Chapter 7

Fourier transform

7.1 Recap of Fourier analysis

This section recalls material from the Analysis IV course.

Definition 7.1 Let L > 0. A function f : R — R or f : R — C is called L-periodic
if
flz+L)= f(x) VaxekR.

In principle, any function on a bounded interval, f : [a,b) — R, could be extended
to an L-periodic function with L = b — a by setting f(z + kL) = f(z) for = € [a,b)
and k € Z. However, this is not a very useful way to think about periodic functions,
because such extensions will rarely turn out to be continuous, differentiable, ... on
R.

Clearly, the functions sin(z), cos(x), ' are 2r-periodic. In the following, we will
assume that L = 27 without loss of generality (after a suitable rescaling of z).

For a 2m-periodic function f : R — R we can identify f with its restriction on
any interval of length 27. Let us take, for instance, [0, 27]. In the following, we will
simply say “periodic function f:[0,27] — R”.

From the Analysis IV course, it is known that the Fourier series

+o0) 1 2)
Z e e = — f(x)e % d, VkecZ. (7.1)
k=—o0 2m 0

converges to f under certain conditions in a certain sense. For example, if f €
L?(0,2m) then the truncated functions

N .
fu(e) = Y cpet (7.2)

k=—N

converge to f in the L2-norm.

101

102 Version May 12, 2025 Chapter 7. Fourier transform

Lemma 7.2 (Orthogonality relations) For every k,{ € Z,
2m .
R, e i k#4
<ell-’elk‘->L2 ::/ e*ledfelkib dr = 0 Zf 7&)
0 2 ifk={.
Proof. See Analysis IV. 0O

Lemma 7.2 implies that (ei’”)kez is an orthogonal basis of L?(0,27). By the

Plancherel / Parseval theorem?’, we obtain for f € L?(0,27) that

o0
IF1Z, =2 Y Jenl?,

k=—o0

with the Fourier coefficients ¢, defined asin (7.1). As a consequence, approximating
f with the truncated Fourier series fy in (7.9) results in the approximation error

If = fnllg, =27 > el (7.3)
|k|>N
Note that fy can be represented by the 2N + 1 complex numbers c_y,...,cn,

where c_; = ¢ (and ¢p € R). It is worth noting that fy is still real; using Euler’s
formula one has for x € R that

N N
fy(z) = Z cpet = Z ci(cos(kx) + isin(kx))
k=—N k=—N
N
= ¢+ Z(ck +) cos(kx) +i(cr, — k) sin(kx)
k=1
a > .
= 70 + kz_:l ay, cos(kx) + by sin(kzx), (7.4)
where ag = 2¢p, ap, = 2 - Re(ck), by = —2 - Im(cg).

Let us recall the definition of the most famous integral transform.

Definition 7.3 Given f € L(0,27), we define the Fourier transform of f as

2
f€) = % ; f(x)e ™" dz VazeR. (7.5)

Comparing (7.1) and (7.5), we observe that ¢, = f(k) for every k € Z.

7.2 Regularity and Fourier coefficients®

As we have seen in (7.3), the size of the Fourier coefficients for £k — oo determines
how well f can be approximated by truncated Fourier series. From the Riemann-
Lebesgue Lemma we know that f(k) — 0 as |k| — +oo for f € L'(0,2n). If

20In Analysis IV, this theorem might have been presented for the period L = 1, for which the
pre-factor 27 is not needed.

7.3. The discrete Fourier transform (DFT) Version May 12, 2025 103

extra regularity on f is assumed then it is possible to say more about the speed of
convergence of its Fourier coefficients.

Proposition 7.4 Let f be 2m-periodic and m times continuously differentiable on
R. Then)
|f(k)| < lek'|7m71 Vke Z,

where Cm — % O27r |f(m+1)(I)| dz.

Proof. Given k € Z, one computes

=2 [et a =
27 o - 2mik

2 . 1 ~
A F(@)e ™ de = = F(k).

where we used that the boundary term from the integration by parts vanishes since
f and e~ are 2m-periodic. By reiterating this procedure, it follows that

1

e,

fk) =

Because f(™*t1) is continuous it is also in L. In turn, we can estimate

N 1 2
B < —— (m+1) d
|f()| = 27T|k3|7”+1 A |f (l')| xZ,

which completes the proof. O

If f is infinitely often differentiable then it follows from Proposition 7.4 that ¢ =
f (k) decays faster than |k|™™ for any m € N. This superpolynomial convergence
is improved further under the stronger assumption that f is real analytic. In this
case, using tools from complex/harmonic analysis, it can be shown that there exist

constants p > 1 and C' > 0 such that

fk)<Cp ™ ViEkeZ (7.6)

7.3 The discrete Fourier transform (DFT)

The discrete Fourier transform (DFT) is a discrete analogue of the formula (7.5),
that is, the transformation of a vector instead of a function.

Let us assume that the function f is sampled uniformly, that is, f is only known
at the following set of n points in [0, 27]:

27

Zj ot y; = fz;), Vji=0,1,...,n—1.

In analogy to (7.5), the DFT transforms these n function values into

n—1
zk:Zijflj Vk=0,....,n—1, (7.7)
§=0

104 Version May 12, 2025 Chapter 7. Fourier transform

27i

where w,, := e~ "n is an nth root of unity. Up to scaling, the DFT can be obtained by

applying the composite trapezoidal rule to approximate (7.5) using the integration
n—1

nodes (z;);_, (EFY).

Let us recall that (w; k):;; forms an Abelian group, the so called group of
nth roots of unity. Another important property is the discrete analogue of the

orthogonality relations shown in Lemma 7.2.

Lemma 7.5 (Discrete orthogonality relations) For every k,¢ = 0,1,...,n —
1, it holds that
-1 .
S byt |0 i RAL
> wnlw, = -
= n if k==¢.
Proof. EFY. O
. T T
By defining the vectors z = (zo Z1 - zn_l) andy = (yo Y1 o yn_l) ,
the DFT (7.7) can be expressed as the matrix-vector product
z = Fnya
with the so called Fourier matriz
1 1 . 1
1 wl ce e wn_l el
F, = : . : = (fkj)j,k=o- (7.8)
1 wn_l ce e w(n_l)(n_l)

Note that it is custom to count vector/matrix indices from zero in the context of
the DFT.

We now let ag; denote the entry (j, k) (again counting from 0) of the matrix
F,F! and obtain from Lemma 7.5 that

n—1 n—1 .
_ N (T)

age = E frjfoj = E whe = { .
par £ noif k=0

Hence, we get F,, F'' = nI,, or, in other words, \/LﬁFn is unitary! Therefore,

1

n

1—
FH="F,.
n

Fl=
Given the transformed vector z, this allows us to recover the data y from its DFT

z using
1—
y = Fn_lz =—F,z.
n
In terms of the entries, this Inverse Discrete Fourier Transform (IDFT) takes the
form

1n71
ve== zw," Vk=0,...,n-1L
n
§=0

7.4. Resolving a mystery about the composite trapezoidal rule* Version May 12, 2025 105

Example 7.6 (Sound digitization and data compression) For carrying out this
compression in PYTHON, we first need to load a file (called audio.mat in the follow-
ing code snippet) containing an audio signal:

from scipy.io import loadmat

from IPython.display import Audio

audio = loadmat("audio.mat") # Load audio signal stored in audio.mat
y = audio[’y’]

Fs = audio[’Fs’][0] [0]

y = yl:,0]

To play this audio signal:

Audio(y,rate = Fs)

The commands

import scipy.fft as fft
z = fft.fft(y);

compute the DFT of the audio samples contained in the vectory. From Figure 7.1,
it is evident that the absolute values of the Fourier transform are small in large
parts of the frequency range. We neglect these parts using

ztilde = z * (abs(z)>30);

Using

ytilde fft.ifft(ztilde)
Audio(ytilde,rate = Fs)

we compute the inverse transform and play the compressed signal. While the signal
looks visually different, the sound does not seem to change too much.

One problem we neglected in the whole discussion above is that audio signals are
usually not periodic, which may lead to undesirable effects when blindly applying
Fourier transforms. One way to fix this is to pad audio signals with zeros before
performing the transform. o

7.4 Resolving a mystery about the composite
trapezoidal rule*
For a 27-periodic function f we consider the approximation of the integral

27

f(z) da.

0

Because of periodicity, the composite trapezoidal rule takes the form

Wi =2 > 16/

106

Version May 12, 2025

Chapter 7. Fourier transform

100
80
60
40
20

0

0 5000 10000
Original chirp

15000

100
80
60
40
20

0
0 5000 10000
DFT of chirp

15000

1

05

0

-05

0 5000 10000
Compressed DFT

15000

B
0 5000 10000
Compressed chirp

15000

Figure 7.1: Compression of the chirp signal (from Matlab). Displayed is the original
signal (top left), the absolute values of the DFT (top right), the compressed DFT
(bottom left), and the compressed signal obtained from the IDFT of the compressed
DFT (bottom right).

with h = 27 /N. Let us now consider the truncated Fourier expansion

N—-1
fuoa(@) = > cpeltn (7.9)
k=—N+1
On the one hand, we have
27
/ ok qyp 0 fork#0,
0 27 for kK =0.
On the other hand, Lemma 7.5 yields
fork=-N+1,...,-1,1,...,N — 1,

1) 2 = 0
Uik _ 4T 2mijk/N _
Q) [e™] NJZ::OE {27r for k = 0.

Hence, the composite trapezoidal rule with h = 27/N integrates the truncated
Fourier expansion fy exactly! This yields the following error bound:

; " (z) dz — ;Ll)[f]
< |[U@ - vt dx—@é”[f—fm}
< Ar > el.

|k|>N

For a real analytic 2m-periodic function, the result (7.6) shows that |cj| decays
exponentially fast and, in turn, the error of the composite trapezoidal rule also
converges exponentially fast to zero.

7.5. The fast Fourier transform (FFT) Version May 12, 2025 107

7.5 The fast Fourier transform (FFT)

In the following, we will describe a fast algorithm for performing the DFT (and, at
the same time, the IDFT). Recall that w, = e~7/™. Then

W=kt vk ez, Wwr=1, WwV?=-1, (7.10)

Recall that the DFT is performed by multiplying a vector with the matrix F,, =

(wﬂf)j;io This matrix has a lot of structure, which can be exploited to accelerate

matrix-vector multiplication. We illustrate this structure for n = 6. Then

1 1 1 1 1 1
1 we wi wi wi Wi
2 4 6 8 10

L B iy s My S o
Wg We Wg W Wp
1wl owf wl® wl® W
1wl Wi w® Wi wdd

where wg = e~ 2™/6 = ¢7/3 We reorder the rows such that the rows with even index
appear first and then the rows with odd index. This can be achieved by defining

1 00000
000100
010000
=10 000 1 0
001000
000001

and applying its transpose to Fg:

1 1 1 1 1 1 1 1 1 1 1 1

1 w? wi | wd w§ Wi 1 wi wi| 1 wg w

4 8 12 16 20 4 2 4 2

pPrE _ 1 wg wg |wg® wg W |1 wg owg | 1 wg wg
6 16— 1 w 2 3 I 5 - 1 211 — — 2
6 W§ | wg wg wg we Wg we w§
1 wg’ wg wg w%Q wé5 1 wg wg -1 —wg’ —wg
1 wg wéo wé5 w%o w@b 1 wg wé -1 —wg —wé

where we used the relation (7.10) multiple times. Because of w} = w2k for k € Z,
it follows that

1 1 1 1 1 1
1wl w3 1 wi w3
o | 1w el |1 W wl (5 B
6 76 1 We wg -1 —We 7&)(23 FgQg —FgQ3
1 wewi wiw? | -1 —wewi —wiw?
1 wew? wiwi| -1 —wew? —wiwi
with
1 1 1 1
Fs=11 w} wg , Q3= we

108 Version May 12, 2025 Chapter 7. Fourier transform

This shows, for n = 6, that F), is composed of four blocks F, 5, combined with
diagonal scaling and permutation. This relation generalizes to arbitrary even n.

Theorem 7.7 Let n > 2 be even. Let P, be the permutation matrixz belonging to
the permutation & : {0,...,n—1} = {0,...,n — 1} with

€:00, 12, ..., gflv—>n72, g»—>1, g+1»—>3, o n—len—1

Then
PTF _ < Fn/2 Fn/2 > _ (Fn/Q) (In/2 In/2)
o Fn/2Qn/2 - n/2Qn/2 Fn/2 Qn/2 _Qn/2

Qn/2 = diag(wz,w}” s 7w3/2_1)'

with

Proof. This follows from a straightforward extension of the discussion above for
n = 6, using relation (7.10). O

Theorem 7.7 can be used to perform a matrix-vector multiplication F,,y recursively.
For this purpose, we partition the vector y = (§;> such that yi,y2 € C*/2. Ac-

cording to Theorem 7.7 we can write F,y as follows:

E I I Foja(y1 +y2)
F,y = PT n/2) (n/2 n/2) (}’1) _ PT< n/2)
y="n < Fop2) Q2 —Qny2) \y2 "\ Fn2Qny2(y1 —y2)
In other words, the multiplication with F,, can be reduced to two multiplications

with F,, /o and some cheap additional computations. Applying this recursion re-
peatedly, one arrives at the following algorithm when n is a power of two.?!

Algorithm 7.8
Input: Vector y € C" where n is a power of 2.
Output: Matrix-vector product z = F,,y.

Partition y = (§;> with y1,ys € C*/2.

z1 = y1 + Y2, 22 = O 2(y1 — y2).
Recursion: z; <+ Fo 221
Recursion: zy < F, /2z2.

=P (2)

import numpy as np
def myfft(y):

PYTHON

211t is instructive to verify with a small example how reshape is used to effect the multiplication
with P,.

7.5. The fast Fourier transform (FFT) Version May 12, 2025 109

n = y.shape[0]
if (n == 1): returny
omega = np.exp(-2*np.pi*1j/n);

mid = int(n/2)

zl = y[0:mid]+y[mid:n];

z2 = np.power (omega, range(0,mid))*(y[0:mid]-y[mid:n])

z = np.concatenate ((myfft(z1), myfft(z2)))

z = np.reshape(np.reshape(z, (2,mid)), (n,), ’F’) # permute
return z

It is worth reflecting how the permutation is realized efficiently in the Python code.

The computational complexity of recursive algorithms can often be derived using
the Master theorem (see Wikipedia). In the case of Algorithm 7.8, it is also quite
easy to estimate the complexity directly. Let A(n) denote the number of operations
required by Algorithm 7.8 for a vector of length n. Ignoring the cost for computing
the powers of w,, (which can be computed beforehand and stored in a table), then??
A(n) = 5n+ 2 A(n/2). Recursive application of this formula yields

A(n) =5n+5n+4A(n/4) = --- = 5kn 4 28 A(n/2F).
Setting k = logy, n we have A(n/2%) = A(n/n) = A(1) = 0 and hence
A(n) = 5nlogy n.

Because this compares very favorably with the O(n?) complexity of general matrix-
vector multiplication, one calls Algorithm 7.8 the Fast Fourier Transform (FFT).

Remark 7.9 In Python, both NumPy and SciPy have functions implementing the
FFT; the one by SciPy tends to be faster. The software package FFTW (Fastest
Fourier Transform in the West, see http://www. fftw. org/) is a popular and
well tuned implementation of the FFT. For n = 2F the algorithm by FFTW roughly
corresponds to Algorithm 7.8. For n # 2% one needs to resort to other decompo-
sitions/factorizations of n; the asymptotic complexity remains O(nlogyn) but the
constants can be significantly larger, especially if n has large prime factors. There
is a Python wrapper for FFTW, called pyFFTW, which is more complicated to call.
Once the package pyFFTW is installed, the FFT and inverse FFT can be compted
as follows:

import pyfftw

#assume y is our signal

target_len = len(y)

a = pyfftw.empty_aligned(target_len, dtype=‘complex128’)
b = pyfftw.empty_aligned(target_len, dtype=‘complex128’)
#build a fft object to be called later

fft_object = pyfftw.FFTW(a, b)

al:] =y

22 A complex addition or subtraction counts 2 flops and a complex multiplication counts 6 flops.

110 Version May 12, 2025 Chapter 7. Fourier transform

#call fft, both fft_a and b will be the result of fft
fft_a = fft_object()

c = pyfftw.empty_aligned(target_len, dtype=‘complex128’)
#build an ifft object

ifft_object = pyfftw.FFTW(b, c, direction=‘FFTW_BACKWARD’)
#call ifft, both ifft_b and c will be the result of ifft
ifft_b = ifft_object()

7.6 Discrete cosine transform (DCT)

We now assume that f is not only 27-periodic but also even, that is,
fz+2km) = f(x), f(z) = f(—=x), Vk e Z,x € R.

It is then sufficient to restrict f to the interval [—m, 7]. Its Fourier series, if conver-
gent, reads as
ao

fz) = §+Zakcos(k:c) vV keZ; (7.11)
k=1

see (7.4). The following orthogonality relations hold:

Lemma 7.10 For every £,k € Z

. 0 if L#Kk,
/ cos(fx)cos(kxr) dr =45 if {=k#0,
0 T if (=k=0.

The Fourier coefficients (ay), ., can be recovered by multiplying (7.11) with cos(¢x),
integrating from 0 to 7, and using Lemma 7.10, which yields

f(z) cos(fx) dz = 40 cos(fx) dx + Zak/ cos(kx) cos(x) dz,
0 0 w1 Jo

and thus 5 /7
ap = —/ f(z) cos(kzx) dx VkeN. (7.12)
T Jo
Let us know suppose that f is known only at some discrete points in [0, 7]:
2+ 1w _
xj = %, y; = f(xj) Vj=0,...,N—1. (7.13)

The discrete counterpart of (7.11) becomes

N-1
yj:%—i— szcos(kacj), Vji=0,...,N—1, (7.14)
k=1

and the following discrete orthogonality relations hold.

7.6. Discrete cosine transform (DCT) Version May 12, 2025 111

Lemma 7.11 For all b,k € Z

N-1 0 if L#E,
Z cos(lxj)cos(kz;) = & if £=k#0,
3=0 N if t=k=0.

Proof. EFY. O

We now aim at computing (zk)kN:_O1 such that (7.14) holds. Mimicking the pro-
cedure above in a discrete setting, we multiply (7.14) with cos(¢z;), summing from
7=0toj= N —1 and employ Lemma 7.11, which yields

N-1 L Nl N-1 N-1
Z y; cos(lz;) = 30 Z cos(fx;) + 2k cos(kx;) cos(fx;).
§=0 3=0 k=1 j=0
Thus,
g N-1
%= jz::oyjcos(kxj) Vk=0,...,N -1 (7.15)

Definition 7.12 (Discrete Cosine Transform) (fN(k))kEz is called the discrete
cosine transform (DCT) of f with respect to the discretization (xj);,vz_ol defined

in (7.13).

Remark 7.13 It is possible to interpret the DCT as the approximation of (7.12),
by using the composite midpoint quadrature rule.

Definition 7.14 (Inverse Discrete Cosine Transform) The sequence (y;)

JEZ
is called inverse discrete cosine transform (IDCT) of f with respect to the dis-
cretization (acj);v;Ol.

7.6.1 The JPEG: an image compression standard*

The light intensity measured by a camera is generally sampled over a rectangular
array of picture elements called pizels. Let us consider an image consisting of M?
pixels, such that each couple (4, j), for ¢, j = 0,..., M —1, corresponds to a pixel. For
the sake of simplicity of the discussion, let us focus on the case of black and white
pictures. A BW picture can be thought as a function Y : M x M — {0,...,255},
(i,4) = Y (i,5), where Y (i, j) represents the gray level at the pixel (i,). Thus, M?2-8
bits (the number 255 is 11111111 in base 2) per pixel are needed in order to store
a picture. In principle M may be very large: a typical high resolution color picture
for the web contains on the order of one millions pixels. However, state-of-the-art
techniques can compress typical images from 1/10 to 1/50 without visibly affecting
image quality. One of the most popular procedures is indeed JPEG (N. Ahmed, T.
Natarajan, K. R. Rao, 1974). Let us subdivide the image into 8 x 8 blocks. For
each block (Yik,jz);ezoa where (ik)zzo, (jg)zzo C {0,..., M} are subsequences of

112 Version May 12, 2025 Chapter 7. Fourier transform

consecutive indices, we can apply the DCT, passing from the spatial domain to the
frequency domain. In this way every 8 x 8 block of source image sample is effectively
a discrete signal with 64 entries, which is a function of the ngo spatial dimensions,
denoted for the sake of simplicity of the notation as (l/}7j)i7j=0, with N = 7. By
analogy to (7.14), we want to find (Zk’z)g;:lo such that

N-1N—
Z Z &0 cos(kx;) cos(x;), i,j=0,...,N—1, (7.16)
k=0 ¢=

where, in order to compensate for the factor 1/2, we employ the notation 2070 =
Zo.0/4, Zk,o = Zko0/2, Zo,g =Zo,/2, Zk,l = Ziy, k, 0 > 1. In Figure 7.2 the reader
can see the representation of the 64 basis functions (cos(kx;) cos(ﬁxj))k]\f;:lo on a
single 8 x 8 block. In particular, the columns correspond to the index k and the
rows to the index ¢, k, £ =0,1,..., N = 7. Increasing k, respectively ¢, corresponds
to higher oscillations in the z-direction, respectively y-direction.

Figure 7.2: Representation of the basis functions (cos(kx;) cos(lx;));. ,—o-

The partition (wj)j‘\:()l of [0, 7] is the same as in (7.13). We multiply (7.16) by
cos(kx;) cos(fx;), sum over 4,j = 0,...,N — 1 and use the discrete orthogonality

7.6. Discrete cosine transform (DCT) Version May 12, 2025 113

relations (7.11). In this way we get the 2D counterpart of (7.15), that is

N—

2

-1

4
Y; ; cos(kx;) cos({x;), k,=0,...,N—1. (7.17)

N2
=0

AWES

<.
Il
o

The DCT takes the signal representing the block as an input and decomposes it
into 64 orthogonal basis signals, each one of them corresponding to a particular
frequency. The value of a frequency reflects the size and speed of a change as
you can see from Figure 7.2. The output is the collection of 64 DCT coeflicients,
representing the amplitudes of these signals. The first coefficient, corresponding to
the zero frequency in both spatial dimensions, is often called DC (direct current).
The remaining 63 entries are called AC (alternating currents). The high frequencies
represent the high contrast areas in the image, i.e. rapid changes in pixel intensity.
Note that in a classic image there is a high continuity between pixel values. Hence
it turns out that the numerically important AC coefficients can be found in the
square 4 x 4 around the DC coefficient.

Once the DCT coefficients are obtained, we would like to numerically represent
them with no greater precision than is necessary to achieve the desired image quality.
This step is called quantization of the signal. Each of the 64 DCT coefficients is
quantized according to a 8 x 8 matrix T' called, quantization matriz, with integer
entries between 1 and 255, which is specified by the user and is conceived to provide
greater resolution to more perceptible frequency components on less perceptible
ones. In formulas, the quantization step reads as

Zkgi—>|_—7J, k,4=0,...,N—1. (718)

Note that since the entries of T' corresponding to the high frequencies are usually
high and because we use the function “floor” in (7.18), the resulting high frequency
coefficients will be zero. Let Zn be the 8 x 8 matrix of coefficients after quantization.
Let us go through its entries by following a zig-zag path (see Figure 7.3) in order to
construct a vector of 64 coefficients. We just mention that this trick allows to further
reduce the amount of information to be compressed of the image by placing low-
frequency coefficients (more likely to be non-zero) before high frequency coefficients.

The procedure described above can be reversed by applying the IDCT which
takes the encoded coefficients and reconstructs the image signal by summing the
basis signals. However, because of the quantization step, there is an inevitable
loss of information. We have indeed introduced a numerical error and we made the
whole procedure irreversible. That is why the JPEG is said to be a lossy compression
technique. In Figure 7.4a we can see an 8 x 8 block from an image and in Figure 7.4b
its decoding process that follows the zig-zag path.

Chapter 7. Fourier transform

114 Version May 12, 2025

/r7

;7

Figure 7.3: Zig-zag path used for the encoding of images in the JPEG.

~d
[3]
(e}
=
Q
-
<)
o0
g
&
—
<
N

(b) Decoding using the zig-zag procedure.

Figure 7.4: The reconstruction process of a sample 8 x 8 block from an image.

