
Chapter 5

Linear Systems – Large
Matrices

In practice, one often encounters linear systems with large sparse matrices. It is
not uncommon to meet a 100, 000× 100, 000 matrix with only about 106 nonzero
entries. When A is tridiagonal (or, more generally, banded) it was already discussed
in the exercises that the solution of such large linear systems is still feasible through
an LU factorization. However, in practice one often encounters more complicated
sparsity patterns for which it is not possible to carry out the LU factorization
without excessive cost. In the following, we discuss several iterative methods that
only involve matrix-vector products with sparse matrices.

5.1 Jacobi and Gauss-Seidel methods

The Jacobi method is the simplest iterative method for Ax = b. Its idea consists
of considering the jth equation and considering all but the jth variable fixed. This
computation is performed repeatedly for j = 1, . . . , n. For example, for n = 3, this
corresponds to rewriting Ax = b as

x1 = (b1 − a12x2 − a13x3)/a11

x2 = (b2 − a21x1 − a23x3)/a22

x3 = (b3 − a31x1 − a32x2)/a33 .

Let x(0) be given14 then the Jacobi method is the recursion defined by

x
(k+1)
i :=

(

bi −
i−1∑

j=1

aij x
(k)
j −

n∑

j=i+1

aij x
(k)
j

)/

aii, i = 1, . . . , n. (5.1)

One obvious possibility for improvement of (5.1) is to use the newest available

14The starting vector x
(0) is often set to zero or chosen randomly.
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information, that is to use x
(k+1)
j instead of x

(k)
j for j < i:

x
(k+1)
i :=

(

bi −

i−1∑

j=1

aij x
(k+1)
j −

n∑

j=i+1

aij x
(k)
j

)/

aii . (5.2)

⋄
For the purpose of analysis, it is better to rewrite (5.1) and (5.2) in the form of

matrix operations. We write
A = L+D + U (5.3)

where

D =






a11 0
. . .

0 ann




 , L =









0 0

a21
. . .

. . .

an1 an,n−1 0









, U =









0 a12 a1n
. . .

...
. . . an−1,n

0 0









.

Jacobi method: From (5.1) it follows that

Dx(k+1) = b− Lx(k) − Ux(k) ⇐⇒

x(k+1) = D−1
(
b− Lx(k) − Ux(k)

)

= −D−1(L+ U)
︸ ︷︷ ︸

x(k) +D−1 b

= BJ x(k) + f .

(5.4)

Gauss-Seidel method: From (5.2) it follows that

x(k+1) = D−1
(
b− Lx(k+1) − Ux(k)

)
⇐⇒

(D + L) x(k+1) = −Ux(k) + b ⇐⇒

x(k+1) = −(D + L)−1 Ux(k) + (D + L)−1b ⇐⇒

x(k+1) = BGS x(k) + f

(5.5)

with
BGS = −(D + L)−1 U, f = (D + L)−1 b.

5.2 Splitting methods

Both, the Jacobi and Gauss-Seidel methods are splitting methods. Consider some
splitting of A:

A = P −N, P,N ∈ R
n×n, (5.6)

where P is usually called preconditioner and it is assumed that it is relatively easy
to solve linear systems with P . Given such a splitting, we reformulate Ax = b as
the fixed point equation

x = Bx+ f , B := P−1N. (5.7)
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The corresponding fixed point iteration is given by

x(k+1) = Bx(k) + f , (5.8)

with f = P−1b. Equivalently, this corresponds to solving the linear system

Px(k+1) = Nx(k) + b

in each step.
It is easy to check that (5.8) corresponds to the Jacobi and Gauss-Seidel methods

when choosing P = D (diagonal preconditioner) and P = D + L, respectively.
For analyzing the convergence of (5.8), we let ρ(A) denote the spectral radius of

A, that is,

ρ(A) := max{|λ| : λ ∈ C is an eigenvalue of A}.

Lemma 5.1 Let A ∈ Rn×n. Then Ak → 0 for k → ∞ if and only if ρ(A) < 1.

Proof. EFY.

By subtracting x = Bx+ f from (5.8), we obtain the error recurrence

e(k+1) = Be(k), k = 0, 1, 2, ..., where e(k) := x(k) − x. (5.9)

We have x(k) → x if and only if ‖e(k)‖ = ‖x(k) − x‖ → 0. Because of

e(k) = Be(k−1) = B2e(k−2) = . . . = Bke(0)

we obtain convergence for every starting vector x(0) ∈ R
n, if Bk → 0 for k → ∞.

By Lemma 5.1, this holds if and only if the spectral radius ρ(B) is smaller than 1.
Proving statements about the spectral radius is usually very difficult. Instead

one uses the well-known fact that the spectral radius is bounded by any operator
norm. We will illustrate this principle by showing that the Jacobi method converges
for strictly diagonally dominant matrices.

Definition 5.2 A matrix A ∈ Rn×n is called strictly diagonally dominant by

rows if

|aii| >
n∑

j=1
j 6=i

|aij |, i = 1, . . . , n ,

and strictly diagonally dominant by columns if

|aii| >

n∑

j=1
j 6=i

|aji|, i = 1, . . . , n .
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Theorem 5.3 Let A be strictly diagonally dominant by rows or columns. Then
the Jacobi method converges.

Proof. We will prove the statement when A is strictly diagonally dominant by
rows; the column case is handled analogously. We recall that the iteration matrix
for the Jacobi method is given by BJ = −D−1(L+ U) and hence

‖BJ‖∞ = max
i=1,...,n

n∑

j=1
j 6=i

|aij | / |aii| < 1 .

By the discussion above, this implies ρ(BJ ) ≤ ‖BJ‖∞ < 1 and hence the Jacobi
method converges.

Theorem 5.3 also holds for the Gauss-Seidel method but the proof is more dif-
ficult. Moreover, one can show that the Gauss-Seidel method converges for every
symmetric positive definite matrix A.

5.3 Richardson method

The Richardson method for approximating the solution of Ax = b takes the form

x(k+1) = x(k) + αP−1 r(k) , (5.10)

where α > 0 is an acceleration parameter, P is a preconditioner (that is easy to
solve linear systems with), and r(k) is the residual x(k) defined by

r(k) = b−Ax(k). (5.11)

We again get an error recurrence of the form (5.9), with the iteration matrix B =
I−αP−1A. Note that the Jacobi and Gauss-Seidel methods can be viewed as special
cases of the Richardson method if α = 1. However, in contrast to the Jacobi and
Gauss-Seidel methods, the Richardson method can always be made convergent by
choosing α appropriately. When A,P are symmetric positive definite then P−1A has
positive real eigenvalues (Proof EFY) and the following result can be established.

Theorem 5.4 Given an invertible preconditioner P , assume that P−1A has posi-
tive real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn > 0 .

Then the Richardson method (5.10) converges if and only if 0 < α < 2/λ1.
The choice α = αopt := 2/(λ1 + λn) minimizes the spectral radius of B, that is,

ρopt = min
α>0

| ρ(Bα)| =
λ1 − λn

λ1 + λn

. (5.12)
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ρ = 1

Figure 5.1: Spectral radius of Bα as a function of the eigenvalues of P−1A.

Proof. The eigenvalues of Bα are given by λi(Bα) = 1 − αλi for i = 1, . . . , n.
Hence, (5.10) converges if and only if |λi(Bα)| < 1 for i = 1, . . . , n, or, equivalently, if
0 < α < 2/λ1. It follows (see Figure 5.1) that ρ(Bα) is minimal for 1−αλn = αλ1−1,
which is satisfied when choosing α = 2/(λ1 + λn).

Remark 5.5 When A,P are symmetric positive definite then κ2(P
−1 A) = λ1/λn

(proof EFY) and, hence,

ρopt =
λ1/λn − 1

λ1/λn + 1
=

κ2(P
−1A)− 1

κ2(P−1A) + 1
(5.13)

It follows that the convergence rate of the Richardson method depends only on
κ2(P

−1A) ab.
This explains the wording “preconditioner” for P . The construction of cheap

and effective preconditioner is an art by itself. First choices are D (the diagonal
part of A) or incomplete LU/Cholesky decompositions of A.

5.4 Gradient method

The optimal choice of α in the Richardson method depends on the eigenvalues of A,
which are usually unknown (and can be more expensive to compute than solving the
linear system!). We will now take an “optimization perspective” of the Richardson
method for symmetric positive definite A (with P = I for simplicity), which allows
choose α optimally in each step, without knowledge of the eigenvalues of A.
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Theorem 5.6 Let A be symmetric positive definite. Then x is the solution of
Ax = b if and only if it solves the optimization problem

x = arg min
y∈Rn

Φ(y), with Φ(y) :=
1

2
y⊤Ay − y⊤b. (5.14)

Proof. For △y ∈ Rn we consider

Φ(y +△y)− Φ(y) =
1

2
△y⊤Ay +

1

2
y⊤A△y −△y⊤b+O(‖△y‖22)

= △y⊤(Ay − b) +O(‖△y‖22). (5.15)

By the uniqueness of the Taylor expansion, it follows that Ay − b is the gradient
of Φ at y.

If x solves (5.14) then the gradient of Φ at x is zero, that is, Ax − b.15 In the
other direction, if x is solution of the linear system, then

Φ (y) = Φ (x+ (y − x))

=
1

2
xTAx− xTb+ (y − x)

T
(Ax− b) +

1

2
(y − x)

T
A (y − x)

= Φ (x) +
1

2
(y − x)

T
A (y − x) ,

and since 1
2 (y − x)

T
A (y − x) ≥ 0, it follows that Φ(y) ≥ Φ(x) and hence x

minimizes Φ.

The idea behind the gradient method is to proceed in every step in the negative
direction of the gradient. Let x(k) denote the kth iterate of the method. The
(k + 1)th iterate is obtained by setting

x(k+1) = x(k) + αkp
(k).

The search direction p(k) is chosen such that it minimizes the first-order term
(p(k))⊤(Ay − b) in the Taylor expansion (5.15) among all vectors of the same
2-norm. By the Cauchy-Schwarz inequality the best choice is

p(k) = −∇Φ
(
x(k)

)
= b−Ax(k) =: r(k). (5.16)

The step size αk is chosen such that Φ
(
x(k) + αkp

(k)
)
= Φ

(
x(k+1)

)
is minimal

15One could complete the proof with the observation that f is strictly convex and, hence, a zero
gradient characterizes the (global) minimum. We include a direct proof of the other direction for
illustration.
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among all choices of α, that is,

0 =
d

dα
Φ
(

x(k) + αp(k)
)
∣
∣
∣
∣
∣
α=αk

=
d

dα

[

1

2

〈
x(k) + αr(k), A(x(k) + αr(k))

〉
−

〈
x(k) + αr(k),b

〉

]∣
∣
∣
∣
∣
α=αk

= −
〈
r(k), r(k)

〉
+ αk

〈
r(k), Ar(k)

〉
, (5.17)

or, equivalently,

αk =

〈
r(k), r(k)

〉

〈
Ar(k), r(k)

〉 .

In summary, the gradient method reads as follows: Given x(0) ∈ Rn, let r(0) =
b− Ax(0). Then for all k ≥ 0,







αk =

〈
r
(k),r(k)

〉

〈
Ar(k),r(k)

〉 ,

x(k+1) = x(k) + αkr
(k),

r(k+1) = r(k) − αkAr
(k).

The gradient method is thus a variant of the Richardson method (with P = I) for
which the acceleration parameter is chosen adaptively in every iteration.

Figure 5.2 gives a visual representation of the gradient method. In particular,
it seems that each direction p(k+1) = r(k+1) for k ≥ 0 is orthogonal to the descent
direction at the previous iteration, p(k) = r(k). Indeed, from equation (5.17),

0 = −
〈
r(k), r(k)

〉
+ αk

〈
r(k), Ar(k)

〉
=

〈
r(k),−r(k) + αkAr

(k)
〉
= −

〈
r(k), r(k+1)

〉
.

(5.18)
Therefore,

〈
r(k), r(k+1)

〉
= 0. However, in general,

〈
r(k), r(k+2)

〉
6= 0. Indeed, in

Figure 5.2, any two directions r(k) and r(k+2) are parallel.
Using the Kantorovich inequality, it can be shown that the gradient method

converges at the rate (5.13), the convergence rate of the Richardson iteration with
optimally chosen α.

5.5 The method of conjugate gradients (CG)

For ill-conditioned matrices, the gradient method makes little progress because the
search directions p(0),p(1),p(2), . . . are too similar across several iterations. For
n = 2 this can be nicely illustrated by the “zigzag” behavior of the gradient method.

We continue to assume that A ∈ Rn×n is symmetric positive definite. The idea
of the CG method is to chose search directions that are orthogonal to each other in
the inner product induced by A: 〈y, z〉A := y⊤Az = 〈y, Az〉 = 〈Ay, z〉. In the first
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Figure 5.2: Illustration of the gradient method. In red are the descent directions
p(k). The red dots represent the intermediate solutions x(k), k ≥ 0. The ellipsoids
represent some level curves of Φ; note that they are centered on the exact solution
x, and that the descent directions arrive tangentially towards them.

iterate, we still choose p(0) = r(0) = b−Ax(0), as in the gradient method, and set
x(1) := x(0) + α0p

(0). To choose the next search direction, we set

p(1) = r(1) − β0p
(0),

where the parameter β0 is chosen such that p(1) is orthogonal (conjugate) to p(0).
This corresponds to one step of the Gram-Schmidt process in the A-inner product:

β0 =
〈r(1),p(0)〉A
〈p(0),p(0)〉A

.

More generally, we choose

p(k+1) = r(k+1) −

k∑

i=0

〈r(k+1),p(i)〉A
〈p(i),p(i)〉A

p(i), (5.19)

As for the gradient method, for all k ≥ 0, x(k+1) = x(k) + αkp
(k), and αk is chosen

so that Φ
(

x(k) + αkp
(k)

)

= Φ
(

x(k+1)
)

is minimal. By following the exact same

steps as in (5.17), we obtain:

αk =
〈p(k), r(k)〉

〈p(k), Ap(k)〉
.



5.5. The method of conjugate gradients (CG) Version April 9, 2025 81

The crucial observation, which makes CG efficient for larger k, is that most terms
in (5.19) vanish.

Lemma 5.7 With the notation introduced above, assume that αi 6= 0 for i =
0, . . . , k. Then

〈r(k+1),p(0)〉A = · · · = 〈r(k+1),p(k−1)〉A = 0.

Proof. We start by noting that x(k+1) = x(k)+αkp
(k) implies the residual recursion

r(k+1) = r(k) − αkAp
(k). (5.20)

Step 1: Alternative formula for αk. Using the definition of αk, it follows
from (5.20) that

〈r(k+1),p(k)〉 = 〈r(k),p(k)〉 − αk〈p
(k),p(k)〉A = 0.

Because {p(0), . . . ,p(k)} is an A-orthogonal basis, we have for i < k that

〈r(k+1),p(i)〉 = 〈r(k),p(i)〉+ αk〈p
(k),p(i)〉A = 〈r(k),p(i)〉,

and we can conclude inductively that

〈r(k+1),p(i)〉 = 0, i = 0, . . . , k. (5.21)

EFY: Show that this relation implies

αk =
〈r(k), r(k)〉

〈p(k), Ap(k)〉
. (5.22)

Step 2: Orthogonality of residuals. Note that

〈r(k),p(k)〉A = 〈p(k),p(k)〉A.

For k = 0, this follows from p(0) = r(0). For k > 0, this follows from applying the
A-inner product with p(k+1) to both sides of (5.19), exploiting A-orthogonality, and
shift k + 1 to k. Together with (5.22) it follows from (5.20) that

〈r(k+1), r(k)〉 = 〈r(k), r(k)〉 − αk〈r
(k), Ap(k)〉 = 〈r(k), r(k)〉 − αk〈p

(k), Ap(k)〉 = 0.

For i < k, it follows from (5.19) that 〈pk, ri〉A = 0. We conclude from (5.20) that

〈r(k+1), r(i)〉 = 0, i < k.

In other words, {r(0), . . . , r(k+1)} is an orthogonal basis.
Step 3: Conclusion. Using once more (5.20) we obtain

〈r(k+1),p(i)〉A = 〈r(k+1), Ap(i)〉 =
1

αk

〈r(k+1), r(i) − r(i+1)〉 = 0.



82 Version April 9, 2025 Chapter 5. Linear Systems – Large Matrices

The result of Lemma 5.7 allows us to rewrite (5.19) as

p(k+1) = r(k+1) − βkp
(k), βk =

〈r(k+1),p(k)〉A
〈p(k),p(k)〉A

.

In summary, the CG method reads as follows. Given x(0) ∈ Rn, let r(0) = b−Ax(0)

and p(0) = r(0). Then for all k ≥ 0,






αk = 〈p(k),r(k)〉
〈p(k),Ap(k)〉

;

x(k+1) = x(k) + αkp
(k);

r(k+1) = r(k) − αkAp
(k);

βk = 〈r(k+1), Ap
(k)〉

〈p(k), Ap(k)〉
;

p(k+1) = r(k+1) − βkp
(k).

Remark 5.8

• For CG to be well-defined, p(k) has to be different from 0 at each iteration
k ≥ 0. But if for some k ≥ 0, p(k) = 0, then x(k) = x.

• At each iteration, the CG method considers a descent direction that is linearly
independent from (since A-orthogonal to) the previous descent directions, and
minimizes the quadratic form Φ in this new descent direction.

Theorem 5.9 Let A ∈ Rn×n be a symmetric positive definite matrix. Then the
CG method yields after at most n iterations the exact solution (assuming exact
arithmetic).

Proof. As discussed above, in the unlikely case that p(k) = 0 for k ≤ n − 1 then
CG has found already the exact solution. Otherwise,

{
p(0),p(1), . . . ,p(n−1)

}
forms

an A-orthogonal basis of Rn. Because of (5.21), the vector r(n) is orthogonal to the
space span

{
p(0),p(1), . . . ,p(n−1)

}
= Rn. Consequently, r(n) = 0, which implies

x(n) = x.

Theorem 5.9 is misleading because in practice one never wants to run n iterations
of CG. Instead, one hopes to stop the method much earlier, as soon as the error
is below a certain tolerance. The following theorem shows that the error of CG
decreases quickly (and thus CG can be stopped after a few iterations) if the condition
number of A is not too high.

Theorem 5.10 Let A ∈ Rn×n be symmetric positive definite and consider the lin-
ear system Ax = b. For k ≥ 0, let e(k) := x(k) − x ∈ Rn, where x(k) is the k-th
iterate of CG. Then,

∥
∥e(k)

∥
∥
A
≤ 2

Ck

1 + C2k

∥
∥e(0)

∥
∥
A
, with C :=

√

κ2 (A)− 1
√

κ2 (A) + 1
.

Proof. See Theorem 3.1.1 in [A. Greenbaum. Iterative methods for solving linear
systems. SIAM, 1987].


