
Chapter 6

Regression and Least

Squares

Regression refers to the problem of finding a function that best fits a set of data
points. That is, given m data points (t1, y1), (t2, y2), . . . , (tm, ym), one is looking for
a function f that best approximates f(ti) ≈ yi, where “best” has to be mathemat-
ically defined and corresponds to an optimization problem. Unlike interpolation,
the number of data points in classical regression is larger than the number of pa-
rameters in the function used to fit the data16, and thus in general, one cannot (or
does not even want to) obtain f(ti) = yi for all i = 1, . . . , n. Examples of regression
problems are illustrated in Figure 6.1.

6.1 Regression: Introduction

To carry out regression, we need to specify two ingredients: The class of functions
that is believed to fit the data well and the error that quantifies the fit.

6.1.1 Model function

In parametric regression, one considers a class of functions containing a model func-
tion that depends on n parameters. Typically, n≪ m in order to avoid overfitting.
Some examples are presented below; we call xi, i = 1, . . . , n, the parameters deter-
mined by fitting the function to the given data, t the problem variable, and g the
model function.

16In regimes (statistical/machine learning) not covered in this lecture, the number of parameters
is often (much) larger than the number of data points. In this case, the problem needs to be regu-
larized, either explicitly by adding penalties/constraints or implicitly by terminating optimization
methods early.

83

84 Version April 30, 2025 Chapter 6. Regression and Least Squares

data (xi, yi)
linear regression

(a) Linear regression

data (xi, yi)
non-linear regression

(b) Non-linear regression

Figure 6.1: Examples of regression.

• Linear Regression: g depends (affine) linearly on the parameters

g(t) = x1 + x2t (6.1)

g(t) = x1 + x2t+ x3t
2

g(t) = x1 + x2x+ . . .+ xnt
n−1

g(t) = x1e
t + x2e

−t

• Nonlinear Regression:

g(t) = x1 + x2e
x3t asymptotic regression function

g(t) =
x1t

x2 + t
Michaelis-Menten function

g(t) =
x1

1 + x2e−x3t
logistic function (6.2)

It is the application that determines a priori which model function to use, either
by inspecting the data or by theoretical considerations. For example, in Figure 6.1a,
the data looks to be approximately linear, so one would be inclined to use (6.1), while
theoretical linear relationships can be given by Hooke’s law, Ohm’s law, or Fick’s
law for example. Nonlinear functions can also come from theoretical considerations;
for example, the model function (6.2) is called logistic function (leading to logistic
regression) because it is the solution of the logistic equation given by

dg

dt
= rg(1− g) in R

+; f(0) = α,

for some r, α > 0.

6.1.2 Error function

The error function, also called objective or loss function, is used to assess the quality
of the approximation of the data, which in turn drives the parameter selection.

6.1. Regression: Introduction Version April 30, 2025 85

x

y

d1
d2

d3

(a) Vertical distance.

x

y

D1 D2

D3

(b) Euclidean distance.

Figure 6.2: Examples of different measures for the error.

For measuring the error at individual data points ti, one can for example use
vertical distances

di := |g(ti)− yi| , i = 1, . . . ,m, (6.3)

as in the left plot of Figure 6.2, or Euclidean distances as in the right plot of
Figure 6.2. One disadvantage of the Euclidean distance is that it depends on the
parameters, which complicates fitting. For example, when considering the linear
function (6.1), one can show that the Euclidean distance is

Di :=
di√
1 + x2

1

, i = 1, . . . ,m. (6.4)

In the following, we will therefore focus on vertical distances.
By choosing a norm on R

m, one combines the m individual distances in a single
quantity for measuring the error. The most common choices are:

1. Maximum error:

max
i=1,...,m

di = max
i=1,...,m

|g(ti)− yi| = ‖g − y‖∞ , (6.5)

where g :=
(
g(t1), . . . , g(tm)

)
and y := (y1, . . . , ym).

2. Error in 1-norm:

m∑

i=1

di =

m∑

i=1

|g(ti)− yi| = ‖g− y‖1 . (6.6)

3. (Squared) Error in 2-norm:

m∑

i=1

d2i =

m∑

i=1

|g(ti)− yi|2 = ‖g − y‖22 . (6.7)

When this norm is used, the resulting regressionmethod is called least-squares.
This is the most common choice because the error function has the advantage

86 Version April 30, 2025 Chapter 6. Regression and Least Squares

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 6.3: Examples of maximum (left) and 2-norm (right) error functions, respec-
tively, both as surfaces and contour plots, for an example of linear regression.

of being differentiable if g(ti) is a differentiable function of the parameters. It
also has a meaninful statistical intepretation.

Example 6.1 Consider the linear regression defined in (6.1), and the maximum
and 2-norm error functions. Figure 6.3 gives the contour plots of these error func-
tions in an example. We can easily see the smoothness of the 2-norm while the
maximum norm results in edges and corners. Note that the parameters that mini-
mize E2 are (usually) not equal to the ones that minimize E∞.

6.2 Linear least-squares

In this section, we will focus on the error function given by the 2-norm, defined in
(6.7). We assume that the model function g depends linearly on the parameters to
be fitted to the data, that is we can write

g(t) = x1φ1(t) + x2φ2(t) + . . .+ xnφn(t), (6.8)

where the functions φj , j = 1, . . . , n, are given functions, and xj , j = 1, . . . , n, are
the parameters. For example, if g(t) = x1 + x2t, then φ1(t) = 1 and φ2(t) = t.
It will always be assumed that n < m, that is, there are more data points than
unknown parameters.

6.3. Normal equations Version April 30, 2025 87

The parameters x1, . . . , xn are determined by minimizing the error

f(x) :=

m∑

i=1

(g(ti)− yi)
2
= ‖Ax− y‖22 , (6.9)

where

A :=




φ1(t1) φ2(t1) · · · φn(x1)
φ1(t2) φ2(t2) · · · φn(x2)

...
...

. . .
...

φ1(tm) φ2(tm) · · · φn(xm)


 , x =




x1

x2

...
xn


 , y =




y1
y2
...
ym


 .

In the following, we will study two different ways of finding the values of the
parameters x that minimize (6.9): the normal equations and the QR factorization.
We will assume that the matrix A has full rank n, that is, its columns are linearly
independent.

6.3 Normal equations

We start by computing the gradient of f at x by perturbing x:

f(x+ h)− f(x) = ‖A(x+ h)− y‖22 − ‖Ax− y‖22
=

(
A(x + h)− y

)⊤(
A(x + h)− y

)
−
(
Ax− y

)⊤(
Ax− y

)

= 2h⊤A⊤Ax− 2h⊤A⊤y +O(‖h‖22).

Hence,
∇f(x) = 2(A⊤Ax−A⊤y)

and thus the gradient is zero if and only if the so called normal equations are
satisfied:

A⊤Ax = A⊤y. (6.10)

Lemma 6.2 If A ∈ R
m×n has rank n then A⊤A is symmetric positive definite.

Proof. EFY.

As a consequence of Lemma 6.2, the matrix A⊤A is invertible and (6.10) has a
unique solution. Since zero gradient is a necessary condition, this implies that zero
gradient is also a sufficient condition for being a global minimizer of f .17

Theorem 6.3 Suppose that A ∈ R
m×n has rank n. Then x is a minimizer of

f(x) = ‖Ax− y‖22 if and only if it solves the normal equations (6.10).

The linear system (6.10) can be solved using the Cholesky factorization of ATA,
leading to Algorithm 6.4.

17Another way of seeing this is to note that f is (strictly) convex.

88 Version April 30, 2025 Chapter 6. Regression and Least Squares

Computation of ATA n(n+ 1)m

Cholesky factorization of ATA 1
3n

3

Computation of ATy 2mn

Forward substitution n2

Backward substitution n2

Table 6.1: Number of floating point operations for each step of Algorithm 6.4.

Algorithm 6.4 (Least-squares via normal equations)

1. C := ATA,

2. Compute Cholesky factor R of C using Alg. 4.17 (that is, RTR = C).

3. b := ATy.

4. Solve RTz = b using forward substitution (Alg. 4.3).

5. Solve Rx = z using backward substitution (Alg. 4.4).

The computational complexity of Algorithm 6.4 is summarized in Table 6.1. The
computation of ATA exploits that ATA is symmetric. One observes that for m≫ n
the computations of ATA and ATy dominate the cost.

Remark 6.5 The normal equations (6.10) have a simple geometric interpretation.
From

AT (b−Ax) = 0

it follows that the residual r = y − Ax is orthogonal to the columns of A, that
is, the the residual r is normal to the span of A. It is instructive to connect this
interpretation to the discussion in Section 3.3.

6.4 Method of Orthogonalization

The normal equations have a significant disadvantage; they are numerically unstable
when κ2(A)≫ 1.18

Example 6.6 For m = n and φi(t) = ti and uniformly distributed points ti, we
obtain the Vandermonde matrix

A =




t00 t10 · · · tn−1
0

t01 t11 · · · tn−1
1

...
...

...
t0n−1 t1n−1 · · · tn−1

n−1,


 , ti = i/(n− 1).

18The 2-norm condition number of a rectangular matrix is defined as the ration between the
largest and the smallest singular value.

6.4. Method of Orthogonalization Version April 30, 2025 89

The linear system Ax = y with randomly chosen right-hand side y is solved using
(a) the LU factorization with column pivoting and (b) the Cholesky factorization
applied to the normal equations (6.10), For each computed solution x̂ we measured
the relative residual norm

‖r‖2
‖A‖2‖x̂‖2 + ‖y‖2

,

with
r = y −Ax̂.

vander1.eps

50 × 38 mm

5 10 15 20
10

−20

10
−15

10
−10

10
−5

LU with pivoting

Normal equations

It is clearly visible that the normal equations are numerically unstable; the relative
residual is significantly larger than 10−16. ⋄

The effect observed in Example 6.6 is due to κ(ATA) = κ(A)2 and hence this effect
is unavoidable when working with normal equations. Note that the LU factorization
has no meaningful extension to m > n for least-squares problems and cannot be
used as an alternative. Instead, we will use orthogonalization to reduce A to simpler
form.

First, we consider the special case that the matrix A ∈ R
m×n is already upper

triangular, that is,

A =

(
R
0

)
(6.11)

for an upper triangular matrix R ∈ R
n×n. The vector y ∈ R

m is partitioned
analogously:

y =

(
y1

y2

)
, y1 ∈ R

n, y2 ∈ R
m−n.

We compute

f(x) = ‖y −Ax‖22 =

∥∥∥∥
(

y1

y2

)
−
(

R
0

)
x

∥∥∥∥
2

2

=

∥∥∥∥
(

y1 −Rx
y2 − 0x

)∥∥∥∥
2

2

= ‖y1 −Rx‖22 + ‖y2‖22.

If R ∈ R
n×n is invertible then f is obviously minimized by the solution x ∈ R

n of
Rx = y1, which can be determined using backward substitution.

Using orthogonal matrices we transform A ∈ R
m×n successively to the upper

triangular form (6.11).

90 Version April 30, 2025 Chapter 6. Regression and Least Squares

Theorem 6.7 Consider m ≥ n, A ∈ R
m×n with rank(A) = n, y ∈ R

m. Let
Q ∈ R

m×m be orthogonal and R ∈ R
n×n be upper triangular such that

A = Q

(
R
0

)
. (6.12)

Partition ỹ = QTy ∈ R
m as follows:

QTy =

(
ỹ1

ỹ2

)
, y1 ∈ R

n, y2 ∈ R
m−n.

Then the solution x ∈ R
n of

Rx = ỹ1

minimizes ‖Ax− y‖22.

Proof. Because the application of an orthogonal matrix QT does not change the
Euclidean norm of a vector we obtain

‖y −Ax‖2 = ‖QT(y −Ax)‖2 = ‖QTy −QTAx‖2 =

∥∥∥∥
(

ỹ1

ỹ2

)
−
(

R
0

)
x

∥∥∥∥
2

.

Hence the least-squares problem is equivalent to one in the upper triangular form
discussed above. Because the rank of A is n, it follows that R is invertible, which
completes the proof.

It remains to actually compute the matrix Q from Theorem 6.7. A factorization
of the form (6.12) is called QR factorization. In Python, this factorization can
be computed using Q,R = numpy.linalg.qr(A,‘complete’). For m ≫ n, having
to compute and store the m×m matrix Q creates substantial overhead, which can
be avoided. The so called economic QR factorization takes the form

A = Q1R,

where Q1 ∈ R
m×n satisfies QT

1Q1 = In and R ∈ R
n×n is upper triangular. This

factorization completely suffices to solve the linear least-squares problem, which
only requires to know R and ỹ1 = QT

1y. In Python, this economic QR factoriza-
tion is computed by Q1,R = numpy.linalg.qr(A,‘reduced’)with numpy package.
Note that the default mode for numpy.linalg.qr is actually ‘reduced’, that is, the
economic QR.

6.5 QR factorization via Gram-Schmidt

The Gram-Schmidt process is a simple way to compute the economic QR factoriza-
tion.

Given n ≥ 1 linearly independent vectors

a1, . . . , an ∈ R
m,

6.5. QR factorization via Gram-Schmidt Version April 30, 2025 91

the aim of the Gram-Schmidt process is to find n vectors

q1, . . . ,qn ∈ R
m

such that ‖qi‖2 = 1 for i = 1, . . . , n and

span{a1, . . . , aℓ} = span{q1, . . . ,qℓ}, ∀1 ≤ ℓ ≤ n. (6.13)

Moreover, all vectors qi are mutually orthogonal :

qi ⊥ qj , i 6= j . (6.14)

The idea of the Gram-Schmidt process
is as follows. Suppose we have already
computed ℓ − 1 vectors q1, . . . ,qℓ−1 sat-
isfying the conditions above. Then the
ℓth vector qℓ is obtained by projecting
aℓ onto the orthogonal complement of
span{q1, . . . ,qℓ−1} and normalizing:

q̂ℓ = (I − (q1, . . . ,qℓ−1)(q1, . . . ,qℓ−1)
T)aℓ,

qℓ = q̂ℓ/‖q̂ℓ‖2.

q1

q2

a3
q̂3

q3

span{q1, q2}

span{q1, q2}⊥
This leads to the following algorithm.

Algorithm 6.8 (Gram-Schmidt)
Input: Linearly independent vectors a1, . . . , an ∈ R

m.
Output: Orthonormal basis q1, . . . ,qn, such that (6.13) is satisfied.

for ℓ = 1, . . . , n do

q̂ℓ := aℓ −
ℓ−1∑
j=1

(qT

j aℓ)qj

qℓ :=
q̂ℓ

‖q̂ℓ‖2

end for
Python

% The columns of A containing a_1, ..., a_n are replaced by

% q_1, ..., q_n.

import numpy as np

for l in range(n):

qlhat = np.zeros((n,1))

if l!=0:

sl = A[:,:l].T @ A[:,l]

qlhat = A[:,l]-A[:,:l]@sl

else:

qlhat = A[:,l]

92 Version April 30, 2025 Chapter 6. Regression and Least Squares

rll = np.linalg.norm(qlhat)

A[:,l] = qlhat / rll

The Gram-Schmidt process produces an economic QR factorization of the m × n
matrix A = (a1, . . . , an). This can be seen as follows. Let rℓℓ := ‖q̂ℓ‖2 and rjℓ :=
qTj aℓ. Then Algorithm 6.8 implies the relation

aℓ = q̂ℓ +

ℓ−1∑

j=1

〈qj , aℓ〉qj =

ℓ∑

j=1

rjℓqj

for ℓ = 1, . . . , n. Collecting these relations into a single matrix yields

A = Q1R, with R =




r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn


 . (6.15)

But this happens to be an economic QR factorization, as

QT

1Q1 =




qT

1q1 qT

1q2 · · · qT

1qn

qT

2q1 qT

2q2
. . .

...
...

. . .
. . . qT

n−1qn

qT

nq1 · · · qT

nqn−1 qT

nqn




=




1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




Remark 6.9 Due to roundoff error, the basis produced by the Gram-Schmidt pro-
cess may lose orthogonality to a large extent, especially if the columns of A are
nearly linearly dependent. A simple but effective cure is to perform orthogonaliza-
tion twice:

Python

import numpy as np

for l in range(n):

qlhat = np.zeros((n,1))

if l!=0:

sl = A[:,:l].T @ A[:,l]

A[:,l] = A[:,l] - A[:,:l] @ sl # Standard orth step.

sl = A[:,:l].T @ A[:,l]

qlhat = A[:,l] - A[:,:l] @ sl # Extra orth step.

else:

qlhat = A[:,l]

rll = np.linalg.norm(qlhat)

A[:,l] = qlhat / rll

6.6. QR factorization via Householder reflectors Version April 30, 2025 93

Example 6.10 Let us consider the 25× n matrix

A =




1 t11 · · · tn1
1 t12 · · · tn2
...

...
...

1 t125 · · · tn25,


 , ti = (i − 1)/24,

which arises when fitting a polynomial of degree n. We apply the Gram-Schmidt
process (Algorithm 6.8) as well as the modification discussed in Remark 6.9. To

measure the loss of orthogonality in the computed matrix Q̂1, we compute

‖In − Q̂T

1 Q̂1‖2.
Ideally, this quantity should not be much larger than 10−16. The following two
figures show this quantity for n = 1, . . . , 25:

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

10
5

0 5 10 15 20 25

10
−15

10
−10

10
−5

10
0

Gram-Schmidt Improved Gram-Schmidt
Algorithm 6.8 Remark 6.9

It turns out that orthogonality is completely lost in the Gram-Schmidt process for
n = 7 or larger. On the other hand, the improved Gram-Schmidt process maintains
orthogonality nearly perfectly, with a loss of only ≈ 10−16. ⋄

6.6 QR factorization via Householder reflectors

The Matlab command qr does not use Gram-Schmidt but a different approach
for computing the QR factorization, which completely avoids any issue with

In the Householder based QR factorization one constructs the matrix Q as a com-
position of simple orthogonal matrices. There are two types of elementary matrices,
Givens rotations and Householder reflectors, and both are suitable for constructing
QR factorizations. We will focus our discussion on Householder reflectors.

6.6.1 Construction

Theorem 6.11 (Properties of Householder reflectors) Let 0 6= v ∈ R
m. Then

the Householder reflector

Q := Im −
2

vTv
vvT

94 Version April 30, 2025 Chapter 6. Regression and Least Squares

has the following properties:

1. Q is symmetric,

2. Q is orthogonal,

3. Q2 = Im.

Proof. EFY.

Remark 6.12 Householder reflectors have a geometric interpretation. When ap-
plied to a vector, they correspond to reflecting the vector at the hyperplane {x ∈
R

m |xTv = 0}.

A QR factorization of A ∈ R
m×n is produced by successively reducing the columns

of the matrix using Householder reflections. The following result is essential for this
purpose.

Lemma 6.13 Let 0 6= a ∈ R
m and let e1 ∈ R

m denote the first unit vector. Let

α = ‖a‖2 or α = −‖a‖2.

(If a = βe1 one uses α = −‖a‖2 = −|β|.) Then with v := a− αe1 it holds that

Q = Im −
2

vTv
vvT ⇒ Qa = αe1. (6.16)

Proof. The choice of α implies that v 6= 0 and thus Q is well defined. The claim
Qa = αe1 is verified by direct calculation.

Remark 6.14 In practice, one chooses α = −sign(a1)
√
aTa, v = (a1−α, a2, . . . , ak)T

to avoid numerical cancellation19.

Now, let a1 denote the first column of A ∈ R
m×n. In the first step of the House-

holder based QR factorization A we use Lemma 6.13 to construct a Householder
reflector Q(1) such that

Q(1)a1 =




r11
0
...
0




for some r11 ∈ R. Applied to A we obtain

Q(1)A =




r11 r12 · · · r1n
0
... A(1)

0


 , (6.17)

19We define sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0

6.6. QR factorization via Householder reflectors Version April 30, 2025 95

with A(1) ∈ R
(m−1)×(n−1).

In the next step, we repeat this procedure for the submatrix A(1) and embed the
transformations as follows:

Q(2) :=




1 0 · · · 0
0
... Q̃(2)

0


 ,

and




1 0 · · · 0
0
... Q̃(2)

0







r11 r12 · · · r1n
0
... A(1)

0


 =




r11 r12 · · · r1n
0
... Q̃(2)A(1)

0


 .

Letting a2 denote the first column of A(1), we choose Q̃(2) as a Householder reflector
that maps a2 to a scalar multiple of e1 ∈ R

m−1. Then

Q(2)Q(1)A =




r11 r12 r13 · · · r1n
0 r22 r23 · · · r2n
0 0
...

... A(2)

0 0




,

It is now clear how to continue this process until the matrix Q(n)Q(n−1) · · ·Q(1)A
is in upper triangular form (if m = n one can skip the last step, Q(n)).

In summary, the QR factorization of A ∈ R
n×n is given by

A = (Q(1))T · · · (Q(n))TR = Q(1) · · ·Q(n)

︸ ︷︷ ︸
=:Q

(
R
0

)
,

where R ∈ R
n×n us upper triangular and the orthogonal matrices Q(k) ∈ R

m×m

take the following form:

Q(k) =




Ik−1 0 · · · 0
0
... Im−k+1 −

2

vT

kvk

vkv
T

k

0




, vk ∈ R
m−k+1. (6.18)

Algorithm 6.15 summarizes the described procedure.

96 Version April 30, 2025 Chapter 6. Regression and Least Squares

Algorithm 6.15 (QR factorization)
Input: Matrix A ∈ R

m×n.

Output: QR factorization A = Q

(
R
0

)
with Q orthogonal and R upper

triangular.

Q = Im
for k = 1, . . . ,min{n,m− 1} do
Determine (embedded) Householder reflector Q(k) (see (6.18)) such that the
trailing m− k entries of the kth column of Q(k)A are zero.
Replace A← Q(k)A.
Replace Q← Q(k)Q.

end for
Return R as the first n rows of A.

Example 6.16 For

A =




−4 −2− 2

√
6 −6− 3

√
2−

√
6

0 −2
√
3 9−

√
3

−4
√
2 −2

√
2 + 2

√
3 3− 6

√
2 +

√
3





we compute its QR factorization using Algorithm 6.15. The first column of A is

a1 =




−4
0

−4
√
2


 , ‖a1‖2 =

√
16 + 16 · 2 =

√
48 = 4

√
3.

For the corresponding Householder reflector, we compute α = −sign(a1)‖a‖2 = −sign(−4)4
√
3 =

4
√
3 and hence

v1 = a1 − αe1 =




−4
0

−4
√
2



− 4
√
3




1
0
0



 =




−4− 4

√
3

0

−4
√
2



 , ‖v1‖22 = 16(6 + 2
√
3),

Q
(1) = I3 − 2

‖v1‖22
v1v

T

1 = I3 − 2

16(6 + 2
√
3)




−4− 4
√
3

0

−4
√
2


 ·

(
−4− 4

√
3, 0, −4

√
2

)

= I3 −
1

3 +
√
3




−1−
√
3

0

−
√
2


 ·

(
−1−

√
3, 0, −

√
2

)

=




1 0 0
0 1 0
0 0 1


− 1√

3(1 +
√
3)




4 + 2
√
3 0

√
2(1 +

√
3)

0 0 0√
2(1 +

√
3) 0 2




=
1√
3




−1 0 −

√
2

0
√
3 0

−
√
2 0 1



 .

6.6. QR factorization via Householder reflectors Version April 30, 2025 97

Evidently, Q(1) is – as expected – an orthogonal matrix. We obtain

Q
(1)

A =
1√
3




−1 0 −

√
2

0
√
3 0

−
√
2 0 1



 ·




−4 −2− 2

√
6 −6− 3

√
2−

√
6

0 −2
√
3 9−

√
3

−4
√
2 −2

√
2 + 2

√
3 3− 6

√
2 +

√
3





=
1√
3




12 6 18

0 −6 −3 + 9
√
3

0 6
√
3 9 + 3

√
3



 =
√
3




4 2 6

0 −2 −1 + 3
√
3

0 2
√
3 3 +

√
3



 .

The first column Q(1)A equals αe1, as desired.
We repeat this procedure for the submatrix

A
(1) =

√
3

(
−2 −1 + 3

√
3

2
√
3 3 +

√
3

)
.

It is first column is

a2 =

(
−2

√
3

6

)
, ‖a2‖2 =

√
12 + 36 = 4

√
3.

In turn, α = −sign(a1)‖a2‖2 = −sign(−2
√
3) ·4

√
3 = 4

√
3 and for v2 = a2−αe1 we obtain

v2 =

(
−2

√
3

6

)
− 4

√
3

(
1
0

)
=

(
−6

√
3

6

)
, ‖v2‖22 = 144.

Therefore Q̃(2) is given by

Q̃
(2) = I2 − 2

‖v‖22
v · vT = I2 − 2

144
·
(

−6
√
3

6

)
·
(

−6
√
3, 6

)

= I2 −
1

2
·
(

−
√
3

1

)
·
(

−
√
3, 1

)

=

(
1 0
0 1

)
− 1

2

(
3 −

√
3

−
√
3 1

)
=

1

2

(
−1

√
3√

3 1

)

and we obtain

Q̃
(2)

A
(1) =

1

2

(
−1

√
3√

3 1

)
·
√
3

(
−2 −1 + 3

√
3

2
√
3 3 +

√
3

)
=

√
3

2

(
8 4
0 12

)
.

This already gives the upper triangular matrix R:

R =
√
3




4 2 6
0 4 2
0 0 6


 .

The orthogonal matrix QT with QTA = R is given by

Q
T =




1 0 0

0

0
Q̃(2)


Q

(1) =




1 0 0

0 − 1
2

1
2

√
3

0 1
2

√
3 1

2


 · 1√

3




−1 0 −
√
2

0
√
3 0

−
√
2 0 1




=
1

2
√
3




−2 0 −2

√
2

−
√
6 −

√
3

√
3

−
√
2 3 1



 .

98 Version April 30, 2025 Chapter 6. Regression and Least Squares

For verification we compute

QR =
1

2
√
3




−2 −

√
6 −

√
2

0 −
√
3 3

−2
√
2

√
3 1



 ·
√
3




4 2 6
0 4 2
0 0 6





=




−4 −2− 2
√
6 −6− 3

√
2−

√
6

0 −2
√
3 9−

√
3

−4
√
2 −2

√
2 + 2

√
3 3− 6

√
2 +

√
3


 = A.

⋄

It would be quite inefficient to implement Algorithm 6.15 literally. In particular,
the matrix Q(k) is never formed but only applied implicitly via the vector vk. To

apply Q(k) to matrix

(
B1

B2

)
with B1 ∈ R

(k−1)×ℓ and B2 ∈ R
(m−k+1)×ℓ, one notes

that

Q(k)

(
B1

B2

)
=

(
B1

B2 − 2
v
T

k
vk

vkv
T

kB2

)
.

One first computes the vector w = 2
v
T

k
vk

BT

2 vk (≈ 2(m− k+1)ℓ flops) and then the

rank-one update B2 − vkw
T (≈ 2(m− k + 1)ℓ flops). Using the structure of A the

operation A ← Q(k)A in Algorithm 6.15 only costs 4(m − k + 1)(n − k + 1) flops.
Altogether the updates of A cost

4

n∑

k=1

(m− k + 1)(n− k + 1) ≈ 2mn2 − 2

3
n3 (6.19)

flops. The computation of Q is executed analogously.

6.6.2 Application to linear least-squares problems

In principle, Algorithm 6.15 together with Theorem 6.7 provide all the tools needed
to solve least-squares problems. However, one can avoid the (expensive) computa-
tion of Q if one instead directly computes QTy; see Algorithm 6.17.

Algorithm 6.17 (Least-squares problems via QR factorization)
Input: Matrix A ∈ R

m×n with rank(A) = n, y ∈ R
m

Output: Solution x ∈ R
n of least-square problem min ‖Ax− y‖22.

for k = 1, . . . ,min{n,m− 1} do
Determine (embedded) Householder reflector Q(k) (see (6.18)) such that the
trailing m− k entries of the kth column of Q(k)A are zero.
Replace A← Q(k)A.
Replace y← Q(k)y.

end for

Partition A =

(
R
0

)
and y =

(
y1

y2

)
.

Compute x = R−1y1 using Algorithm 4.4.

6.6. QR factorization via Householder reflectors Version April 30, 2025 99

Since all other costs are negligible, the overall cost of Algorithm 6.17 is given by
the cost for updating A (see (6.19)), that is, 2mn2− 2

3n
3 flops. Compared with the

approach via normal equations, see Table 6.1, the cost is at most a factor 2 larger.

