Chapter 4

Linear Systems — Small
Matrices

The solution of a linear system of equations
Ax=Db

with a square invertible matrix A € R™*" and a right-hand side vector b € R" is
one of the most frequent tasks in numerical analysis. The matrix A and the vectors
X, b have the entries

aix aiz -+ o QAlp X1 by

a1 A22 -+ - A2p X2 bo
A= , X = , b=

an1 an2 e R 0 7Y Tn bn

Example 4.1 Consider the following system of 3 linear equations:

211 72562 +4£B5 = 6
—b5xr1 +6x90 —Txz = -7
3x1 +2x9 +xr3 = 9

Using the definition of the matrix-vector product, this can be written in matrix-
vector form as

2 =2 4 X1 6
-5 6 =7 T2 | =1 =7
3 2 1 T3 9

Example 4.2 Figure 4.1 shows a hydraulic network!! of 10 pipelines. It is fed
by a water reservoir having a constant pressure of p = 10 bar. Here and in the
following, pressure values refer to the difference between the real pressure and the
atmospheric pressure. The flow rate Q; (in m3/s) of the jth pipeline is proportional

M Example taken from [A. Quarteroni, F. Saleri, and P. Gervasi. Springer, 2010].

49

50 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

& p=0

Figure 4.1: Hydraulic network from Example 4.2.

to the length L; (in m) of the pipeline and the pressure difference Ap; at both ends
of the pipeline:

Qj = kijApj (41)

The constant k; denotes the hydraulic resistance (in m/(bars)), which depends on
the shape of the pipe and the fluid viscosity. It is assumed that the water flows from
outlets (marked by ® in the figure) at atmospheric pressure, and hence p = 0 at
the exterior nodes of the network. To determine the pressure at the internal nodes
1,2,3,4, we can use that the flow rates at each internal node must sum up to zero.
Denoting these pressures by p = [p1, p2, p3, pa]”’, this implies for node 1:

Q1—Q2—0Q3—Q4=0
(4.1)

= k1L1(p1 — 10) — ko La(p2 — p1) — kaLa(ps — p1) — ksL3(pa —p1) =0
= —10k1 L1 = —(k1 L1 + koLo + ksLs + kaLa)p1 + kaLops + kaLaps + ksLspa

To proceed, we choose concrete values for k; and L; as follows.

pipeline k; L; || pipeline k; L; || pipeline k; L;
1 0.01 | 20 2 0.005 | 10 3 0.005 | 14
4 0.005 | 10 5 0.005 | 10 6 0.002 | 8
7 0.002 | 8 8 0.002 | 8 9 0.005 | 10
10 0.002 | 8

Inserting these values into the equation above gives

—2=—0.37p1 + 0.05 p2 + 0.05 p3 + 0.07 p4.

4.1. Triangular Matrices Version March 27, 2025 51

Similarly, linear equations can be derived for the other internal nodes 2,3,4. In
summary, this yields the linear system Ap = b with

—-0.370 0.050 0.050 0.070 -2

A 0.050 -0.116 0 0.050 b — 0
0.050 0 —0.116 0.050 |~ 0

0.070 0.050 0.050 —0.202 0

The solution of this linear system will be presented in Example 4.11. o

4.1 Triangular Matrices
Before coming to the solution of a general linear system Ax = b, we first consider
two special cases for the matrix A.
A lower triangular matrix A is a square matrix satisfying
a;; =0 for all ¢, j with @ < j.
An upper triangular matrix A is a square matrix satisfying

a;; =0 for all ¢, j with ¢ > j.

Often, we will denote lower triangular matrices with the letter L and upper trian-
gular matrices with the letter U. The definitions imply the shapes

611 0 DY DY 0 ull u12 PR DR ul”L
621 622 0 DY O u22 PR DR UQTL
L= 631 632 R . R U= 0 0
gnl £n2 gnnfl gnn 0 0 0 Unn
Pictorially:

L=\, v=\]

The solution of linear systems with (lower or upper) triangular matrices is quite
simple. For example, consider

1 2 -1 I 2 xr1 + 212 — X3 = 2
0 0 2 3 2 203 = 2

The last equation can be immediately solved: x5 = 2/2 = 1. Inserting this into the
second equation gives

1
29+ 223 =3 = x2:§(3713):1.

52 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

Finally, inserting x5 = 1 and x3 = 1 into the first equation gives
1 +2r95—23=2 = x1=2—2x93+x3=1.

This process of eliminating the variables z,,, x,,_1, ... is called backward substitution.
Similarly, a linear system with a lower triangular matrix can be solved by eliminating
the variables x1, xs,.... This process is called forward substitution.

For general triangular matrices, forward and backward substitution are given by
the following two algorithms.

Algorithm 4.3 Algorithm 4.4
Forward substitution Backward substitution
Input: Invertible lower triangular Input: Invertible upper triangu-
L eR"™™ beR" lar U € R"*"™ b € R"™.
Output: Solution x of Lx = b. Output: Solution x of Ux = b.
fori=1,2,...,ndo fori=n,n—1,...,1do
1 i—1 1 n
Ti = ™ (bi — Z&k%) T = e <bi - Z Uikxk>
k=1 k=i+1
end for end for

It is a good exercise to convince yourself that the right-hand side of the assignment
in both algorithms only contains terms that are already known.

Remark 4.5 In PYTHON, linear systems can be solved with the commands
numpy.linalg.solve(A, b) or scipy.linalg.solve(A, b)

for a square, invertible matrix A. However, these functions do not automatically
check whether A is triangular and, therefore, they are unnecessarily slow in such
situations. To solve triangular linear systems, one should call scipy.linalg.solve
with the option assume_a set to ‘upper triangular’ or ‘lower triangular’. Alterna-
tively, one can also call scipy.linalg.solve_triangular.

Let us perform a complexity analysis for Algorithm 4.3. The cost of an algorithm is
determined by the number of elementary operations +, —, %, / and elementary func-
tion evaluations. Each operation / evaluation is counted as one flop (floating point
operation). The ith loop of Algorithm 4.3 performs 1 division, ¢ — 1 multiplications,
and i — 1 additions/subtractions; a total of 2¢ — 1 flops. Therefore, the total cost of
Algorithm 4.3 is given by

n

> (2i — 1) = n® flops. (4.2)
i=1
The cost of Algorithm 4.4 is the same.

4.2 LU factorization

Knowing that a linear system with a triangular matrix is considerably simple to
solve, we now try to reduce a general system to this case. To be more precise, we

4.2. LU factorization Version March 27, 2025 53

will use a variant of Gaussian elimination to write the matrix A as a product of

triangular matrices:
A=r1U=N_\] (4.3)

Once we know such a factorization, we can solve the linear system Ax = b with
forward and backward substitution. If we introduce the auxiliary vector y = Ux
then b = Ax = LUx = L(Ux) = Ly. Hence, we can solve (LU)x = b in two steps:

1. solve Ly = b for y with Algorithm 4.3;
2. solve Ux =y for x with Algorithm 4.4.

The LU factorization of a matrix A € R™*" proceeds in n—1 steps, by eliminating
column-by-column the entries of A below the diagonal.

Example 4.6 We illustrate the computation of an LU factorization for the matrix
from Example 4.1:

2 =2 4
A=| -5 6 —7
3 2 1

In Step 1, we eliminate the entries below the first diagonal entry, by adding 5/2x
row 1 to row 2, and subtracting 3/2x row 1 from row 3. As a result, we obtain the
modified matrix

2 —2 4
AV.=10 1 3
0 5 -5

The crucial observation is that this step can be written as a matrix-matrix multi-
plication:

2 -2 4 100
AV =L A=L,| =5 6 -7 |, with L= 5/2 1 0
3 2 1 —-3/2 0 1

In Step 2, we eliminate the remaining entry 5 in A®) below the second diagonal
element. This can be achieved by subtracting 5x row 2 from row 3, leading to

2 -2 4
AP =0 1 3
0 0 -20

Again, this can be written as a matrix-matrix product

2 -2 4 1 00
A® =L, AW =L, 0 1 3|, with Lo=| 0 1 0
0 5 —5 0 -5 1

Setting U := A®) the two steps above can be summarized as

A=LU, with L=L{'Ly".

54 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

It turns out that — due to their very special structure — the inverses of L1 and Lo
can be simply obtained by negating the elements below the diagonal:

100 100
Li'=| -5/2 1 0|, Ly*=(0 10
3/2 0 1 05 1

This can be easily verified by checking L1L;* = I3 and LoL,' = I3. Moreover,
again due the very special structure, the product L1_1L2_ 1'is simply obtained by
collecting all nonzero sub-diagonal elements:

1 0 0
L=Li'Ly'=| -5/2 1 0
3/2 5 1
Hence,
1 0 0 2 -2 4
A=LU, with L= -5/2 1 0 |, U= 0 1 3
3/2 5 1 0 0 =20
which is the LU factorization of A. o

The procedure from Example 4.6 easily extends to a general matrix A. Before
Step k, the modified matrix A takes the form

ail a2 a13 s ce Q1n
1 1 1
a(22) a(23) .. . aén)
A=Y = (k';l) (szl) : (4.4)
O T Qg
aslkkq) N a7(1kn71)

(For Step 1, we formally set A(®) := A.) For performing Step k, the coefficients

QB
EikI:%, i:k—i—l,...,n,
Ak,

are computed. Of course, this is only possible if the so called pivot element a,(;;;l)
is nonzero. We will come back to this limitation below, in Section 4.3.

The multiplication of the matrix

1

1

Ly = L1 1

_enk 1

4.2. LU factorization Version March 27, 2025 55

with A%~ performs Step k and eliminates all entries below the (k — 1)th diagonal
entry. The whole procedure is then repeated with the resulting matrix

A®) = [, A=Y, (4.6)
After n — 1 steps, we obtain
A =Ly 1Ly LAY = Ly 1Ly sy LA
This can be rewritten as
LU = A,
where
L:=rLy'Lyt- L, U=A"Y,

Note that U is upper triangular by construction. The factors Lgl of the matrix L

are given by
1

o 1
Lt = s 1 , (4.7)

en k 1
which can be verified by checking L;lLk = 1. Due to the special structure of these

factors, the sub-diagonal entries of L are obtained from collecting the subdiagonal
entries of all L;lz

1
L1
L=rL7'Lyt Lt = &_‘1 ! (4.8)
b1 1
Enl to enk te En,n—l 1

The procedure above is summarized in the following algorithm.

Algorithm 4.7 (Abstract form of LU factorization)
Input: Invertible matrix A € R™*".
Output: LU factorization A = LU with U = A1 and L as in (4.8).
A0 = A
for k=1,....n—1do
Determine matrix Ly (see (4.5)) by computing the coefficients

a(-llfl)
gikiim, Z:k+1,...,n.
O

56 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

Set AF) .= L, A1),
end for

Not every invertible matrix A has an LU factorization, that is A = LU with L
lower triangular with ones and the diagonal and U upper triangular. The following
theorem characterizes which ones have.

Theorem 4.8 Let A € R" ™ be invertible. Then A has an LU factorization if|
and only all leading principal submatrices

aix a2 a1k
a1 G22 a2k

A =) k= 1, yn—1,
akl akQ e ... ann

are also invertible.

Proof. Given an LU factorization A = LU, we partition

L11 0 Ull U12 kxk
L= LU= . Lui, U € REZF,
<L12 L22> < 0 U22) te e

Then

Ak =L11Un1 = det(Ak) = det(Lu) det(Uu) = det(Uu),
where we used that L has ones on the diagonal. Because 0 # det(A4) = det(U) =
Hle U4, it follows that det(Ur1) = Hle u;; # 0 and hence Ay, is invertible.

To show the other direction we use the construction above of the LU factorization.
For Algorithm 4.7 to succeed we need to have a,(ﬁ;l) = 0. Suppose that the first k—1
steps of Algorithm 4.7 have succeeded (that is, a1 # 0, ag? #0..., agck:f,)cfl #0).
Then

1 ai; a2 - A1k

1 1

| o)
1 (1&1)

er - = 1 Gy,

Hence it follows from 0 # det(Ay) = auaég . ~a§j€_1) that a,ﬁ_l) # 0. Therefore

the kth step of Algorithm 4.7 succeeds as well and the claim follows by induction.
d

To come up with a reasonable implementation of Algorithm 4.7, the matrix-
matrix multiplications need to be replaced, as an explicit multiplication would be
much too expensive. Moreover, to save memory, we will operate directly on the
matrix A instead of creating temporary matrices A, A2

4.2. LU factorization Version March 27, 2025

57

Algorithm 4.9 (LU factorization)
Input: Invertible matrix A € R™"*",
Output: Factors L, U of LU factorization A = LU.

Set L :=1,.
fork=1,...,.n—1do
fori=k+1,...,ndo
i
eik —
Ak
forj=k+1,...,ndo
Qij < Qi — Eikakj
end for
end for
end for
Set U to upper triangular part of A.

PyTHON

import numpy as np
def mylu(A):
n = A.shape[0]
L = np.eye(n)
for k in range(n):
L(k+1:n, k] = A[k+1:n, k] / A[k,k]
Alk+1:n, k+1:n] = A[k+1:n, k+1:n]
- np.outer(L[k+1:n, k], A[k, k+1:n])

U = np.triu(d)
return L, U

The complexity of Algorithm 4.9 is given by
s 2., 1, 1 2
Z (14+2(n—k))(n—k)==n*—=n® — —n = Zn® + O(n?) flops.
= 3 2 6 3
In summary, a linear system Ax = b is solved with the following procedure.
Algorithm 4.10 (Solution of Ax = b with LU factorization)
1. Compute LU factorization of A = LU with Algorithm 4.9.
2. Solve Ly = b by forward substitution (Algorithm 4.3).

3. Solve Ux =y by backward substitution (Algorithm 4.4).

Example 4.11 We apply Algorithm 4.10 to Example 4.2:

import numpy as np, scipy as sp
A = np.array([[-0.370, 0.050, 0.050, 0.070],

58 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

[0.050, -0.116, 0.000, 0.050],
[0.050, 0.000, -0.116, 0.050],
[0.070, 0.050, 0.050, -0.202]11)
b = np.array([[-2], [0], [0], [011)
L, U = mylu(d)
y
X

sp.linalg.solve_triangular(L, b, lower=True, unit_diagonal=True)
sp.linalg.solve_triangular(U, y)

This produces the output

x =
8.1172
5.9893
5.9893
5.7779

Of course, we could also have obtained the solution by directly calling 1inalg.solve
from NumPy or SciPy. o

4.3 LU factorization with pivoting

Algorithm 4.9 will clearly fail whenever it encounters a zero pivot element. For
example,
0 1 1
A= 0 1 -1
1 0 O
has a zero diagonal entry in the first position and immediately leads to a division by
zero in Algorithm 4.9, although A is an invertible matrix. This situation is easy to
spot, but it is important to keep in mind that — except for the first step — the pivot
elements are computed in the course of the algorithm and it is in general impossible
to “see” whether a matrix might lead to zero pivot elements.
The situation for the matrix A above is easy to resolve: We simply exchange
rows 1 and 3 before attempting to compute the LU factorization. This corresponds
to the multiplication of A with a permutation matrix'?:

B 10 O 0 0 1
A=PA=|1 01 -1 |, with P=| 0 1 O
0 1 1 1 00
The LU factorization of A is then given by
_ 100 10
A=PA=LU with L= 0 1 0|, U=|0 1 -1
0 1 1 0 0

12 A permutation matrix has exactly one entry 1 in each row and column, and is otherwise zero.

4.3. LU factorization with pivoting Version March 27, 2025 59

There is an even more important reason to perform such permutations. Consider
a slight modification of A:

10716 1 1
A= 01 -1
1 0 O
Then Algorithm 4.9 does not fail and Python returns
L =
1.0000e+00 0 0
0 1.0000e+00 0
1.0000e+16 -1.0000e+16 1.0000e+00
U -

1.0000e-16 1.0000e+00 1.0000e+00
0 1.0000e+00 -1.0000e+00
0 0 -2.0000e+16

Moreover, solving the linear system for the right-hand side b = [2, 2, 1]7 with these
triangular factoriuation gives the “solution”

However, this is totally wrong; the exact solution is = [1,2,0]” (up to roundoff
error 10716). What happened? The very large entries in L and U gave rise to
massive numerical cancellation, which eventually destroyed the numerical accuracy
of the solution completely. The large entries are due to the very small pivot element
10716 in the first step of the LU factorization. To avoid such small pivot elements, we
perform a row permutation in each step of the LU factorization such that
the entry of largest magnitude in the active column below the diagonal
becomes the pivot element. The realization of this idea is illustrated by the
following example.

Example 4.12 Let

1 2 2
A=| 2 -7 2
1 24 0

According to the idea above, we exchange the first and second rows by a permuta-
tion:

B 2 -7 2 010
A .=pA=(1 2 2], with A= 1 0 0
1 24 0 0 0 1

We now apply the usual elimination step to /T(O), resulting in ¢o; = 0.5, 317 = 0.5,
and
2 -7 2
AV =10 55 1
0 275 -1

60 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

Since aélg) is larger than a%), we have to exchange rows 2 and 3 before applying the

next step of LU factorization:

B 2 -7 2 100
AV =p AV = 0 275 -1 |, with PB,=| 0 0 1
0 55 1 010

The usual elimination step applied to Z(l), results in f30 = % = 0.2, and

2 -7 2
U=A®=| 0 275 -1 |,
0 0 1.2
Moreover,
1 0 0
L=| 05 1 0
0.5 02 1
It remains to collect the permutations:
01 0
P=PRPRP=|0 01
1 00

This can and should be performed without explicit multiplication by applying the
row exchange described by P» to the rows of P;. In summary, we obtain the following
LU factorization with pivoting:

PA=LU,

where P is a permutation matrix and L/U are lower/upper triangular matrices. <

4.4, Symmetric positive definite matrices* Version March 27, 2025 61

The extension of the procedure outlined in Example 4.12 to general matrices is
given by the following algorithm.

Algorithm 4.13 (LU factorization with pivoting)
Input: Invertible matrix A € R™*".
Output: Factors P, L,U of LU factorization with pivoting PA = LU.

for k=1,...,n—1do
Search i € {k,...,n} such that |a;x| > |ayg| for all i/ € {k,... ,n}
Define P as permutation matrix that exchanges rows ¢ and k.
Exchange rows: A «+ P, A

fori=k+1,...,ndo
ik

Qi <

akk
for j=k+1,...,ndo
Qij < Q5 — Qi Akj
end for
end for

end for
Set U to upper triangular part of A.
Set L to lower triangular part of A and diagonal entries 1.
Set P := Pn—lpn—Q s P2P1.

In PyTHON, Algorithm 4.13 is performed by the function
L,U,P = scipy.linalg.lu(A)

If implemented well, the cost of Algorithm 4.13 is essentially identical with Algo-
rithm 4.9. An algorithm for solving a linear system Ax = b can be obtained from
a slight modification of Algorithm 4.10:

1. Compute LU factorization with pivoting PA = LU with Algorithm 4.13.
2. Set b := Pb and solve Ly = b by forward substitution (Algorithm 4.3).
3. Solve Ux =y by backward substitution (Algorithm 4.4).

4.4 Symmetric positive definite matrices*

Matrices from applications often have additional properties that facilitate the solu-
tion of the associated linear systems. A quite common property is positive definite-
ness.

Definition 4.14 A symmetric matriz A € R™*" is called
1. positive definite, if xT Ax > 0 Vx € R"\{0};

2. positive semi-definite, if x" Ax > 0 Vx € R™.

62 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

A symmetric matrix is positive definite (semi-definite) if all its eigenvalues are
positive (non-negative). The following theorem collects some simpler necessary
conditions for positive definiteness.

Theorem 4.15 Let A € R™ ™ be symmetric positive definite. Then the following
statements hold:

1. A is invertible;

2. a; >0 forallie{1,...,n};

3. laij| < & (asi + ajj) fori# j and hence max;j |a;;| = max; a;;

4. if X € R™ " is invertible, then X TAX is again symmetric positive definite.

Setting A = I, it follows from Theorem 4.15.4 that XTX is symmetric positive
for every invertible matrix X. The converse is also true: every symmetric positive
matrix can be written in the form XTX.

Theorem 4.16 Let A € R™*"™ be symmetric positive definite. Then there exists
an upper triangular matriz R € R™™ such that A = RTR.

The factorization A = RT R from Theorem 4.16, with an upper triangular matrix R
having positive diagonal entries, is called Cholesky factorization. Note that this
is a special case of an LU factorization A = LU, with L = R"T and U = R. In fact,
the Cholesky factorization could be extracted from an LU factorization. However,
the following algorithm is more direct and more efficient.

Algorithm 4.17 (Cholesky factorization)
Input: Symmetric positive matrix A € R™*".
Output: Cholesky factor R such that A = RTR.

for j=1,...,ndo
fori=1,...,7—1do

i—1
Tij = <aij -2 Tkﬂ“kj) [Tii
k=1

end for
j—1
o L 2
Ti; =4l — > Tkj
k=1
end for

Algorithm 4.17 requires n3/3 + O(n?) flops and is therefore half as expensive as
computing the LU factorization. This is due to the fact that only one factor instead
of two need to be computed.

4.4, Symmetric positive definite matrices* Version March 27, 2025 63

Remark 4.18 Algorithm /.17 will break down if the matriz A is not positive defi-
j—1

nite. In this case, the expression a;; — > rij will become negative at one point of
k=1

the algorithm and no (real) square root can be determined.

Note that Algorithm /.17 does not perform any pivoting/permutations. It turns
out that this is mot necessary; the Cholesky factorization of a symmetric positive
definite matriz can always be computed in a numerically reliable way without pivot-
ing.

Recap on norms

Before we continue, we will recall basic definitions and facts about vector and matrix
norms, which will be important for the rest of this chapter and next chapter. A
(vector) norm on R”™ is a real-valued function || - | : R®™ — R that satisfies the
following three axioms:

Triangle inequality: |[x +y| < |[x[| + [ly| for all x,y € R";
Homogeneity: |ax| < |af||z| for all @ € R, x € R™;
Positivity: ||x|| > 0 for all x € R™ and ||x|| = 0 if and only if x = 0.

The most common examples are the Euclidean norm ||x[|2 = /22 + - -+ + 22, the 1-
norm ||x||; = |x1|+- -+ |zn|, and the co-norm ||x||cc = max{|z;|:i=1,...,n}. On
the other hand, the function ||x||o = #{i : #; # 0}, where # denotes the cardinality
of a set, is not a norm.

A matrix norm on R™*" is a real-valued function || - || : R™*™ — R that satisfies
the vector norm axioms on the vector space R™*" = R™™:

Triangle inequality: ||A+ B|| < ||A]| + ||B|| for all A, B € R™*™;
Homogeneity: |aA| < |a|||4] for all @ € R, A € R™*™;
Positivity: ||A]| > 0 for all A € R™*™ and ||A]| =0 if and only if A =0.

In order to be useful for the analysis of algorithms, a matrix norm should also be
sub-multiplicative. More precisely, a family of matrix norms || - || on R™*", defined
for all m,n € N, is called sub-multiplicative if

[AB| < [AllIBI, VYA€R™™,BeR", m,n,peN.

The most simple way to define a matrix norm is to just take a vector norm on
R™*m =2 R™"_ For example, the Euclidean norm gives rise to the Frobenius norm

n m) 1/2
JAle = (D)
i=1 j=1

One can show that the Frobenius norm is sub-multiplicative. In contrast, the max-
imum norm
|Allmax = max{|a;;| :i=1,...,n, j=1,...,m}

64 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

is a matrix norm but it is not sub-multiplicative.
Another popular way to define a matrix norm on R™*™ is the operator norm

induced by a vector norm || - || on R™ R™:
Ax
|A]| := sup I Ax] = sup ||Ax||
xERN HXH xERM
x£0 llll =1

One easily verifies the three matrix norm axioms. Additionally, any operator norm
is sub-multiplicative because

AB AB B AB B
x£0 x#£0 x#£0

ABx Bx Ay Bx
xein || B xexn ||x]] vern [yl xemn [|x]
*x£0 x#£0 y#£0 x#£0

The usefulness of an operator norm in practice also depends on how easy it is to
determine the supremum. For the following three situations, the operator norm can
be computed explicitly

Spectral norm: The operator norm induced by the Euclidean norm || - || = || - ||2
is called spectral norm and satisfies |All2 = 01(A), where o1(-) denotes the
largest singular value of a matrix.

Maximum column sum: The operator norm induced by the l-norm ||- || = || - |1
can be shown to satisfy

m
I1A]: = max{Z|aij|: j= ln}
i=1
that is, the maximum 1-norm of the columns of A.

Maximum row sum: The operator norm induced by the oco-norm || - |

can be shown to satisfy
n
[|A]| o = max { Z lail:i=1,... ,m},
j=1
that is, the maximum 1-norm of the rows of A.
By definition, any operator norm satisfies ||I,,|| = 1, where I,, is the n x n identity

matrix. This shows that the Frobenius norm cannot be expressed as an operator
norm because ||I,||F = /n.

4.5 Error analysis: Conditioning

Solving linear systems on the computer in finite precision arithmetic is subject to
roundoff error. Already storing the matrix A and the vector b will usually cause

4.5. Error analysis: Conditioning Version March 27, 2025 65

some error. To verify the accuracy of a computed (approximate) solution X one
often computes the norm of the residual r = b — AX. One major philosophy in
numerical analysis is backward error analysis, to view a computed solution of a
given linear system as the exact solution of a perturbed linear system. The norm of
the residual corresponds to the minimal perturbation.

Theorem 4.19 Let X # 0 be an approzimate solution of the linear system Ax = b.
Then
[[r]l2

X2’

min {||AAl2: (A+ AA)R =b} =

where r = b — AX.
Proof. The relation (A + AA)X = b yields

[AA2lX]l2 = [[AAX][2 =]2,

and hence min {||[AA]l2: (A4+ AA)X =b} > ||rll2/|X|l2- To establish equality, we
still need an admissible perturbation AgA with ||AgAll2 = ||r|l2/||X]|2. This is given
by

1
A()A = A—QI‘QT,
113

because (A + AgA)X=AXx+r=b. O

When storing the entries of A in double precision one causes an error of order
10~ %6]|A|2, which in turn leads to a residual norm ||r||2 of order 10~ 16|| A2/ 2|2
even if the rest of the computations was carried out exactly. For this reason, the
best we can reasonably hope from a numerical algorithm for solving linear system is
that it achieves ||r||2 ~ 10716|| A||2||z||2. Such algorithms are called backward stable.
However, this does not necessarily imply a small error ||X —x||2 of the solution itself.

1
Example 4.20 Let A = (a;;) with a;; = E— be the n x n Hilbert matrix
i

and b= (1,...,1)T. We compute the solution of Ax = b with \ and compare it with
the “exact” solution, which is computed in 100 decimal digits arithmetic, using the
mpmath library for performing floating-point arithmetic with arbitrary precision.
PyTHON
import matplotlib.pyplot as plt

import numpy as np, scipy.linalg as spla

from mpmath import hilbert, lu_solve, mp, ones

mp.dps = 100, ns = range(5, 21)
xrel, res = [1, []
for n in ns:
Anp, Amp = spla.hilbert(n), hilbert(n)
rhsnp, rhsmp = np.ones(n), ones(n, 1)
xnp, xmp = spla.solve(Anp, rhsnp), lu_solve(Amp, rhsmp)
res.append(spla.norm(Anp @ xnp - rhsnp) / spla.norm(xnp))

66 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

xrel.append(float(spla.norm(xnp - xmp)) / spla.norm(xnp))

plt.semilogy(uns, res, "b", ns, xrel, "r--")
plt.legend(["Rel residual", "Rel error"])

plt.grid(axis="y", which="major", linestyle="--")
plt.show()
108
— Relresidgad -7
103 11 ==== Rl @ITOr oo =2
10°
1073
10-6 /,,,,
1079 e g
10-12 -~
10715
6 8 10 12 14 16 18 20

The red dashed line shows the relative error of the solution X computed in double
precision and the blue solid line shows the relative norm of the residual as n in-
creases. The error of X grows rapidly, despite the fact that it is the solution of a
very slightly perturbed linear system, according to Theorem 4.19. o

4.5.1 Condition of a function

To explain the phenomenon observed in Example 4.20 we will first consider the
sensitivity analysis in a more abstract framework. A computation can be viewed
as a function f : Input — Output. We assume that the admissible inputs are in a
finite dimensional vector space V; with norm || - ||y;. The Outputs are in a vector
space V, with norm | - [|y,. A computation is the evaluation f(z) € V, for some
admissible z € V; (z can be a matrix; V; = R"*™). Because of roundoff error the
representation of x is corrupted by an error Az. We now want to understand how
much this error is potentially increased when evaluating the function, that is, when
considering f(z+ Ax) instead of f(z). For this purpose we assume that f is defined
and two times continuously differentiable in ab open ball containing « € V;. Using
Taylor expansion, we have

v f(z), o+ Dz flo+ Ax) = fz) + f'(2) Do+ O(||Ax]F,)
as Ax — 0. The norm of the differential f" at x, that is,

1 @) 2vivy = max{[|f'(z) Azllv, : [[Azllv, =1}

4.5. Error analysis: Conditioning Version March 27, 2025 67

measures the absolute sensitivity or condition of f(x) with respect to a (small)
perturbation Az of x.

Often, it is more reasonable to consider the relative error, which is independent
of scaling of = or f(z): For f(x) #0, x # 0, Az — 0 we have

If (@ +Lx) = f@)llv, _ If @Az, +O(1A]3,)
1S (@)llv, 1S (@)llv,
[f(z+ Dz) = f(@)|lv, _ <|f’(ﬂf)||ﬁ(\4,,vo) 1B2lvi o Agli2
1@, < U, v, otiaeli:
rel. error in f rel. error in x

Definition 4.21 The (relative) condition of the function = — f(x) at = is

M@ ewvi v
cond(f,x) := W || v, -

As an example, consider the subtraction of two numbers a,b € R. Then V; = R?
(with norm || - ||1) and V, = R. Moreover, f: V; — V, with f: (a,b) — a — b and

of of
150wty = | (Gl Galaoan)| =100 ~Dle =1.

Hence the relative condition of f at (ag, bo) is

_lao| + |bo

cond(f, (ag,bg)) = a0 —bo|

As expected, this is large when ag = bg.

4.5.2 Condition number of a matrix

In the following, || - | : R®*™ — R denotes the operator norm induced by a vector
norm || - || : R® = R (e.g., the spectral norm induced by the Euclidean norm). The
following proposition studies the relative condition of matrix inversion, that is, the
f(X) = X~1 at an invertible matrix X = A.

Proposition 4.22 (Sensitivity of matrix inversion) Let A € R"*"™ be invert-
ible. If |ATLAA| < 1 then A+ AA is invertible and

[(A+ A4 — A7 JAIATY] &AL
| A=T]] T 1 ATIAAL (1A
N——

rel. error in A1 rel. error in A

68 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

Proof. For || X|| < 1, the so called Neumann series
S XE=T+X+ X2+ =T4Y, V=) X" (4.9)
k=0 k=1

converges because || > pe o X¥|| < Y52 X[= 1/(1 — || X]|)). This series is the
inverse of I — X because

(I-X)I+Y)=]"X<§:X*)753ka§§Xk:L
k=0 k=0 k=1
Moreover,
X
|Y|_HX§:Xk‘—1”|£|

Now we can write
A+ NA=A(T+ATTAA).

Setting X = —A~1AA, the discussion above shows that (I + A"1AA) is invertible
when ||[A7!AA|| < 1 with the inverse given by I + Y for some Y with V] <
|A7TAAl /(1 — JATEAA]). In turn A + AA is also invertible and

-1_ 4-1y — -1_ -1 < -1 < - '
[(A+4)7 = A7 = (4 Y)A™ =47 < WA < AP Tyt

O

Proposition 4.22 shows that ||A|| || A~!|| governs the condition of matrix inversion.
This quantity is called condition number of A:

K(A) = [l AHIAT. (4.10)
Note that the condition number depends on the operator norm || - ||. We write
ka(A) = [|All2 [A7H2-
PyTHON

from numpy import linalg as LA

LA.cond(A) # condition number of A in the spectral norm
LA.cond(A,p) # condition number of A in the p-norm with p = 1,2,inf
LA.cond(A,’fro’) # condition number of A in the Frobenius norm

4.5.3 Sensitivity of linear systems

As a direct consequence of Proposition 4.22 we obtain the following result on the
sensitivity of the solution of a linear system to perturbations in A and b.

4.5. Error analysis: Conditioning Version March 27, 2025 69

Theorem 4.23 Let A € R™™"™ be invertible and consider ANA € R™™ ™ satisfying

|A~TAAl < 1. Then
(A+ AA)R = b+ Ab (4.11)

has a unique solution and

x — x| K(A) [AA] A
< + .
(4 1= [[A-1AA| ((Al bl)

(4.12)

Proof. Using the notation from the proof of Proposition 4.22 we have
X=(A+2AA)" b+ Ab)=T+Y)x+A'Ab).
Hence, X —x = Yx + (I + Y)A " !Ab and, in turn,

IZ=x| < [[Y]x[+@+[YDIATIAb]
[ATIAA| 1 -1
< A7Y|A
< 1o HA,IAA”HXH T ITTAAA] [A= [Ab]|
r(A) [AA] 14D
< — + 1]
1A IAA||< 1Al HAHHXH)

The proof is completed using ||A]|||x|| > ||b||. O

Remark 4.24 The inequality (4.12) can be weakened to the asymptotic bound

1% — x| STy)
<r(A) (=0 B2 4 O(e
<@ O+ o) + 0

for e = max{||AA][, [[b][} — 0.

This analysis explains the strong growth of the error of X in Example 4.20. As n
increases, the condition number of the Hilbert matrix increases exponentially fast.!?
The following figure shows the condition number for the spectral norm vs n.

30

10

5 10 15 20

13See Beckermann, B. The condition number of real Vandermonde, Krylov and positive definite
Hankel matrices. Numer. Math. 85 (2000), no. 4, 553-577.

70 Version March 27, 2025 Chapter 4. Linear Systems — Small Matrices

4.6 Error analysis: Solution by LU factorization

We have now understood the effect of error in the data (matrix A and vector b) on
the quality of the solution. This effect is independent of any algorithm; in fact, no
algorithm can reasonably undo the effect of rounding A and b. Therefore, the best
we can hope for is that our algorithm does not introduce a much larger error. This
leads to the idea of backward error analysis; relate the error conducted during the
algorithm back to the original data and hope that it is not much larger than what
happened due to rounding anyway.

In the following, we will provide the analysis of the forward/backward substitu-
tion step and only state the result for the solution via the LU decomposition. In the
following lemma, |A| will denote the matrix obtained from A by replacing each en-
try by its absolute value. Comparison between matrices is understood elementwise.
Also, we recall the quantity v, = v, (F) := 1:115%“) = nu(F) + O(u(F)?) defined in
Lemma 1.16.

Lemma 4.25 Let X denote the solution computed by Algorithm 4.3 in floating
point arithmetic F. Then there exists a matrix AL with

|AL| < v, |L,

such that
(L+ AL)X=h.

Proof. To simplify the notation, we let §; denote an undetermined generic variable
satisfying |6;| < 7;. Using the models (1.5) and (1.6) of floating point arithmetic,
the first loop of Algorithm 4.3 satisfies

l11(1461)x, = by,
and the second loop satisfies
loo(1 4+ 62)To = by — U171 (1 + 61) .
More generally, in the ¢th loop we have
Cii(14+02)T; = by — ;121 (1 4+ 0;—1) — lioZa(1 +0;—2) — - - — 4 ;1 Zi—1(1 + 01) .
Setting Al;; := £;;05 and Al = Lip0;_ yields the result. 0O
An immediate consequence of the result of Lemma 4.25 is that
[ALll2 < cpullLl2

for some constant ¢y, mildly growing with n. An analogous result holds, of course,
for Algorithm 4.4. More importantly, this also holds for Az = b; the solution &

4.6. Error analysis: Solution by LU factorization Version March 27, 2025 71

computed by the LU factorization (with or without pivoting) satisfies (A+AA)z = b
for some AA with
[AA]l2 < caul[Lll2[|U]2

for some constant ¢4 mildly growing with n; see [3]. It is important to observe
that || L||2||U]|2 can be significantly larger than ||A||. When using pivoting (that is,
Algorithm 4.13) then all entries of L are bounded by one in magnitude, while the
norm of U is critically determined whether the algorithm encounters small pivot
elements. Even with pivoting, there are examples for which the pivot elements can
become very small (much smaller than ||A~Y||) but this is a rare event; see [3] for
more details.

