fny,

with the so called Fourier matrix

Fn =




1 1 · · · 1
1 ω1 · · · ωn−1

...
...

...
1 ωn−1 · · · ω(n−1)(n−1)


 = (fkj)

n−1
j,k=0 . (7.8)

Note that it is custom to count vector/matrix indices from zero in the context of
the DFT.

We now let akl denote the entry (j, k) (again counting from 0) of the matrix
FnF

H

n and obtain from Lemma 7.5 that

akℓ =

n−1∑

j=0

fkjfℓj =

n−1∑

i=0

ωkj
n ω−ℓj

n =

{
0 if k 6= ℓ,

n if k = ℓ.

Hence, we get FnF
H
n = nIn or, in other words, 1√

n
Fn is unitary! Therefore,

F−1
n =

1

n
FH

n =
1

n
Fn.

Given the transformed vector z, this allows us to recover the data y from its DFT
z using

y = F−1
n z =

1

n
Fnz.

In terms of the entries, this Inverse Discrete Fourier Transform (IDFT) takes the
form

yk =
1

n

n−1∑

j=0

zjω
−kj
n ∀ k = 0, . . . , n− 1.

7.4. Resolving a mystery about the composite trapezoidal rule⋆Version May 27, 2025 105

Example 7.6 (Sound digitization and data compression) For carrying out this
compression in Python, we first need to load a file (called audio.mat in the follow-
ing code snippet) containing an audio signal:

from scipy.io import loadmat

from IPython.display import Audio

audio = loadmat("audio.mat") # Load audio signal stored in audio.mat

y = audio[’y’]

Fs = audio[’Fs’][0][0]

y = y[:,0]

To play this audio signal:

Audio(y,rate = Fs)

The commands

import scipy.fft as fft

z = fft.fft(y);

compute the DFT of the audio samples contained in the vector y. From Figure 7.1,
it is evident that the absolute values of the Fourier transform are small in large
parts of the frequency range. We neglect these parts using

ztilde = z * (abs(z)>30);

Using

ytilde = fft.ifft(ztilde)

Audio(ytilde,rate = Fs)

we compute the inverse transform and play the compressed signal. While the signal
looks visually different, the sound does not seem to change too much.

One problem we neglected in the whole discussion above is that audio signals are
usually not periodic, which may lead to undesirable effects when blindly applying
Fourier transforms. One way to fix this is to pad audio signals with zeros before
performing the transform. ⋄

7.4 Resolving a mystery about the composite
trapezoidal rule⋆

For a 2π-periodic function f we consider the approximation of the integral

∫ 2π

0

f(x) dx.

Because of periodicity, the composite trapezoidal rule takes the form

Q
(1)
h [f] =

2π

N

N−1∑

j=0

f(j/N)

106 Version May 27, 2025 Chapter 7. Fourier transform

0 5000 10000 15000

Original chirp

-1

-0.5

0

0.5

1

0 5000 10000 15000

DFT of chirp

0

20

40

60

80

100

0 5000 10000 15000

Compressed DFT

0

20

40

60

80

100

0 5000 10000 15000

Compressed chirp

-1

-0.5

0

0.5

1

Figure 7.1: Compression of the chirp signal (from Matlab). Displayed is the original
signal (top left), the absolute values of the DFT (top right), the compressed DFT
(bottom left), and the compressed signal obtained from the IDFT of the compressed
DFT (bottom right).

with h = 2π/N . Let us now consider the truncated Fourier expansion

fN−1(x) :=

N−1∑

k=−N+1

cke
ikx.

On the one hand, we have

∫ 2π

0

eikx dx =

{
0 for k 6= 0,

2π for k = 0.

On the other hand, Lemma 7.5 yields

Q
(1)
h [eik·] =

2π

N

N−1∑

j=0

e2πijk/N =

{
0 for k = −N + 1, . . . ,−1, 1, . . . , N − 1,

2π for k = 0.

Hence, the composite trapezoidal rule with h = 2π/N integrates the truncated
Fourier expansion fN−1 exactly! This yields the following error bound:

∣∣∣∣
∫ 2π

0

f(x) dx−Q
(1)
h [f]

∣∣∣∣

≤
∣∣∣∣
∫ 2π

0

(f(x)− fN−1(x)) dx−Q
(1)
h [f − fN−1]

∣∣∣∣

≤ 4π
∑

|k|≥N

|ck|.

For a real analytic 2π-periodic function, the result (7.6) shows that |ck| decays
exponentially fast and, in turn, the error of the composite trapezoidal rule also
converges exponentially fast to zero.

7.5. The fast Fourier transform (FFT) Version May 27, 2025 107

7.5 The fast Fourier transform (FFT)

In the following, we will describe a fast algorithm for performing the DFT (and, at
the same time, the IDFT). Recall that ωn = e−2πi/n. Then

ωk
n = ωk+n

n ∀k ∈ Z, ωn
n = 1, ωn/2

n = −1, (7.9)

The most crucial property is the trivial relation ω2k
n = ωk

n/2 for even n, because it
will allow us to relate entries from Fn to entries of the smaller matrix Fn/2.

Recall that the DFT is performed by multiplying a vector with the matrix Fn =(
ωjk
n

)n−1

j,k=0
. This matrix has a lot of structure, which can be exploited to accelerate

matrix-vector multiplication. We illustrate this structure for n = 6. Then

F6 =




1 1 1 1 1 1
1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

1 ω2
6 ω4

6 ω6
6 ω8

6 ω10
6

1 ω3
6 ω6

6 ω9
6 ω12

6 ω15
6

1 ω4
6 ω8

6 ω12
6 ω16

6 ω20
6

1 ω5
6 ω10

6 ω15
6 ω20

6 ω25
6




,

where ω6 = e−2πi/6 = eπi/3. We reorder the rows such that the rows with even index
appear first and then the rows with odd index. This can be achieved by defining

P6 =




1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




and applying its transpose to F6:

PT

6 F6 =




1 1 1 1 1 1
1 ω2

6 ω4
6 ω6

6 ω8
6 ω10

6

1 ω4
6 ω8

6 ω12
6 ω16

6 ω20
6

1 ω6 ω2
6 ω3

6 ω4
6 ω5

6

1 ω3
6 ω6

6 ω9
6 ω12

6 ω15
6

1 ω5
6 ω10

6 ω15
6 ω20

6 ω25
6




=




1 1 1 1 1 1
1 ω2

6 ω4
6 1 ω2

6 ω4
6

1 ω4
6 ω2

6 1 ω4
6 ω2

6

1 ω6 ω2
6 −1 −ω6 −ω2

6

1 ω3
6 ω6

6 −1 −ω3
6 −ω6

6

1 ω5
6 ω4

6 −1 −ω5
6 −ω4

6




,

where we used the relation (7.9) multiple times. Because of ωk
3 = ω2k

6 for k ∈ Z, it
follows that

PT

6 F6 =




1 1 1 1 1 1
1 ω1

3 ω2
3 1 ω1

3 ω2
3

1 ω2
3 ω1

3 1 ω2
3 ω1

3

1 ω6 ω2
6 −1 −ω6 −ω2

6

1 ω6ω
1
3 ω2

6ω
2
3 −1 −ω6ω

1
3 −ω2

6ω
2
3

1 ω6ω
2
3 ω2

6ω
1
3 −1 −ω6ω

2
3 −ω2

6ω
1
3




=

(
F3 F3

F3Ω3 −F3Ω3

)

108 Version May 27, 2025 Chapter 7. Fourier transform

with

F3 =



1 1 1
1 ω1

3 ω2
3

1 ω2
3 ω1

3


 , Ω3 =



1

ω6

ω2
6


 .

This shows, for n = 6, that Fn is composed of four blocks Fn/2, combined with
diagonal scaling and permutation. This relation generalizes to arbitrary even n.

Theorem 7.7 For even n ≥ 2, consider the permutation ξ : {0, . . . , n − 1} →
{0, . . . , n− 1} with

ξ : 0 7→ 0, 1 7→ 2, . . . ,
n

2
− 1 7→ n− 2,

n

2
7→ 1,

n

2
+ 1 7→ 3, . . . , n− 1 7→ n− 1.

Let Pn be the permutation matrix belonging to this permutation, that is,

Pn =
(
eξ(0) eξ(1) · · · eξ(n−1)

)
,

where ej is a vector of length n with entry j (for j = 0, . . . , n− 1) equal to 1 and
all other entries equal to zero. Then

PT

n Fn =

(
Fn/2 Fn/2

Fn/2Ωn/2 −Fn/2Ωn/2

)
=

(
Fn/2

Fn/2

)(
In/2 In/2
Ωn/2 −Ωn/2

)
,

with
Ωn/2 = diag(ω0

n, ω
1
n, . . . , ω

n/2−1
n).

Proof. This follows from a straightforward extension of the discussion above for
n = 6, using relation (7.9).

Theorem 7.7 can be used to perform a matrix-vector multiplication Fny recursively.

For this purpose, we partition the vector y =
(

y1

y2

)
such that y1,y2 ∈ Cn/2. Ac-

cording to Theorem 7.7 we can write Fny as follows:

Fny = Pn

(
Fn/2

Fn/2

)(
In/2 In/2
Ωn/2 −Ωn/2

)(
y1

y2

)
= Pn

(
Fn/2(y1 + y2)

Fn/2Ωn/2(y1 − y2)

)
.

In other words, the multiplication with Fn can be reduced to two multiplications
with Fn/2 and some cheap additional computations. Applying this recursion re-
peatedly, one arrives at the following algorithm when n is a power of two.21

21It is instructive to verify with a small example how reshape is used to effect the multiplication
with Pn.

7.5. The fast Fourier transform (FFT) Version May 27, 2025 109

Algorithm 7.8
Input: Vector y ∈ Cn where n is a power of 2.
Output: Matrix-vector product z = Fny.

Partition y =
(

y1

y2

)
with y1,y2 ∈ Cn/2.

z1 = y1 + y2, z2 = Ωn/2(y1 − y2).
Recursion: z1 ← Fn/2z1
Recursion: z2 ← Fn/2z2.

z = Pn

(
z1
z2

)

Python

import numpy as np

def myfft(y):

n = y.shape[0]

if (n == 1): return y

omega = np.exp(-2*np.pi*1j/n);

mid = int(n/2)

z1 = y[0:mid]+y[mid:n];

z2 = np.power(omega, range(0,mid))*(y[0:mid]-y[mid:n])

z = np.concatenate((myfft(z1), myfft(z2)))

z = np.reshape(np.reshape(z, (2,mid)), (n,), ’F’) # permute

return z

It is worth reflecting how the permutation is realized efficiently in the Python code.
The computational complexity of recursive algorithms can often be derived using

the Master theorem (see Wikipedia). In the case of Algorithm 7.8, it is also quite
easy to estimate the complexity directly. Let A(n) denote the number of operations
required by Algorithm 7.8 for a vector of length n. Ignoring the cost for computing
the powers of ωn (which can be computed beforehand and stored in a table), then22

A(n) = 5n+ 2A(n/2). Recursive application of this formula yields

A(n) = 5n+ 5n+ 4A(n/4) = · · · = 5kn+ 2kA(n/2k).

Setting k = log2 n we have A(n/2k) = A(n/n) = A(1) = 0 and hence

A(n) = 5n log2 n.

Because this compares very favorably with the O(n2) complexity of general matrix-
vector multiplication, one calls Algorithm 7.8 the Fast Fourier Transform (FFT).

Remark 7.9 In Python, both NumPy and SciPy have functions implementing the
FFT; the one by SciPy tends to be faster. The software package FFTW (Fastest
Fourier Transform in the West, see http:// www.fftw. org/) is a popular and
well tuned implementation of the FFT. For n = 2k the algorithm by FFTW roughly
corresponds to Algorithm 7.8. For n 6= 2k one needs to resort to other decompo-
sitions/factorizations of n; the asymptotic complexity remains O(n log2 n) but the

22A complex addition or subtraction counts 2 flops and a complex multiplication counts 6 flops.

110 Version May 27, 2025 Chapter 7. Fourier transform

constants can be significantly larger, especially if n has large prime factors. There
is a Python wrapper for FFTW, called pyFFTW, which is more complicated to call.
Once the package pyFFTW is installed, the FFT and inverse FFT can be compted
as follows:

import pyfftw

#assume y is our signal

target_len = len(y)

a = pyfftw.empty_aligned(target_len, dtype=‘complex128’)

b = pyfftw.empty_aligned(target_len, dtype=‘complex128’)

#build a fft object to be called later

fft_object = pyfftw.FFTW(a, b)

a[:] = y

#call fft, both fft_a and b will be the result of fft

fft_a = fft_object()

c = pyfftw.empty_aligned(target_len, dtype=‘complex128’)

#build an ifft object

ifft_object = pyfftw.FFTW(b, c, direction=‘FFTW_BACKWARD’)

#call ifft, both ifft_b and c will be the result of ifft

ifft_b = ifft_object()

7.6 Discrete cosine transform (DCT)⋆

We now assume that f is not only 2π-periodic but also even, that is,

f(x+ 2kπ) = f(x), f(x) = f(−x), ∀k ∈ Z, x ∈ R.

It is then sufficient to restrict f to the interval [−π, π]. Its Fourier series, if conver-
gent, reads as

f(x) =
a0
2

+
∞∑

k=1

ak cos(kx) ∀ k ∈ Z; (7.10)

see (7.4). The following orthogonality relations hold:

Lemma 7.10 For every ℓ, k ∈ Z

∫ π

0

cos(ℓx) cos(kx) dx =





0 if ℓ 6= k,
π
2 if ℓ = k 6= 0,

π if ℓ = k = 0.

The Fourier coefficients (ak)k∈Z
can be recovered by multiplying (7.10) with cos(ℓx),

integrating from 0 to π, and using Lemma 7.10, which yields

∫ π

0

f(x) cos(ℓx) dx =
a0
2

∫ π

0

cos(ℓx) dx+

∞∑

k=1

ak

∫ π

0

cos(kx) cos(ℓx) dx,

and thus

ak =
2

π

∫ π

0

f(x) cos(kx) dx ∀ k ∈ N. (7.11)

7.6. Discrete cosine transform (DCT)⋆ Version May 27, 2025 111

Let us know suppose that f is known only at some discrete points in [0, π]:

xj :=
(2j + 1)π

2N
, yj := f(xj) ∀ j = 0, . . . , N − 1. (7.12)

The discrete counterpart of (7.10) becomes

yj =
z0
2

+

N−1∑

k=1

zk cos(kxj), ∀ j = 0, . . . , N − 1, (7.13)

and the following discrete orthogonality relations hold.

Lemma 7.11 For all ℓ, k ∈ Z

N−1∑

j=0

cos(ℓxj) cos(kxj) =





0 if ℓ 6= k,
N
2 if ℓ = k 6= 0,

N if ℓ = k = 0.

Proof. EFY.

We now aim at computing (zk)
N−1
k=0 such that (7.13) holds. Mimicking the pro-

cedure above in a discrete setting, we multiply (7.13) with cos(ℓxj), summing from
j = 0 to j = N − 1 and employ Lemma 7.11, which yields

N−1∑

j=0

yj cos(ℓxj) =
z0
2

N−1∑

j=0

cos(ℓxj) +

N−1∑

k=1

zk

N−1∑

j=0

cos(kxj) cos(ℓxj).

Thus,

zk =
2

N

N−1∑

j=0

yj cos(kxj) ∀ k = 0, . . . , N − 1. (7.14)

Definition 7.12 (Discrete Cosine Transform)
(
f̂N (k)

)
k∈Z

is called the discrete

cosine transform (DCT) of f with respect to the discretization (xj)
N−1
j=0 defined

in (7.12).

Remark 7.13 It is possible to interpret the DCT as the approximation of (7.11),
by using the composite midpoint quadrature rule.

Definition 7.14 (Inverse Discrete Cosine Transform) The sequence (yj)j∈Z

is called inverse discrete cosine transform (IDCT) of f with respect to the dis-

cretization (xj)
N−1
j=0 .

7.6.1 The JPEG: an image compression standard⋆

The light intensity measured by a camera is generally sampled over a rectangular
array of picture elements called pixels. Let us consider an image consisting of M2

112 Version May 27, 2025 Chapter 7. Fourier transform

pixels, such that each couple (i, j), for i, j = 0, . . . ,M−1, corresponds to a pixel. For
the sake of simplicity of the discussion, let us focus on the case of black and white
pictures. A BW picture can be thought as a function Y : M ×M → {0, . . . , 255},
(i, j) 7→ Y (i, j), where Y (i, j) represents the gray level at the pixel (i, j). Thus, M2·8
bits (the number 255 is 11111111 in base 2) per pixel are needed in order to store
a picture. In principle M may be very large: a typical high resolution color picture
for the web contains on the order of one millions pixels. However, state-of-the-art
techniques can compress typical images from 1/10 to 1/50 without visibly affecting
image quality. One of the most popular procedures is indeed JPEG (N. Ahmed, T.
Natarajan, K. R. Rao, 1974). Let us subdivide the image into 8 × 8 blocks. For

each block (Yik,jℓ)
7
k,ℓ=0, where (ik)

7
k=0, (jℓ)

7
ℓ=0 ⊂ {0, . . . ,M} are subsequences of

consecutive indices, we can apply the DCT, passing from the spatial domain to the
frequency domain. In this way every 8×8 block of source image sample is effectively
a discrete signal with 64 entries, which is a function of the two spatial dimensions,
denoted for the sake of simplicity of the notation as (Yi,j)

N
i,j=0, with N = 7. By

analogy to (7.13), we want to find (Zk,ℓ)
N−1
k,ℓ=0 such that

Yi,j =

N−1∑

k=0

N−1∑

ℓ=0

Z̃k,ℓ cos(kxi) cos(xj), i, j = 0, . . . , N − 1, (7.15)

where, in order to compensate for the factor 1/2, we employ the notation Z̃0,0 =

Z0,0/4, Z̃k,0 = Zk,0/2, Z̃0,ℓ = Z0,ℓ/2, Z̃k,ℓ = Zk,ℓ, k, ℓ ≥ 1. In Figure 7.2 the reader

can see the representation of the 64 basis functions (cos(kxi) cos(ℓxj))
N−1
k,ℓ=0 on a

single 8 × 8 block. In particular, the columns correspond to the index k and the
rows to the index ℓ, k, ℓ = 0, 1, . . . , N = 7. Increasing k, respectively ℓ, corresponds
to higher oscillations in the x-direction, respectively y-direction.

The partition (xj)
N−1
j=0 of [0, π] is the same as in (7.12). We multiply (7.15) by

cos(kxi) cos(ℓxj), sum over i, j = 0, . . . , N − 1 and use the discrete orthogonality
relations (7.11). In this way we get the 2D counterpart of (7.14), that is

Zk,ℓ =
4

N2

N−1∑

i=0

N−1∑

j=0

Yi,j cos(kxi) cos(ℓxj), k, ℓ = 0, . . . , N − 1. (7.16)

The DCT takes the signal representing the block as an input and decomposes it
into 64 orthogonal basis signals, each one of them corresponding to a particular
frequency. The value of a frequency reflects the size and speed of a change as
you can see from Figure 7.2. The output is the collection of 64 DCT coefficients,
representing the amplitudes of these signals. The first coefficient, corresponding to
the zero frequency in both spatial dimensions, is often called DC (direct current).
The remaining 63 entries are called AC (alternating currents). The high frequencies
represent the high contrast areas in the image, i.e. rapid changes in pixel intensity.
Note that in a classic image there is a high continuity between pixel values. Hence
it turns out that the numerically important AC coefficients can be found in the
square 4× 4 around the DC coefficient.

7.6. Discrete cosine transform (DCT)⋆ Version May 27, 2025 113

Figure 7.2: Representation of the basis functions (cos(kxi) cos(ℓxj))
N−1
k,ℓ=0.

Once the DCT coefficients are obtained, we would like to numerically represent
them with no greater precision than is necessary to achieve the desired image quality.
This step is called quantization of the signal. Each of the 64 DCT coefficients is
quantized according to a 8 × 8 matrix T called, quantization matrix, with integer
entries between 1 and 255, which is specified by the user and is conceived to provide
greater resolution to more perceptible frequency components on less perceptible
ones. In formulas, the quantization step reads as

Zk,ℓ 7→ ⌊
Zk,ℓ

Tk,ℓ
⌋, k, ℓ = 0, . . . , N − 1. (7.17)

Note that since the entries of T corresponding to the high frequencies are usually
high and because we use the function “floor” in (7.17), the resulting high frequency
coefficients will be zero. Let ZN be the 8×8 matrix of coefficients after quantization.
Let us go through its entries by following a zig-zag path (see Figure 7.3) in order to
construct a vector of 64 coefficients. We just mention that this trick allows to further
reduce the amount of information to be compressed of the image by placing low-
frequency coefficients (more likely to be non-zero) before high frequency coefficients.

114 Version May 27, 2025 Chapter 7. Fourier transform

Figure 7.3: Zig-zag path used for the encoding of images in the JPEG.

The procedure described above can be reversed by applying the IDCT which
takes the encoded coefficients and reconstructs the image signal by summing the
basis signals. However, because of the quantization step, there is an inevitable
loss of information. We have indeed introduced a numerical error and we made the
whole procedure irreversible. That is why the JPEG is said to be a lossy compression
technique. In Figure 7.4a we can see an 8×8 block from an image and in Figure 7.4b
its decoding process that follows the zig-zag path.

7.6. Discrete cosine transform (DCT)⋆ Version May 27, 2025 115

(a) Target block.

(b) Decoding using the zig-zag procedure.

Figure 7.4: The reconstruction process of a sample 8× 8 block from an image.

116 Version May 27, 2025 Chapter 7. Fourier transform

Bibliography

[1] Peter Deuflhard and Andreas Hohmann. Numerical analysis in modern scientific
computing, volume 43 of Texts in Applied Mathematics. Springer-Verlag, New
York, second edition, 2003.

[2] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Balti-
more, MD, fourth edition, 2013.

[3] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition,
2002.

[4] Thomas Huckle and Tobias Neckel. Bits and bugs, volume 29 of Software, Envi-
ronments, and Tools. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2019.

[5] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Méthodes numériques.
Springer-Verlag Italia, Milan, 2007. Algorithmes, analyse et applications. [Al-
gorithms, analysis and applications], Translated from the 1998 Italian original
by Jean-Frédéric Gerbeau.

[6] Lloyd N. Trefethen. Approximation theory and approximation practice. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.

117

118 Version May 27, 2025 Bibliography

