
Chapter 4

Linear Systems – Small

Matrices

The solution of a linear system of equations

Ax = b

with a square invertible matrix A ∈ R
n×n and a right-hand side vector b ∈ R

n is
one of the most frequent tasks in numerical analysis. The matrix A and the vectors
x, b have the entries

A =




a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
. . .

...
...

...
. . .

...
an1 an2 · · · · · · ann




, x =




x1

x2

...

...
xn




, b =




b1
b2
...
...
bn




.

Example 4.1 Consider the following system of 3 linear equations:

2x1 −2x2 +4x3 = 6
−5x1 +6x2 −7x3 = −7
3x1 +2x2 +x3 = 9

Using the definition of the matrix-vector product, this can be written in matrix-
vector form as 


2 −2 4
−5 6 −7
3 2 1






x1

x2

x3


 =




6
−7
9


 .

Example 4.2 Figure 4.1 shows a hydraulic network11 of 10 pipelines. It is fed
by a water reservoir having a constant pressure of p = 10 bar. Here and in the
following, pressure values refer to the difference between the real pressure and the
atmospheric pressure. The flow rate Qj (in m3/s) of the jth pipeline is proportional

11Example taken from [A. Quarteroni, F. Saleri, and P. Gervasi. Springer, 2010].

49



50 Version March 27, 2025 Chapter 4. Linear Systems – Small Matrices

p=10 bar

1

2

3

4

p=0

p=0

p=0

p=0

Q1

Q2

Q3

Q4 Q5

Q6

Q7

Q8

Q10

Q9

Figure 4.1: Hydraulic network from Example 4.2.

to the length Lj (in m) of the pipeline and the pressure difference ∆pj at both ends
of the pipeline:

Qj = kjLj∆pj (4.1)

The constant kj denotes the hydraulic resistance (in m/(bar s) ), which depends on
the shape of the pipe and the fluid viscosity. It is assumed that the water flows from
outlets (marked by ⊗ in the figure) at atmospheric pressure, and hence p = 0 at
the exterior nodes of the network. To determine the pressure at the internal nodes
1, 2, 3, 4, we can use that the flow rates at each internal node must sum up to zero.
Denoting these pressures by p = [p1, p2, p3, p4]

T , this implies for node 1:

Q1 −Q2 −Q3 −Q4 = 0
(4.1)
=⇒ k1L1(p1 − 10)− k2L2(p2 − p1)− k4L4(p3 − p1)− k3L3(p4 − p1) = 0

=⇒ −10k1L1 = −(k1L1 + k2L2 + k3L3 + k4L4)p1 + k2L2p2 + k4L4p3 + k3L3p4

To proceed, we choose concrete values for kj and Lj as follows.

pipeline kj Lj pipeline kj Lj pipeline kj Lj

1 0.01 20 2 0.005 10 3 0.005 14
4 0.005 10 5 0.005 10 6 0.002 8
7 0.002 8 8 0.002 8 9 0.005 10
10 0.002 8

Inserting these values into the equation above gives

−2 = −0.37 p1 + 0.05 p2 + 0.05 p3 + 0.07 p4.



4.1. Triangular Matrices Version March 27, 2025 51

Similarly, linear equations can be derived for the other internal nodes 2, 3, 4. In
summary, this yields the linear system Ap = b with

A =




−0.370 0.050 0.050 0.070
0.050 −0.116 0 0.050
0.050 0 −0.116 0.050
0.070 0.050 0.050 −0.202


 , b =




−2
0
0
0


 .

The solution of this linear system will be presented in Example 4.11. ⋄

4.1 Triangular Matrices

Before coming to the solution of a general linear system Ax = b, we first consider
two special cases for the matrix A.
A lower triangular matrix A is a square matrix satisfying

aij = 0 for all i, j with i < j.

An upper triangular matrix A is a square matrix satisfying

aij = 0 for all i, j with i > j.

Often, we will denote lower triangular matrices with the letter L and upper trian-
gular matrices with the letter U . The definitions imply the shapes

L =




ℓ11 0 · · · · · · 0
ℓ21 ℓ22 0 · · ·
ℓ31 ℓ32

. . .
. . .

...
...

...
. . .

. . . 0
ℓn1 ℓn2 · · · ℓnn−1 ℓnn




, U =




u11 u12 · · · · · · u1n

0 u22 · · · · · · u2n

0 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0 unn




.

Pictorially:

L =❅, U =❅.

The solution of linear systems with (lower or upper) triangular matrices is quite
simple. For example, consider




1 2 −1
0 2 1
0 0 2






x1

x2

x3


 =




2
3
2


 ⇔

x1 + 2x2 − x3 = 2
2x2 + x3 = 3

2x3 = 2

The last equation can be immediately solved: x3 = 2/2 = 1. Inserting this into the
second equation gives

2x2 + 2x3 = 3 ⇒ x2 =
1

2
(3 − x3) = 1.
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Finally, inserting x2 = 1 and x3 = 1 into the first equation gives

x1 + 2x2 − x3 = 2 ⇒ x1 = 2− 2x2 + x3 = 1.

This process of eliminating the variables xn, xn−1, . . . is called backward substitution.
Similarly, a linear system with a lower triangular matrix can be solved by eliminating
the variables x1, x2, . . .. This process is called forward substitution.

For general triangular matrices, forward and backward substitution are given by
the following two algorithms.

Algorithm 4.3
Forward substitution
Input: Invertible lower triangular

L ∈ R
n×n, b ∈ R

n.
Output: Solution x of Lx = b.

for i = 1, 2, . . . , n do

xi :=
1

ℓii

(
bi −

i−1∑

k=1

ℓikxk

)

end for

Algorithm 4.4
Backward substitution
Input: Invertible upper triangu-

lar U ∈ R
n×n, b ∈ R

n.
Output: Solution x of Ux = b.

for i = n, n− 1, . . . , 1 do

xi :=
1

uii

(
bi −

n∑

k=i+1

uikxk

)

end for

It is a good exercise to convince yourself that the right-hand side of the assignment
in both algorithms only contains terms that are already known.

Remark 4.5 In Python, linear systems can be solved with the commands

numpy.linalg.solve(A, b) or scipy.linalg.solve(A, b)

for a square, invertible matrix A. However, these functions do not automatically
check whether A is triangular and, therefore, they are unnecessarily slow in such
situations. To solve triangular linear systems, one should call scipy.linalg.solve
with the option assume_a set to ‘upper triangular’ or ‘lower triangular’. Alterna-
tively, one can also call scipy.linalg.solve_triangular.

Let us perform a complexity analysis for Algorithm 4.3. The cost of an algorithm is
determined by the number of elementary operations +,−, ∗, / and elementary func-
tion evaluations. Each operation / evaluation is counted as one flop (floating point
operation). The ith loop of Algorithm 4.3 performs 1 division, i−1 multiplications,
and i− 1 additions/subtractions; a total of 2i− 1 flops. Therefore, the total cost of
Algorithm 4.3 is given by

n∑

i=1

(2i− 1) = n2 flops. (4.2)

The cost of Algorithm 4.4 is the same.

4.2 LU factorization

Knowing that a linear system with a triangular matrix is considerably simple to
solve, we now try to reduce a general system to this case. To be more precise, we
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will use a variant of Gaussian elimination to write the matrix A as a product of
triangular matrices:

A = LU =❅ ·❅. (4.3)

Once we know such a factorization, we can solve the linear system Ax = b with
forward and backward substitution. If we introduce the auxiliary vector y = Ux
then b = Ax = LUx = L(Ux) = Ly. Hence, we can solve (LU)x = b in two steps:

1. solve Ly = b for y with Algorithm 4.3;

2. solve Ux = y for x with Algorithm 4.4.

The LU factorization of a matrix A ∈ R
n×n proceeds in n−1 steps, by eliminating

column-by-column the entries of A below the diagonal.

Example 4.6 We illustrate the computation of an LU factorization for the matrix
from Example 4.1:

A =




2 −2 4
−5 6 −7
3 2 1




In Step 1, we eliminate the entries below the first diagonal entry, by adding 5/2×
row 1 to row 2, and subtracting 3/2× row 1 from row 3. As a result, we obtain the
modified matrix

A(1) :=




2 −2 4
0 1 3
0 5 −5


 .

The crucial observation is that this step can be written as a matrix-matrix multi-
plication:

A(1) := L1A = L1




2 −2 4
−5 6 −7
3 2 1


 , with L1 =




1 0 0
5/2 1 0
−3/2 0 1


 .

In Step 2, we eliminate the remaining entry 5 in A(1) below the second diagonal
element. This can be achieved by subtracting 5× row 2 from row 3, leading to

A(2) :=




2 −2 4
0 1 3
0 0 −20




Again, this can be written as a matrix-matrix product

A(2) := L2A
(1) = L2




2 −2 4
0 1 3
0 5 −5


 , with L2 =




1 0 0
0 1 0
0 −5 1


 .

Setting U := A(2), the two steps above can be summarized as

A = LU, with L = L−1
1 L−1

2 .



54 Version March 27, 2025 Chapter 4. Linear Systems – Small Matrices

It turns out that – due to their very special structure – the inverses of L1 and L2

can be simply obtained by negating the elements below the diagonal:

L−1
1 =




1 0 0
−5/2 1 0
3/2 0 1


 , L−1

2 =




1 0 0
0 1 0
0 5 1


 .

This can be easily verified by checking L1L
−1
1 = I3 and L2L

−1
2 = I3. Moreover,

again due the very special structure, the product L−1
1 L−1

2 is simply obtained by
collecting all nonzero sub-diagonal elements:

L = L−1
1 L−1

2 =




1 0 0
−5/2 1 0
3/2 5 1




Hence,

A = LU, with L =




1 0 0
−5/2 1 0
3/2 5 1


 , U =




2 −2 4
0 1 3
0 0 −20


 .

which is the LU factorization of A. ⋄

The procedure from Example 4.6 easily extends to a general matrix A. Before
Step k, the modified matrix A takes the form

A(k−1) =




a11 a12 a13 · · · · · · a1n

a
(1)
22 a

(1)
23 · · · · · · a

(1)
2n

. . .
. . .

...

a
(k−1)
kk · · · a

(k−1)
kn

...
...

a
(k−1)
nk · · · a

(k−1)
nn




. (4.4)

(For Step 1, we formally set A(0) := A.) For performing Step k, the coefficients

ℓik :=
a
(k−1)
ik

a
(k−1)
kk

, i = k + 1, . . . , n,

are computed. Of course, this is only possible if the so called pivot element a
(k−1)
kk

is nonzero. We will come back to this limitation below, in Section 4.3.
The multiplication of the matrix

Lk :=




1
. . .

1
−ℓk+1,k 1

...
. . .

−ℓnk 1




(4.5)
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with A(k−1) performs Step k and eliminates all entries below the (k− 1)th diagonal
entry. The whole procedure is then repeated with the resulting matrix

A(k) = LkA
(k−1). (4.6)

After n− 1 steps, we obtain

A(n−1) = Ln−1Ln−2 · · ·L1A
(0) = Ln−1Ln−2 · · ·L1A.

This can be rewritten as
LU = A,

where
L := L−1

1 L−1
2 · · ·L−1

n−1, U = A(n−1).

Note that U is upper triangular by construction. The factors L−1
k of the matrix L

are given by

L−1
k =




1
. . .

1
ℓk+1,k 1

...
. . .

ℓnk 1




, (4.7)

which can be verified by checking L−1
k Lk = I. Due to the special structure of these

factors, the sub-diagonal entries of L are obtained from collecting the subdiagonal
entries of all L−1

k :

L = L−1
1 L−1

2 · · ·L−1
n−1 =




1

ℓ21
. . .

ℓ31
. . . 1

... ℓk+1,k 1

...
...

. . .
. . .

ℓn1 · · · ℓnk · · · ℓn,n−1 1




. (4.8)

The procedure above is summarized in the following algorithm.

Algorithm 4.7 (Abstract form of LU factorization)
Input: Invertible matrix A ∈ R

n×n.

Output: LU factorization A = LU with U = A(n−1) and L as in (4.8).

A(0) := A
for k = 1, . . . , n− 1 do
Determine matrix Lk (see (4.5)) by computing the coefficients

ℓik :=
a
(k−1)
ik

a
(k−1)
kk

, i = k + 1, . . . , n.
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Set A(k) := LkA
(k−1).

end for

Not every invertible matrix A has an LU factorization, that is A = LU with L
lower triangular with ones and the diagonal and U upper triangular. The following
theorem characterizes which ones have.

Theorem 4.8 Let A ∈ R
n×n be invertible. Then A has an LU factorization if

and only all leading principal submatrices

Ak =




a11 a12 · · · · · · a1k
a21 a22 · · · · · · a2k
...

...
. . .

...
...

...
. . .

...
ak1 ak2 · · · · · · ann




, k = 1, . . . , n− 1,

are also invertible.

Proof. Given an LU factorization A = LU , we partition

L =

(
L11 0
L12 L22

)
, U =

(
U11 U12

0 U22

)
, L11, U11 ∈ R

k×k.

Then
Ak = L11U11 ⇒ det(Ak) = det(L11) det(U11) = det(U11),

where we used that L has ones on the diagonal. Because 0 6= det(A) = det(U) =∏n
i=1 uii, it follows that det(U11) =

∏k
i=1 uii 6= 0 and hence Ak is invertible.

To show the other direction we use the construction above of the LU factorization.
For Algorithm 4.7 to succeed we need to have a

(k−1)
kk 6= 0. Suppose that the first k−1

steps of Algorithm 4.7 have succeeded (that is, a11 6= 0, a
(1)
22 6= 0 . . . , a

(k−2)
k−1,k−1 6= 0).

Then

Ak =




1

l21
. . .

...
. . . 1

lk1 · · · lk,k−1 1







a11 a12 · · · a1k

a
(1)
22 · · · a

(1)
2n

. . .
...

a
(k−1)
kk


 .

Hence it follows from 0 6= det(Ak) = a11a
(1)
22 · · ·a

(k−1)
kk that a

(k−1)
kk 6= 0. Therefore

the kth step of Algorithm 4.7 succeeds as well and the claim follows by induction.

To come up with a reasonable implementation of Algorithm 4.7, the matrix-
matrix multiplications need to be replaced, as an explicit multiplication would be
much too expensive. Moreover, to save memory, we will operate directly on the
matrix A instead of creating temporary matrices A(1), A(2), . . ..
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Algorithm 4.9 (LU factorization)
Input: Invertible matrix A ∈ R

n×n.
Output: Factors L,U of LU factorization A = LU .

Set L := In.
for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

ℓik ←
aik
akk

for j = k + 1, . . . , n do
aij ← aij − ℓikakj

end for
end for

end for
Set U to upper triangular part of A.

Python

import numpy as np

def mylu(A):

n = A.shape[0]

L = np.eye(n)

for k in range(n):

L[k+1:n, k] = A[k+1:n, k] / A[k,k]

A[k+1:n, k+1:n] = A[k+1:n, k+1:n]

- np.outer(L[k+1:n, k], A[k, k+1:n])

U = np.triu(A)

return L, U

The complexity of Algorithm 4.9 is given by

n−1∑

k=1

(
1 + 2(n− k)

)
(n− k) =

2

3
n3 − 1

2
n2 − 1

6
n =

2

3
n3 +O(n2) flops.

In summary, a linear system Ax = b is solved with the following procedure.

Algorithm 4.10 (Solution of Ax = b with LU factorization)

1. Compute LU factorization of A = LU with Algorithm 4.9.

2. Solve Ly = b by forward substitution (Algorithm 4.3).

3. Solve Ux = y by backward substitution (Algorithm 4.4).

Example 4.11 We apply Algorithm 4.10 to Example 4.2:

import numpy as np, scipy as sp

A = np.array([[-0.370, 0.050, 0.050, 0.070],
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[ 0.050, -0.116, 0.000, 0.050],

[ 0.050, 0.000, -0.116, 0.050],

[ 0.070, 0.050, 0.050, -0.202]])

b = np.array([[-2], [0], [0], [0]])

L, U = mylu(A)

y = sp.linalg.solve_triangular(L, b, lower=True, unit_diagonal=True)

x = sp.linalg.solve_triangular(U, y)

This produces the output

x =

8.1172

5.9893

5.9893

5.7779

Of course, we could also have obtained the solution by directly calling linalg.solve
from NumPy or SciPy. ⋄

4.3 LU factorization with pivoting

Algorithm 4.9 will clearly fail whenever it encounters a zero pivot element. For
example,

A =




0 1 1
0 1 −1
1 0 0




has a zero diagonal entry in the first position and immediately leads to a division by
zero in Algorithm 4.9, although A is an invertible matrix. This situation is easy to
spot, but it is important to keep in mind that – except for the first step – the pivot
elements are computed in the course of the algorithm and it is in general impossible
to “see” whether a matrix might lead to zero pivot elements.

The situation for the matrix A above is easy to resolve: We simply exchange
rows 1 and 3 before attempting to compute the LU factorization. This corresponds
to the multiplication of A with a permutation matrix12:

Ã = PA =




1 0 0
0 1 −1
0 1 1


 , with P =




0 0 1
0 1 0
1 0 0


 .

The LU factorization of Ã is then given by

Ã = PA = LU with L =




1 0 0
0 1 0
0 1 1


 , U =




1 0 0
0 1 −1
0 0 2


 .

12A permutation matrix has exactly one entry 1 in each row and column, and is otherwise zero.



4.3. LU factorization with pivoting Version March 27, 2025 59

There is an even more important reason to perform such permutations. Consider
a slight modification of A:

A =




10−16 1 1
0 1 −1
1 0 0




Then Algorithm 4.9 does not fail and Python returns

L =

1.0000e+00 0 0

0 1.0000e+00 0

1.0000e+16 -1.0000e+16 1.0000e+00

U =

1.0000e-16 1.0000e+00 1.0000e+00

0 1.0000e+00 -1.0000e+00

0 0 -2.0000e+16

Moreover, solving the linear system for the right-hand side b = [2, 2, 1]T with these
triangular factoriuation gives the “solution”

x =

0

2

0

However, this is totally wrong; the exact solution is x = [1, 2, 0]T (up to roundoff
error 10−16). What happened? The very large entries in L and U gave rise to
massive numerical cancellation, which eventually destroyed the numerical accuracy
of the solution completely. The large entries are due to the very small pivot element
10−16 in the first step of the LU factorization. To avoid such small pivot elements, we
perform a row permutation in each step of the LU factorization such that
the entry of largest magnitude in the active column below the diagonal
becomes the pivot element. The realization of this idea is illustrated by the
following example.

Example 4.12 Let

A =




1 2 2
2 −7 2
1 24 0


 .

According to the idea above, we exchange the first and second rows by a permuta-
tion:

Ã(0) := P1A =




2 −7 2
1 2 2
1 24 0


 , with P1 =




0 1 0
1 0 0
0 0 1


 .

We now apply the usual elimination step to Ã(0), resulting in ℓ21 = 0.5, ℓ31 = 0.5,
and

A(1) =




2 −7 2
0 5.5 1
0 27.5 −1


 .
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Since a
(1)
32 is larger than a

(1)
22 , we have to exchange rows 2 and 3 before applying the

next step of LU factorization:

Ã(1) := P2A
(1) =




2 −7 2
0 27.5 −1
0 5.5 1


 , with P2 =




1 0 0
0 0 1
0 1 0


 .

The usual elimination step applied to Ã(1), results in ℓ32 = 5.5
27.5 = 0.2, and

U = A(2) =




2 −7 2
0 27.5 −1
0 0 1.2


 ,

Moreover,

L =




1 0 0
0.5 1 0
0.5 0.2 1


 .

It remains to collect the permutations:

P = P2P1 =




0 1 0
0 0 1
1 0 0


 .

This can and should be performed without explicit multiplication by applying the
row exchange described by P2 to the rows of P1. In summary, we obtain the following
LU factorization with pivoting:

PA = LU,

where P is a permutation matrix and L/U are lower/upper triangular matrices. ⋄
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The extension of the procedure outlined in Example 4.12 to general matrices is
given by the following algorithm.

Algorithm 4.13 (LU factorization with pivoting)
Input: Invertible matrix A ∈ R

n×n.
Output: Factors P,L, U of LU factorization with pivoting PA = LU .

for k = 1, . . . , n− 1 do
Search i ∈ {k, . . . , n} such that |aik| ≥ |ai′k| for all i′ ∈ {k, . . . , n}
Define Pk as permutation matrix that exchanges rows i and k.
Exchange rows: A← PkA
for i = k + 1, . . . , n do

aik ←
aik
akk

for j = k + 1, . . . , n do
aij ← aij − aikakj

end for
end for

end for
Set U to upper triangular part of A.
Set L to lower triangular part of A and diagonal entries 1.
Set P := Pn−1Pn−2 · · ·P2P1.

In Python, Algorithm 4.13 is performed by the function

L,U,P = scipy.linalg.lu(A)

If implemented well, the cost of Algorithm 4.13 is essentially identical with Algo-
rithm 4.9. An algorithm for solving a linear system Ax = b can be obtained from
a slight modification of Algorithm 4.10:

1. Compute LU factorization with pivoting PA = LU with Algorithm 4.13.

2. Set b̃ := Pb and solve Ly = b̃ by forward substitution (Algorithm 4.3).

3. Solve Ux = y by backward substitution (Algorithm 4.4).

4.4 Symmetric positive definite matrices⋆

Matrices from applications often have additional properties that facilitate the solu-
tion of the associated linear systems. A quite common property is positive definite-
ness.

Definition 4.14 A symmetric matrix A ∈ R
n×n is called

1. positive definite, if xTAx > 0 ∀x ∈ R
n\{0};

2. positive semi-definite, if xTAx ≥ 0 ∀x ∈ R
n.
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A symmetric matrix is positive definite (semi-definite) if all its eigenvalues are
positive (non-negative). The following theorem collects some simpler necessary
conditions for positive definiteness.

Theorem 4.15 Let A ∈ R
n×n be symmetric positive definite. Then the following

statements hold:

1. A is invertible;

2. aii > 0 for all i ∈ {1, . . . , n};

3. |aij | < 1
2 (aii + ajj) for i 6= j and hence maxij |aij | = maxi aii;

4. if X ∈ R
n×n is invertible, then XTAX is again symmetric positive definite.

Setting A = I, it follows from Theorem 4.15.4 that XTX is symmetric positive
for every invertible matrix X . The converse is also true: every symmetric positive
matrix can be written in the form XTX .

Theorem 4.16 Let A ∈ R
n×n be symmetric positive definite. Then there exists

an upper triangular matrix R ∈ R
n×n such that A = RTR.

The factorization A = RTR from Theorem 4.16, with an upper triangular matrix R
having positive diagonal entries, is called Cholesky factorization. Note that this
is a special case of an LU factorization A = LU , with L = RT and U = R. In fact,
the Cholesky factorization could be extracted from an LU factorization. However,
the following algorithm is more direct and more efficient.

Algorithm 4.17 (Cholesky factorization)
Input: Symmetric positive matrix A ∈ R

n×n.
Output: Cholesky factor R such that A = RTR.

for j = 1, . . . , n do
for i = 1, . . . , j − 1 do

rij =

(
aij −

i−1∑
k=1

rkirkj

)
/rii

end for

rjj =

√
ajj −

j−1∑
k=1

r2kj

end for

Algorithm 4.17 requires n3/3 +O(n2) flops and is therefore half as expensive as
computing the LU factorization. This is due to the fact that only one factor instead
of two need to be computed.
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Remark 4.18 Algorithm 4.17 will break down if the matrix A is not positive defi-

nite. In this case, the expression ajj −
j−1∑
k=1

r2kj will become negative at one point of

the algorithm and no (real) square root can be determined.
Note that Algorithm 4.17 does not perform any pivoting/permutations. It turns

out that this is not necessary; the Cholesky factorization of a symmetric positive
definite matrix can always be computed in a numerically reliable way without pivot-
ing.

Recap on norms

Before we continue, we will recall basic definitions and facts about vector and matrix
norms, which will be important for the rest of this chapter and next chapter. A
(vector) norm on R

n is a real-valued function ‖ · ‖ : Rn → R that satisfies the
following three axioms:

Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ R
n;

Homogeneity: ‖αx‖ ≤ |α|‖x‖ for all α ∈ R, x ∈ R
n;

Positivity: ‖x‖ ≥ 0 for all x ∈ R
n and ‖x‖ = 0 if and only if x = 0.

The most common examples are the Euclidean norm ‖x‖2 =
√
x2
1 + · · ·+ x2

n, the 1-
norm ‖x‖1 = |x1|+ · · ·+ |xn|, and the∞-norm ‖x‖∞ = max{|xi| : i = 1, . . . , n}. On
the other hand, the function ‖x‖0 = #{i : xi 6= 0}, where # denotes the cardinality
of a set, is not a norm.

A matrix norm on R
m×n is a real-valued function ‖ · ‖ : Rm×n → R that satisfies

the vector norm axioms on the vector space R
m×n ∼= R

m·n:

Triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ R
m×n;

Homogeneity: ‖αA‖ ≤ |α|‖A‖ for all α ∈ R, A ∈ R
m×n;

Positivity: ‖A‖ ≥ 0 for all A ∈ R
m×n and ‖A‖ = 0 if and only if A = 0.

In order to be useful for the analysis of algorithms, a matrix norm should also be
sub-multiplicative. More precisely, a family of matrix norms ‖ · ‖ on R

m×n, defined
for all m,n ∈ N, is called sub-multiplicative if

‖AB‖ ≤ ‖A‖‖B‖, ∀A ∈ R
m×n, B ∈ R

n×p, m, n, p ∈ N.

The most simple way to define a matrix norm is to just take a vector norm on
R

m×n ∼= R
m·n. For example, the Euclidean norm gives rise to the Frobenius norm

‖A‖F =
( n∑

i=1

m∑

j=1

a2ij

)1/2

One can show that the Frobenius norm is sub-multiplicative. In contrast, the max-
imum norm

‖A‖max = max{|aij | : i = 1, . . . , n, j = 1, . . . ,m}
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is a matrix norm but it is not sub-multiplicative.
Another popular way to define a matrix norm on R

m×n is the operator norm
induced by a vector norm ‖ · ‖ on R

m,Rn:

‖A‖ := sup
x∈Rn

x6=0

‖Ax‖
‖x‖ = sup

x∈Rn

‖x‖=1

‖Ax‖

One easily verifies the three matrix norm axioms. Additionally, any operator norm
is sub-multiplicative because

‖AB‖ = sup
x∈Rn

x6=0

‖ABx‖
‖x‖ = sup

x∈Rn

x6=0

‖ABx‖
‖x‖

‖Bx‖
‖Bx‖ = sup

x∈Rn

x6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖

≤ sup
x∈Rn

x6=0

‖ABx‖
‖Bx‖ sup

x∈Rn

x6=0

‖Bx‖
‖x‖ ≤ sup

y∈Rn

y 6=0

‖Ay‖
‖y‖ · supx∈Rn

x6=0

‖Bx‖
‖x‖ = ‖A‖‖B‖.

The usefulness of an operator norm in practice also depends on how easy it is to
determine the supremum. For the following three situations, the operator norm can
be computed explicitly

Spectral norm: The operator norm induced by the Euclidean norm ‖ · ‖ ≡ ‖ · ‖2
is called spectral norm and satisfies ‖A‖2 = σ1(A), where σ1(·) denotes the
largest singular value of a matrix.

Maximum column sum: The operator norm induced by the 1-norm ‖ · ‖ ≡ ‖ · ‖1
can be shown to satisfy

‖A‖1 = max
{ m∑

i=1

|aij | : j = 1, . . . , n
}
,

that is, the maximum 1-norm of the columns of A.

Maximum row sum: The operator norm induced by the ∞-norm ‖ · ‖ ≡ ‖ · ‖∞
can be shown to satisfy

‖A‖∞ = max
{ n∑

j=1

|aij | : i = 1, . . . ,m
}
,

that is, the maximum 1-norm of the rows of A.

By definition, any operator norm satisfies ‖In‖ = 1, where In is the n×n identity
matrix. This shows that the Frobenius norm cannot be expressed as an operator
norm because ‖In‖F =

√
n.

4.5 Error analysis: Conditioning

Solving linear systems on the computer in finite precision arithmetic is subject to
roundoff error. Already storing the matrix A and the vector b will usually cause
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some error. To verify the accuracy of a computed (approximate) solution x̂ one
often computes the norm of the residual r = b − Ax̂. One major philosophy in
numerical analysis is backward error analysis, to view a computed solution of a
given linear system as the exact solution of a perturbed linear system. The norm of
the residual corresponds to the minimal perturbation.

Theorem 4.19 Let x̂ 6= 0 be an approximate solution of the linear system Ax = b.
Then

min {‖△A‖2 : (A+△A)x̂ = b} = ‖r‖2‖x̂‖2
,

where r = b−Ax̂.

Proof. The relation (A+△A)x̂ = b yields

‖△A‖2‖x̂‖2 ≥ ‖△Ax̂‖2 = ‖r‖2,

and hence min {‖△A‖2 : (A+△A)x̂ = b} ≥ ‖r‖2/‖x̂‖2. To establish equality, we
still need an admissible perturbation△0A with ‖△0A‖2 = ‖r‖2/‖x̂‖2. This is given
by

△0A =
1

‖x̂‖22
r x̂T,

because (A+△0A)x̂ = Ax̂+ r = b.

When storing the entries of A in double precision one causes an error of order
10−16‖A‖2, which in turn leads to a residual norm ‖r‖2 of order 10−16‖A‖2‖x‖2
even if the rest of the computations was carried out exactly. For this reason, the
best we can reasonably hope from a numerical algorithm for solving linear system is
that it achieves ‖r‖2 ∼ 10−16‖A‖2‖x‖2. Such algorithms are called backward stable.
However, this does not necessarily imply a small error ‖x̂−x‖2 of the solution itself.

Example 4.20 Let A = (aij) with aij =
1

i+ j − 1
be the n× n Hilbert matrix

and b = (1, . . . , 1)T. We compute the solution of Ax = b with \ and compare it with
the “exact” solution, which is computed in 100 decimal digits arithmetic, using the
mpmath library for performing floating-point arithmetic with arbitrary precision.

Python

import matplotlib.pyplot as plt

import numpy as np, scipy.linalg as spla

from mpmath import hilbert, lu_solve, mp, ones

mp.dps = 100, ns = range(5, 21)

xrel, res = [], []

for n in ns:

Anp, Amp = spla.hilbert(n), hilbert(n)

rhsnp, rhsmp = np.ones(n), ones(n, 1)

xnp, xmp = spla.solve(Anp, rhsnp), lu_solve(Amp, rhsmp)

res.append(spla.norm(Anp @ xnp - rhsnp) / spla.norm(xnp))
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xrel.append(float(spla.norm(xnp - xmp)) / spla.norm(xnp))

plt.semilogy(ns, res, "b", ns, xrel, "r--")

plt.legend(["Rel residual", "Rel error"])

plt.grid(axis="y", which="major", linestyle="--")

plt.show()

hilbert.eps
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The red dashed line shows the relative error of the solution x̂ computed in double
precision and the blue solid line shows the relative norm of the residual as n in-
creases. The error of x̂ grows rapidly, despite the fact that it is the solution of a
very slightly perturbed linear system, according to Theorem 4.19. ⋄

4.5.1 Condition of a function

To explain the phenomenon observed in Example 4.20 we will first consider the
sensitivity analysis in a more abstract framework. A computation can be viewed
as a function f : Input 7→ Output. We assume that the admissible inputs are in a
finite dimensional vector space Vi with norm ‖ · ‖Vi

. The Outputs are in a vector
space Vo with norm ‖ · ‖Vo

. A computation is the evaluation f(x) ∈ Vo for some
admissible x ∈ Vi (x can be a matrix; Vi = R

n×n). Because of roundoff error the
representation of x is corrupted by an error △x. We now want to understand how
much this error is potentially increased when evaluating the function, that is, when
considering f(x+△x) instead of f(x). For this purpose we assume that f is defined
and two times continuously differentiable in ab open ball containing x ∈ Vi. Using
Taylor expansion, we have

x 7→ f(x), x+△x 7→ f(x+△x) = f(x) + f ′(x)△x +O(‖△x‖2Vi
)

as △x→ 0. The norm of the differential f ′ at x, that is,

‖f ′(x)‖L(Vi,Vo) := max{‖f ′(x)△x‖Vo
: ‖△x‖Vi

= 1}
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measures the absolute sensitivity or condition of f(x) with respect to a (small)
perturbation △x of x.

Often, it is more reasonable to consider the relative error, which is independent
of scaling of x or f(x): For f(x) 6= 0, x 6= 0, △x→ 0 we have

‖f(x+△x)− f(x)‖Vo

‖f(x)‖Vo

=
‖f ′(x)△x‖Vo

+O(‖△x‖2Vi
)

‖f(x)‖Vo

=⇒

‖f(x+△x)− f(x)‖Vo

‖f(x)‖Vo︸ ︷︷ ︸
rel. error in f

≤
(‖f ′(x)‖L(Vi,Vo)

‖f(x)‖Vo

‖x‖Vi

)‖△x‖Vi

‖x‖Vi︸ ︷︷ ︸
rel. error in x

+O(‖△x‖2Vi
).

Definition 4.21 The (relative) condition of the function x 7→ f(x) at x is

cond(f, x) :=
‖f ′(x)‖L(Vi,Vo)

‖f(x)‖Vo

‖x‖Vi
.

As an example, consider the subtraction of two numbers a, b ∈ R. Then Vi = R
2

(with norm ‖ · ‖1) and Vo = R. Moreover, f : Vi → Vo with f : (a, b) 7→ a− b and

‖f ′(a0, b0)‖L(Vi,Vo) =

∥∥∥∥
(
∂f

∂a
|(a0,b0),

∂f

∂b
|(a0,b0)

)∥∥∥∥
∞

= ‖(1,−1)‖∞ = 1.

Hence the relative condition of f at (a0, b0) is

cond(f, (a0, b0)) =
|a0|+ |b0|
|a0 − b0|

.

As expected, this is large when a0 ≈ b0.

4.5.2 Condition number of a matrix

In the following, ‖ · ‖ : Rn×n → R denotes the operator norm induced by a vector
norm ‖ · ‖ : Rn → R (e.g., the spectral norm induced by the Euclidean norm). The
following proposition studies the relative condition of matrix inversion, that is, the
f(X) = X−1 at an invertible matrix X = A.

Proposition 4.22 (Sensitivity of matrix inversion) Let A ∈ R
n×n be invert-

ible. If ‖A−1△A‖ < 1 then A+△A is invertible and

‖(A+△A)−1 −A−1‖
‖A−1‖︸ ︷︷ ︸

rel. error in A−1

≤ ‖A‖ ‖A−1‖
1− ‖A−1△A‖

‖△A‖
‖A‖ .

︸ ︷︷ ︸
rel. error in A
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Proof. For ‖X‖ < 1, the so called Neumann series

∞∑

k=0

Xk = I +X +X2 + · · · = I + Y, Y :=

∞∑

k=1

Xk (4.9)

converges because ‖∑∞

k=0 X
k‖ ≤ ∑∞

k=0 ‖X‖k = 1/(1 − ‖X‖). This series is the
inverse of I −X because

(I −X)(I + Y ) = (I −X)
( ∞∑

k=0

Xk
)
=

∞∑

k=0

Xk −
∞∑

k=1

Xk = I.

Moreover,

‖Y ‖ =
∥∥∥X

∞∑

k=0

Xk
∥∥∥ ≤ ‖X‖

1− ‖X‖ .

Now we can write

A+△A = A(I +A−1△A).

Setting X = −A−1△A, the discussion above shows that (I +A−1△A) is invertible
when ‖A−1△A‖ < 1 with the inverse given by I + Y for some Y with ‖Y ‖ ≤
‖A−1△A‖/(1− ‖A−1△A‖). In turn A+△A is also invertible and

‖(A+△A)−1−A−1‖ = ‖(I+Y )A−1−A−1 ≤ ‖Y ‖‖A−1‖ ≤ ‖A−1‖2 ‖△A‖
1− ‖A−1△A‖ .

Proposition 4.22 shows that ‖A‖ ‖A−1‖ governs the condition of matrix inversion.
This quantity is called condition number of A:

κ(A) := ‖A‖ ‖A−1‖. (4.10)

Note that the condition number depends on the operator norm ‖ · ‖. We write
κ2(A) = ‖A‖2 ‖A−1‖2.

Python

from numpy import linalg as LA

LA.cond(A) # condition number of A in the spectral norm

LA.cond(A,p) # condition number of A in the p-norm with p = 1,2,inf

LA.cond(A,’fro’) # condition number of A in the Frobenius norm

4.5.3 Sensitivity of linear systems

As a direct consequence of Proposition 4.22 we obtain the following result on the
sensitivity of the solution of a linear system to perturbations in A and b.
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Theorem 4.23 Let A ∈ R
n×n be invertible and consider △A ∈ R

n×n satisfying
‖A−1△A‖ < 1. Then

(A+△A)x̂ = b+△b (4.11)

has a unique solution and

‖x̂− x‖
‖x‖ ≤ κ(A)

1− ‖A−1△A‖
(‖△A‖
‖A‖ +

‖△b‖
‖b‖

)
. (4.12)

Proof. Using the notation from the proof of Proposition 4.22 we have

x̂ = (A+△A)−1(b+△b) = (I + Y )(x +A−1△b).

Hence, x̂− x = Y x+ (I + Y )A−1△b and, in turn,

‖x̂− x‖ ≤ ‖Y ‖ ‖x‖+ (1 + ‖Y ‖)‖A−1‖‖△b‖

≤ ‖A−1△A‖
1− ‖A−1△A‖‖x‖+

1

1− ‖A−1△A‖‖A
−1‖‖△b‖

≤ κ(A)

1− ‖A−1△A‖
(‖△A‖
‖A‖ +

‖△b‖
‖A‖‖x‖

)
‖x‖

The proof is completed using ‖A‖‖x‖ ≥ ‖b‖.

Remark 4.24 The inequality (4.12) can be weakened to the asymptotic bound

‖x̂− x‖
‖x‖ ≤ κ(A)

(‖△A‖
‖A‖ +

‖△b‖
‖b‖

)
+O(ǫ2)

for ǫ = max{‖△A‖, ‖b‖} → 0.

This analysis explains the strong growth of the error of x̂ in Example 4.20. As n
increases, the condition number of the Hilbert matrix increases exponentially fast.13

The following figure shows the condition number for the spectral norm vs n.
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13See Beckermann, B. The condition number of real Vandermonde, Krylov and positive definite
Hankel matrices. Numer. Math. 85 (2000), no. 4, 553–577.
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4.6 Error analysis: Solution by LU factorization

We have now understood the effect of error in the data (matrix A and vector b) on
the quality of the solution. This effect is independent of any algorithm; in fact, no
algorithm can reasonably undo the effect of rounding A and b. Therefore, the best
we can hope for is that our algorithm does not introduce a much larger error. This
leads to the idea of backward error analysis ; relate the error conducted during the
algorithm back to the original data and hope that it is not much larger than what
happened due to rounding anyway.

In the following, we will provide the analysis of the forward/backward substitu-
tion step and only state the result for the solution via the LU decomposition. In the
following lemma, |A| will denote the matrix obtained from A by replacing each en-
try by its absolute value. Comparison between matrices is understood elementwise.

Also, we recall the quantity γn ≡ γn(F) :=
nu(F)

1−nu(F) = nu(F) + O(u(F)2) defined in

Lemma 1.16.

Lemma 4.25 Let x̂ denote the solution computed by Algorithm 4.3 in floating
point arithmetic F. Then there exists a matrix △L with

|△L| ≤ γn|L|,

such that
(L+△L)x̂ = b.

Proof. To simplify the notation, we let θi denote an undetermined generic variable
satisfying |θi| ≤ γi. Using the models (1.5) and (1.6) of floating point arithmetic,
the first loop of Algorithm 4.3 satisfies

ℓ11(1 + θ1)x̂1 = b1,

and the second loop satisfies

ℓ22(1 + θ2)x̂2 = b2 − ℓ21x̂1(1 + θ1) .

More generally, in the ith loop we have

ℓii(1 + θ2)x̂i = bi − ℓi1x̂1(1 + θi−1)− ℓi2x̂2(1 + θi−2)− · · · − ℓi,i−1x̂i−1(1 + θ1) .

Setting △ℓii := ℓiiθ2 and △ℓik := ℓikθi−k yields the result.

An immediate consequence of the result of Lemma 4.25 is that

‖△L‖2 ≤ cLu‖L‖2

for some constant cL mildly growing with n. An analogous result holds, of course,
for Algorithm 4.4. More importantly, this also holds for Ax = b; the solution x̂



4.6. Error analysis: Solution by LU factorization Version March 27, 2025 71

computed by the LU factorization (with or without pivoting) satisfies (A+△A)x̂ = b
for some △A with

‖△A‖2 ≤ cAu‖L‖2‖U‖2
for some constant cA mildly growing with n; see [3]. It is important to observe
that ‖L‖2‖U‖2 can be significantly larger than ‖A‖. When using pivoting (that is,
Algorithm 4.13) then all entries of L are bounded by one in magnitude, while the
norm of U is critically determined whether the algorithm encounters small pivot
elements. Even with pivoting, there are examples for which the pivot elements can
become very small (much smaller than ‖A−1‖) but this is a rare event; see [3] for
more details.


