
Chapter 7

Fourier transform

7.1 Recap of Fourier analysis

This section recalls material from the Analysis IV course.

Definition 7.1 Let L > 0. A function f : R→ R or f : R→ C is called L-periodic
if

f(x+ L) = f(x) ∀ x ∈ R.

In principle, any function on a bounded interval, f : [a, b)→ R, could be extended
to an L-periodic function with L = b− a by setting f(x+ kL) = f(x) for x ∈ [a, b)
and k ∈ Z. However, this is not a very useful way to think about periodic functions,
because such extensions will rarely turn out to be continuous, differentiable, ... on
R.

Clearly, the functions sin(x), cos(x), eix are 2π-periodic. In the following, we will
assume that L = 2π without loss of generality (after a suitable rescaling of x).

For a 2π-periodic function f : R → R we can identify f with its restriction on
any interval of length 2π. Let us take, for instance, [0, 2π]. In the following, we will
simply say “periodic function f : [0, 2π]→ R”.

From the Analysis IV course, it is known that the Fourier series

+∞∑

k=−∞
cke

ikx, ck =
1

2π

∫ 2π

0

f(x)e−ikx dx, ∀ k ∈ Z. (7.1)

converges to f under certain conditions in a certain sense. For example, if f ∈
L2(0, 2π) then the truncated functions

fN(x) :=

N∑

k=−N

cke
ikx (7.2)

converge to f in the L2-norm.

101

102 Version May 12, 2025 Chapter 7. Fourier transform

Lemma 7.2 (Orthogonality relations) For every k, ℓ ∈ Z,

〈eiℓ·, eik·〉L2 :=

∫ 2π

0

e−iℓxeikx dx =

{
0 if k 6= ℓ,

2π if k = ℓ.

Proof. See Analysis IV.

Lemma 7.2 implies that
(
eikx

)
k∈Z

is an orthogonal basis of L2(0, 2π). By the

Plancherel / Parseval theorem20, we obtain for f ∈ L2(0, 2π) that

‖f‖2L2
= 2π

∞∑

k=−∞
|ck|

2,

with the Fourier coefficients ck defined as in (7.1). As a consequence, approximating
f with the truncated Fourier series fN in (7.9) results in the approximation error

‖f − fN‖
2
L2

= 2π
∑

|k|>N

|ck|
2. (7.3)

Note that fN can be represented by the 2N + 1 complex numbers c−N , . . . , cN ,
where c−k = ck (and c0 ∈ R). It is worth noting that fN is still real; using Euler’s
formula one has for x ∈ R that

fN(x) =

N∑

k=−N

cke
ikx =

N∑

k=−N

ck(cos(kx) + i sin(kx))

= c0 +

N∑

k=1

(ck + ck) cos(kx) + i(ck − ck) sin(kx)

=
a0
2

+

∞∑

k=1

ak cos(kx) + bk sin(kx), (7.4)

where a0 = 2c0, ak = 2 · Re(ck), bk = −2 · Im(ck).
Let us recall the definition of the most famous integral transform.

Definition 7.3 Given f ∈ L1(0, 2π), we define the Fourier transform of f as

f̂(ξ) :=
1

2π

∫ 2π

0

f(x)e−iξx dx ∀ x ∈ R. (7.5)

Comparing (7.1) and (7.5), we observe that ck = f̂(k) for every k ∈ Z.

7.2 Regularity and Fourier coefficients⋆

As we have seen in (7.3), the size of the Fourier coefficients for k →∞ determines
how well f can be approximated by truncated Fourier series. From the Riemann-
Lebesgue Lemma we know that f̂(k) → 0 as |k| → +∞ for f ∈ L1(0, 2π). If

20In Analysis IV, this theorem might have been presented for the period L = 1, for which the

pre-factor 2π is not needed.

7.3. The discrete Fourier transform (DFT) Version May 12, 2025 103

extra regularity on f is assumed then it is possible to say more about the speed of
convergence of its Fourier coefficients.

Proposition 7.4 Let f be 2π-periodic and m times continuously differentiable on
R. Then

|f̂(k)| ≤ Cm|k|
−m−1 ∀ k ∈ Z,

where Cm := 1
2π

∫ 2π

0
|f (m+1)(x)| dx.

Proof. Given k ∈ Z, one computes

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikx dx =
1

2πik

∫ 2π

0

f ′(x)e−ikx dx =
1

ik
f̂ ′(k),

where we used that the boundary term from the integration by parts vanishes since
f and e−ikx are 2π-periodic. By reiterating this procedure, it follows that

f̂(k) =
1

(ik)m+1 f̂
(m+1)(k),

Because f (m+1) is continuous it is also in L1. In turn, we can estimate

|f̂(k)| ≤
1

2π|k|m+1

∫ 2π

0

|f (m+1)(x)| dx,

which completes the proof.

If f is infinitely often differentiable then it follows from Proposition 7.4 that ck =
f̂(k) decays faster than |k|−m for any m ∈ N. This superpolynomial convergence
is improved further under the stronger assumption that f is real analytic. In this
case, using tools from complex/harmonic analysis, it can be shown that there exist
constants ρ > 1 and C > 0 such that

|f̂(k)| ≤ Cρ−|k| ∀ k ∈ Z. (7.6)

7.3 The discrete Fourier transform (DFT)

The discrete Fourier transform (DFT) is a discrete analogue of the formula (7.5),
that is, the transformation of a vector instead of a function.

Let us assume that the function f is sampled uniformly, that is, f is only known
at the following set of n points in [0, 2π]:

xj =
2πj

n
, yj = f(xj), ∀ j = 0, 1, . . . , n− 1.

In analogy to (7.5), the DFT transforms these n function values into

zk =
n−1∑

j=0

yjω
kj
n ∀ k = 0, . . . , n− 1, (7.7)

104 Version May 12, 2025 Chapter 7. Fourier transform

where ωn := e−
2πi

n is an nth root of unity. Up to scaling, the DFT can be obtained by
applying the composite trapezoidal rule to approximate (7.5) using the integration

nodes (xj)
n−1
j=0 (EFY).

Let us recall that
(
ω−k
n

)n−1

k=0
forms an Abelian group, the so called group of

nth roots of unity. Another important property is the discrete analogue of the
orthogonality relations shown in Lemma 7.2.

Lemma 7.5 (Discrete orthogonality relations) For every k, ℓ = 0, 1, . . . , n −
1, it holds that

n−1∑

j=0

ωkj
n ω−ℓj

n =

{
0 if k 6= ℓ,

n if k = ℓ.

Proof. EFY.

By defining the vectors z =
(
z0 z1 · · · zn−1

)⊤
and y =

(
y0 y1 · · · yn−1

)⊤
,

the DFT (7.7) can be expressed as the matrix-vector product

z = Fny,

with the so called Fourier matrix

Fn =




1 1 · · · 1
1 ω1 · · · ωn−1

...
...

...
1 ωn−1 · · · ω(n−1)(n−1)


 = (fkj)

n−1
j,k=0 . (7.8)

Note that it is custom to count vector/matrix indices from zero in the context of
the DFT.

We now let akl denote the entry (j, k) (again counting from 0) of the matrix
FnF

H

n and obtain from Lemma 7.5 that

akℓ =

n−1∑

j=0

fkjfℓj =

n−1∑

i=0

ωkj
n ω−ℓj

n =

{
0 if k 6= ℓ,

n if k = ℓ.

Hence, we get FnF
H
n = nIn or, in other words, 1√

n
Fn is unitary! Therefore,

F−1
n =

1

n
FH

n =
1

n
Fn.

Given the transformed vector z, this allows us to recover the data y from its DFT
z using

y = F−1
n z =

1

n
Fnz.

In terms of the entries, this Inverse Discrete Fourier Transform (IDFT) takes the
form

yk =
1

n

n−1∑

j=0

zjω
−kj
n ∀ k = 0, . . . , n− 1.

7.4. Resolving a mystery about the composite trapezoidal rule⋆Version May 12, 2025 105

Example 7.6 (Sound digitization and data compression) For carrying out this
compression in Python, we first need to load a file (called audio.mat in the follow-
ing code snippet) containing an audio signal:

from scipy.io import loadmat

from IPython.display import Audio

audio = loadmat("audio.mat") # Load audio signal stored in audio.mat

y = audio[’y’]

Fs = audio[’Fs’][0][0]

y = y[:,0]

To play this audio signal:

Audio(y,rate = Fs)

The commands

import scipy.fft as fft

z = fft.fft(y);

compute the DFT of the audio samples contained in the vector y. From Figure 7.1,
it is evident that the absolute values of the Fourier transform are small in large
parts of the frequency range. We neglect these parts using

ztilde = z * (abs(z)>30);

Using

ytilde = fft.ifft(ztilde)

Audio(ytilde,rate = Fs)

we compute the inverse transform and play the compressed signal. While the signal
looks visually different, the sound does not seem to change too much.

One problem we neglected in the whole discussion above is that audio signals are
usually not periodic, which may lead to undesirable effects when blindly applying
Fourier transforms. One way to fix this is to pad audio signals with zeros before
performing the transform. ⋄

7.4 Resolving a mystery about the composite
trapezoidal rule⋆

For a 2π-periodic function f we consider the approximation of the integral

∫ 2π

0

f(x) dx.

Because of periodicity, the composite trapezoidal rule takes the form

Q
(1)
h [f] =

2π

N

N−1∑

j=0

f(j/N)

106 Version May 12, 2025 Chapter 7. Fourier transform

0 5000 10000 15000

Original chirp

-1

-0.5

0

0.5

1

0 5000 10000 15000

DFT of chirp

0

20

40

60

80

100

0 5000 10000 15000

Compressed DFT

0

20

40

60

80

100

0 5000 10000 15000

Compressed chirp

-1

-0.5

0

0.5

1

Figure 7.1: Compression of the chirp signal (from Matlab). Displayed is the original
signal (top left), the absolute values of the DFT (top right), the compressed DFT
(bottom left), and the compressed signal obtained from the IDFT of the compressed
DFT (bottom right).

with h = 2π/N . Let us now consider the truncated Fourier expansion

fN−1(x) :=
N−1∑

k=−N+1

cke
ikx. (7.9)

On the one hand, we have

∫ 2π

0

eikx dx =

{
0 for k 6= 0,

2π for k = 0.

On the other hand, Lemma 7.5 yields

Q
(1)
h [eik·] =

2π

N

N−1∑

j=0

e2πijk/N =

{
0 for k = −N + 1, . . . ,−1, 1, . . . , N − 1,

2π for k = 0.

Hence, the composite trapezoidal rule with h = 2π/N integrates the truncated
Fourier expansion fN exactly! This yields the following error bound:

∣∣∣∣
∫ 2π

0

f(x) dx−Q
(1)
h [f]

∣∣∣∣

≤

∣∣∣∣
∫ 2π

0

(f(x)− fN (x)) dx−Q
(1)
h [f − fN]

∣∣∣∣

≤ 4π
∑

|k|>N

|ck|.

For a real analytic 2π-periodic function, the result (7.6) shows that |ck| decays
exponentially fast and, in turn, the error of the composite trapezoidal rule also
converges exponentially fast to zero.

7.5. The fast Fourier transform (FFT) Version May 12, 2025 107

7.5 The fast Fourier transform (FFT)

In the following, we will describe a fast algorithm for performing the DFT (and, at
the same time, the IDFT). Recall that ωn = e−2πi/n. Then

ωk
n = ωk+n

n ∀k ∈ Z, ωn
n = 1, ωn/2

n = −1, (7.10)

Recall that the DFT is performed by multiplying a vector with the matrix Fn =(
ωjk
n

)n−1

j,k=0
. This matrix has a lot of structure, which can be exploited to accelerate

matrix-vector multiplication. We illustrate this structure for n = 6. Then

F6 =




1 1 1 1 1 1
1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

1 ω2
6 ω4

6 ω6
6 ω8

6 ω10
6

1 ω3
6 ω6

6 ω9
6 ω12

6 ω15
6

1 ω4
6 ω8

6 ω12
6 ω16

6 ω20
6

1 ω5
6 ω10

6 ω15
6 ω20

6 ω25
6




,

where ω6 = e−2πi/6 = eπi/3. We reorder the rows such that the rows with even index
appear first and then the rows with odd index. This can be achieved by defining

P6 =




1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




.

and applying its transpose to F6:

PT
6 F6 =




1 1 1 1 1 1
1 ω2

6 ω4
6 ω6

6 ω8
6 ω10

6

1 ω4
6 ω8

6 ω12
6 ω16

6 ω20
6

1 ω6 ω2
6 ω3

6 ω4
6 ω5

6

1 ω3
6 ω6

6 ω9
6 ω12

6 ω15
6

1 ω5
6 ω10

6 ω15
6 ω20

6 ω25
6




=




1 1 1 1 1 1
1 ω2

6 ω4
6 1 ω2

6 ω4
6

1 ω4
6 ω2

6 1 ω4
6 ω2

6

1 ω6 ω2
6 −1 −ω6 −ω2

6

1 ω3
6 ω6

6 −1 −ω3
6 −ω6

6

1 ω5
6 ω4

6 −1 −ω5
6 −ω4

6




,

where we used the relation (7.10) multiple times. Because of ωk
3 = ω2k

6 for k ∈ Z,
it follows that

PT
6 F6 =




1 1 1 1 1 1
1 ω1

3 ω2
3 1 ω1

3 ω2
3

1 ω2
3 ω1

3 1 ω2
3 ω1

3

1 ω6 ω2
6 −1 −ω6 −ω2

6

1 ω6ω
1
3 ω2

6ω
2
3 −1 −ω6ω

1
3 −ω2

6ω
2
3

1 ω6ω
2
3 ω2

6ω
1
3 −1 −ω6ω

2
3 −ω2

6ω
1
3




=

(
F3 F3

F3Ω3 −F3Ω3

)

with

F3 =



1 1 1
1 ω1

3 ω2
3

1 ω2
3 ω1

3


 , Ω3 =



1

ω6

ω2
6


 .

108 Version May 12, 2025 Chapter 7. Fourier transform

This shows, for n = 6, that Fn is composed of four blocks Fn/2, combined with
diagonal scaling and permutation. This relation generalizes to arbitrary even n.

Theorem 7.7 Let n ≥ 2 be even. Let Pn be the permutation matrix belonging to
the permutation ξ : {0, . . . , n− 1} → {0, . . . , n− 1} with

ξ : 0 7→ 0, 1 7→ 2, . . . ,
n

2
− 1 7→ n− 2,

n

2
7→ 1,

n

2
+ 1 7→ 3, . . . , n− 1 7→ n− 1.

Then

PT

n Fn =

(
Fn/2 Fn/2

Fn/2Ωn/2 −Fn/2Ωn/2

)
=

(
Fn/2

Fn/2

)(
In/2 In/2
Ωn/2 −Ωn/2

)

with
Ωn/2 = diag(ω0

n, ω
1
n, . . . , ω

n/2−1
n).

Proof. This follows from a straightforward extension of the discussion above for
n = 6, using relation (7.10).

Theorem 7.7 can be used to perform a matrix-vector multiplication Fny recursively.

For this purpose, we partition the vector y =
(

y1

y2

)
such that y1,y2 ∈ Cn/2. Ac-

cording to Theorem 7.7 we can write Fny as follows:

Fny = PT
n

(
Fn/2

Fn/2

)(
In/2 In/2
Ωn/2 −Ωn/2

)(
y1

y2

)
= PT

n

(
Fn/2(y1 + y2)

Fn/2Ωn/2(y1 − y2)

)
.

In other words, the multiplication with Fn can be reduced to two multiplications
with Fn/2 and some cheap additional computations. Applying this recursion re-
peatedly, one arrives at the following algorithm when n is a power of two.21

Algorithm 7.8
Input: Vector y ∈ Cn where n is a power of 2.
Output: Matrix-vector product z = Fny.

Partition y =
(

y1

y2

)
with y1,y2 ∈ Cn/2.

z1 = y1 + y2, z2 = Ωn/2(y1 − y2).
Recursion: z1 ← Fn/2z1
Recursion: z2 ← Fn/2z2.

z = PT
n

(
z1

z2

)

Python

import numpy as np

def myfft(y):

21It is instructive to verify with a small example how reshape is used to effect the multiplication

with Pn.

7.5. The fast Fourier transform (FFT) Version May 12, 2025 109

n = y.shape[0]

if (n == 1): return y

omega = np.exp(-2*np.pi*1j/n);

mid = int(n/2)

z1 = y[0:mid]+y[mid:n];

z2 = np.power(omega, range(0,mid))*(y[0:mid]-y[mid:n])

z = np.concatenate((myfft(z1), myfft(z2)))

z = np.reshape(np.reshape(z, (2,mid)), (n,), ’F’) # permute

return z

It is worth reflecting how the permutation is realized efficiently in the Python code.
The computational complexity of recursive algorithms can often be derived using

the Master theorem (see Wikipedia). In the case of Algorithm 7.8, it is also quite
easy to estimate the complexity directly. Let A(n) denote the number of operations
required by Algorithm 7.8 for a vector of length n. Ignoring the cost for computing
the powers of ωn (which can be computed beforehand and stored in a table), then22

A(n) = 5n+ 2A(n/2). Recursive application of this formula yields

A(n) = 5n+ 5n+ 4A(n/4) = · · · = 5kn+ 2kA(n/2k).

Setting k = log2 n we have A(n/2k) = A(n/n) = A(1) = 0 and hence

A(n) = 5n log2 n.

Because this compares very favorably with the O(n2) complexity of general matrix-
vector multiplication, one calls Algorithm 7.8 the Fast Fourier Transform (FFT).

Remark 7.9 In Python, both NumPy and SciPy have functions implementing the
FFT; the one by SciPy tends to be faster. The software package FFTW (Fastest
Fourier Transform in the West, see http:// www.fftw. org/) is a popular and
well tuned implementation of the FFT. For n = 2k the algorithm by FFTW roughly
corresponds to Algorithm 7.8. For n 6= 2k one needs to resort to other decompo-
sitions/factorizations of n; the asymptotic complexity remains O(n log2 n) but the
constants can be significantly larger, especially if n has large prime factors. There
is a Python wrapper for FFTW, called pyFFTW, which is more complicated to call.
Once the package pyFFTW is installed, the FFT and inverse FFT can be compted
as follows:

import pyfftw

#assume y is our signal

target_len = len(y)

a = pyfftw.empty_aligned(target_len, dtype=‘complex128’)

b = pyfftw.empty_aligned(target_len, dtype=‘complex128’)

#build a fft object to be called later

fft_object = pyfftw.FFTW(a, b)

a[:] = y

22A complex addition or subtraction counts 2 flops and a complex multiplication counts 6 flops.

110 Version May 12, 2025 Chapter 7. Fourier transform

#call fft, both fft_a and b will be the result of fft

fft_a = fft_object()

c = pyfftw.empty_aligned(target_len, dtype=‘complex128’)

#build an ifft object

ifft_object = pyfftw.FFTW(b, c, direction=‘FFTW_BACKWARD’)

#call ifft, both ifft_b and c will be the result of ifft

ifft_b = ifft_object()

7.6 Discrete cosine transform (DCT)

We now assume that f is not only 2π-periodic but also even, that is,

f(x+ 2kπ) = f(x), f(x) = f(−x), ∀k ∈ Z, x ∈ R.

It is then sufficient to restrict f to the interval [−π, π]. Its Fourier series, if conver-
gent, reads as

f(x) =
a0
2

+
∞∑

k=1

ak cos(kx) ∀ k ∈ Z; (7.11)

see (7.4). The following orthogonality relations hold:

Lemma 7.10 For every ℓ, k ∈ Z

∫ π

0

cos(ℓx) cos(kx) dx =





0 if ℓ 6= k,
π
2 if ℓ = k 6= 0,

π if ℓ = k = 0.

The Fourier coefficients (ak)k∈Z
can be recovered by multiplying (7.11) with cos(ℓx),

integrating from 0 to π, and using Lemma 7.10, which yields

∫ π

0

f(x) cos(ℓx) dx =
a0
2

∫ π

0

cos(ℓx) dx+

∞∑

k=1

ak

∫ π

0

cos(kx) cos(ℓx) dx,

and thus

ak =
2

π

∫ π

0

f(x) cos(kx) dx ∀ k ∈ N. (7.12)

Let us know suppose that f is known only at some discrete points in [0, π]:

xj :=
(2j + 1)π

2N
, yj := f(xj) ∀ j = 0, . . . , N − 1. (7.13)

The discrete counterpart of (7.11) becomes

yj =
z0
2

+

N−1∑

k=1

zk cos(kxj), ∀ j = 0, . . . , N − 1, (7.14)

and the following discrete orthogonality relations hold.

7.6. Discrete cosine transform (DCT) Version May 12, 2025 111

Lemma 7.11 For all ℓ, k ∈ Z

N−1∑

j=0

cos(ℓxj) cos(kxj) =





0 if ℓ 6= k,
N
2 if ℓ = k 6= 0,

N if ℓ = k = 0.

Proof. EFY.

We now aim at computing (zk)
N−1
k=0 such that (7.14) holds. Mimicking the pro-

cedure above in a discrete setting, we multiply (7.14) with cos(ℓxj), summing from
j = 0 to j = N − 1 and employ Lemma 7.11, which yields

N−1∑

j=0

yj cos(ℓxj) =
z0
2

N−1∑

j=0

cos(ℓxj) +

N−1∑

k=1

zk

N−1∑

j=0

cos(kxj) cos(ℓxj).

Thus,

zk =
2

N

N−1∑

j=0

yj cos(kxj) ∀ k = 0, . . . , N − 1. (7.15)

Definition 7.12 (Discrete Cosine Transform)
(
f̂N (k)

)
k∈Z

is called the discrete

cosine transform (DCT) of f with respect to the discretization (xj)
N−1
j=0 defined

in (7.13).

Remark 7.13 It is possible to interpret the DCT as the approximation of (7.12),
by using the composite midpoint quadrature rule.

Definition 7.14 (Inverse Discrete Cosine Transform) The sequence (yj)j∈Z

is called inverse discrete cosine transform (IDCT) of f with respect to the dis-

cretization (xj)
N−1
j=0 .

7.6.1 The JPEG: an image compression standard⋆

The light intensity measured by a camera is generally sampled over a rectangular
array of picture elements called pixels. Let us consider an image consisting of M2

pixels, such that each couple (i, j), for i, j = 0, . . . ,M−1, corresponds to a pixel. For
the sake of simplicity of the discussion, let us focus on the case of black and white
pictures. A BW picture can be thought as a function Y : M ×M → {0, . . . , 255},
(i, j) 7→ Y (i, j), where Y (i, j) represents the gray level at the pixel (i, j). Thus,M2·8
bits (the number 255 is 11111111 in base 2) per pixel are needed in order to store
a picture. In principle M may be very large: a typical high resolution color picture
for the web contains on the order of one millions pixels. However, state-of-the-art
techniques can compress typical images from 1/10 to 1/50 without visibly affecting
image quality. One of the most popular procedures is indeed JPEG (N. Ahmed, T.
Natarajan, K. R. Rao, 1974). Let us subdivide the image into 8 × 8 blocks. For

each block (Yik,jℓ)
7
k,ℓ=0, where (ik)

7
k=0, (jℓ)

7
ℓ=0 ⊂ {0, . . . ,M} are subsequences of

112 Version May 12, 2025 Chapter 7. Fourier transform

consecutive indices, we can apply the DCT, passing from the spatial domain to the
frequency domain. In this way every 8×8 block of source image sample is effectively
a discrete signal with 64 entries, which is a function of the two spatial dimensions,
denoted for the sake of simplicity of the notation as (Yi,j)

N
i,j=0, with N = 7. By

analogy to (7.14), we want to find (Zk,ℓ)
N−1
k,ℓ=0 such that

Yi,j =

N−1∑

k=0

N−1∑

ℓ=0

Z̃k,ℓ cos(kxi) cos(xj), i, j = 0, . . . , N − 1, (7.16)

where, in order to compensate for the factor 1/2, we employ the notation Z̃0,0 =

Z0,0/4, Z̃k,0 = Zk,0/2, Z̃0,ℓ = Z0,ℓ/2, Z̃k,ℓ = Zk,ℓ, k, ℓ ≥ 1. In Figure 7.2 the reader

can see the representation of the 64 basis functions (cos(kxi) cos(ℓxj))
N−1
k,ℓ=0 on a

single 8 × 8 block. In particular, the columns correspond to the index k and the
rows to the index ℓ, k, ℓ = 0, 1, . . . , N = 7. Increasing k, respectively ℓ, corresponds
to higher oscillations in the x-direction, respectively y-direction.

Figure 7.2: Representation of the basis functions (cos(kxi) cos(ℓxj))
N−1
k,ℓ=0.

The partition (xj)
N−1
j=0 of [0, π] is the same as in (7.13). We multiply (7.16) by

cos(kxi) cos(ℓxj), sum over i, j = 0, . . . , N − 1 and use the discrete orthogonality

7.6. Discrete cosine transform (DCT) Version May 12, 2025 113

relations (7.11). In this way we get the 2D counterpart of (7.15), that is

Zk,ℓ =
4

N2

N−1∑

i=0

N−1∑

j=0

Yi,j cos(kxi) cos(ℓxj), k, ℓ = 0, . . . , N − 1. (7.17)

The DCT takes the signal representing the block as an input and decomposes it
into 64 orthogonal basis signals, each one of them corresponding to a particular
frequency. The value of a frequency reflects the size and speed of a change as
you can see from Figure 7.2. The output is the collection of 64 DCT coefficients,
representing the amplitudes of these signals. The first coefficient, corresponding to
the zero frequency in both spatial dimensions, is often called DC (direct current).
The remaining 63 entries are called AC (alternating currents). The high frequencies
represent the high contrast areas in the image, i.e. rapid changes in pixel intensity.
Note that in a classic image there is a high continuity between pixel values. Hence
it turns out that the numerically important AC coefficients can be found in the
square 4× 4 around the DC coefficient.

Once the DCT coefficients are obtained, we would like to numerically represent
them with no greater precision than is necessary to achieve the desired image quality.
This step is called quantization of the signal. Each of the 64 DCT coefficients is
quantized according to a 8 × 8 matrix T called, quantization matrix, with integer
entries between 1 and 255, which is specified by the user and is conceived to provide
greater resolution to more perceptible frequency components on less perceptible
ones. In formulas, the quantization step reads as

Zk,ℓ 7→ ⌊
Zk,ℓ

Tk,ℓ
⌋, k, ℓ = 0, . . . , N − 1. (7.18)

Note that since the entries of T corresponding to the high frequencies are usually
high and because we use the function “floor” in (7.18), the resulting high frequency
coefficients will be zero. Let ZN be the 8×8 matrix of coefficients after quantization.
Let us go through its entries by following a zig-zag path (see Figure 7.3) in order to
construct a vector of 64 coefficients. We just mention that this trick allows to further
reduce the amount of information to be compressed of the image by placing low-
frequency coefficients (more likely to be non-zero) before high frequency coefficients.

The procedure described above can be reversed by applying the IDCT which
takes the encoded coefficients and reconstructs the image signal by summing the
basis signals. However, because of the quantization step, there is an inevitable
loss of information. We have indeed introduced a numerical error and we made the
whole procedure irreversible. That is why the JPEG is said to be a lossy compression
technique. In Figure 7.4a we can see an 8×8 block from an image and in Figure 7.4b
its decoding process that follows the zig-zag path.

114 Version May 12, 2025 Chapter 7. Fourier transform

Figure 7.3: Zig-zag path used for the encoding of images in the JPEG.

(a) Target block.

(b) Decoding using the zig-zag procedure.

Figure 7.4: The reconstruction process of a sample 8× 8 block from an image.

