
Chapter 2

Numerical integration

This chapter is concerned with algorithms for approximating a definite integral

∫ b

a

f(x) dx , (2.1)

for a function f : [a, b] → R and specific values of a, b. In Calculus courses it is

common to calculate simple integrals like
∫ 1

0 ex dx or
∫ π

0 cos(x) dx using a closed-
form primitive for f obtained from a table of integrals or computer algebra systems
like Maple, Mathematica, the Symbolic Math Toolbox in Matlab (which is based
on MuPAD) or simply ask WolframAlpha / ChatGPT questions like “What is the
primitive of exp(−x2)?” When trying to compute more complicated expressions like
∫ 1

0
ex

2

dx or
∫ π

0
cos(x2) dx, one quickly realizes the limitations of such approaches.

Indeed, in practice, it is usually not possible to find a closed form expression for a
primitive. Still, evaluating very complicated definite integrals is a common problem
arising in many areas of science and engineering. In these cases, one needs to resort
to numerical methods (and understand their limitations).

The goal of this chapter is to introduce and analyze the most popular numerical
methods for approximating definite integrals. In the following, unless otherwise
stated, we will assume that f is (at least) continuous on [a, b] and hence the integral
is well defined.

2.1 A first glimpse at polynomial interpolation

A common principle to derive numerical integration methods is to interpolate f
by a polynomial and obtain an approximation by computing the definite integral
for this polynomial. We will therefore first take a brief excursion to the world of
polynomial interpolation. We will discuss interpolation in more detail in the next
chapter.
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Figure 2.1: The basis of 4 Lagrange polynomials for the nodes 1, 2, 3, 4.

We let Pn denote the vector space of real polynomials of degree at most n:

Pn := span{xi : i = 0, . . . , n} =
{ n∑

i=0

cix
i : ci ∈ R

}

.

Given interpolation data (xj , fj) with xj ∈ R and fj ∈ R for j = 0, . . . , n, the task
of polynomial interpolation is to find a polynomial pn ∈ Pn such that

pn(xj) = fj , j = 0, . . . , n. (2.2)

For n = 0 (constant p0), n = 1 (linear p1), and n = 2 (quadratic p2), it is quite
intuitive to see that (2.2) has a unique solution if and only if the interpolation
nodes xj are pairwise distinct. To verify this statement for general n, we first
need to define a suitable basis for Pn. The monomial basis {1, x, x2, . . . , xn} appears
to be the canonical choice, but it is actually not well suited for interpolation on the
real line because it turns (2.2) into an extremely ill-conditioned linear system. Later
on, We will learn more about the impediments of ill-conditioning.

Instead of monomials, we will use the following polynomials whose choice depends
on the interpolation nodes.

Definition 2.1 Given n+1 pairwise distinct nodes x0, . . . , xn ∈ R, the polynomials
ℓj ∈ Pn defined by

ℓj(x) :=
n∏

i=0,i6=j

x− xi

xj − xi

, j = 0, . . . , n, (2.3)

are called Lagrange polynomials.

The following relation is an important property of Lagrange polynomials:

ℓj(xi) = δij :=

{

1 if i = j,

0 otherwise.
(2.4)
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Because x0, . . . , xn ∈ R are pairwise distinct, this implies that {ℓ0, . . . , ℓn} is a
linearly independent family and, consequently, it is a basis of Pn+1 because Pn+1

has dimension n + 1. Moreover, it also proves the existence and uniqueness of
interpolating polynomials.

Theorem 2.2 Given interpolation data (xj , fj), j = 0, . . . , n, with pairwise distinct
interpolation nodes x0, . . . , xn, the polynomial

pn(x) :=
n∑

j=0

fjℓj(x) (2.5)

is the unique polynomial of degree at most n that satisfies the interpolation condi-
tions (2.2).

Proof. Because ℓj ∈ Pn, it follows that the polynomial pn defined in (2.5) is also
in Pn. Moreover, it follows from (2.4) that pn satisfies the interpolation condi-
tions (2.2).

It remains to show the uniqueness of the solution. For this purpose, let p̃n ∈ Pn

denote another polynomial satisfying (2.2). Then qn := pn − p̃n is a polynomial
of degree at most n. By definition, qn(xj) = 0 for j = 0, . . . , n, which shows that
qn has n + 1 has pairwise distinct zeros. According to the fundamental theorem
of algebra, the only polynomial of degree at most n having n+ 1 pairwise distinct
zeros is the zero polynomial qn ≡ 0. Hence, p̃n ≡ pn.

One important application of interpolation is to replace a complicated function f
by a polynomial. The following theorem provides an expression for the interpolation
error if f is sufficiently smooth.

Theorem 2.3 Let x0 < x1 < · · · < xn and let pn ∈ Pn denote the interpolating
polynomial satisfying pn(xj) = f(xj), j = 0, . . . , n, for some function

f ∈ Cn+1([x0, xn]).

Given x⋆ ∈ [x0, xn], there exists ξ ∈ [x0, xn] such that

En[f ](x⋆) := f(x⋆)− pn(x⋆) =
f (n+1)(ξ)

(n+ 1)!
ωn+1(x⋆) , (2.6)

where
ωn+1(x) := (x− x0)(x− x1) · · · (x− xn) ∈ Pn+1 . (2.7)

Proof. If x⋆ equals one of the interpolation nodes xj then En[f ](x⋆) = En[f ](xj) =
0. Hence, we may assume that x⋆ 6= xj . For x ∈ I := [x0, xn] we define the function

g(x) := En[f ](x)− ωn+1(x)En[f ](x⋆)
/
ωn+1(x⋆) . (2.8)
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Because f ∈ Cn+1([x0, xn]) and ωn+1 ∈ Pn+1 it follows that g ∈ Cn+1([x0, xn]).
Moreover, g has at least n+ 2 distinct zeros in [x0, xn] because

g(xj) = En[f ](xj)− ωn+1(xj)En[f ](x⋆)
/
ωn+1(x⋆) = 0, j = 0, . . . , n,

g(x⋆) = En[f ](x⋆)− ωn+1(x⋆)En[f ](x⋆)
/
ωn+1(x⋆) = 0 .

By Rolle’s theorem, g′ = dg

dx
has at least n+1 = n+2−1 zeros in [x0, xn]. Continuing

this argument, g(i) = dig

dxi has at least n+2−i zeros for i = 1, . . . , n+1. Hence, g(n+1)

has at least one zero, which we denote by ξ. Because E
(n+1)
n [f ](x) = f (n+1)(x) and

ω
(n+1)
n+1 (x) ≡ (n+ 1)!, it follows from (2.8) that

0 = g(n+1)(ξ) = f (n+1)(ξ)− (n+ 1)!En[f ](x⋆)
/
ωn+1(x⋆) .

Rearranging this relation yields (2.6).

Barycentric representation⋆ The straightforward use of the interpolating poly-
nomial pn(x) in the representation (2.5) would require O(n2) operations for each
evaluation of pn. This complexity can be reduced by first computing the following
quantities:

λj =
1

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
, j = 0, . . . , n.

This allows us to write

ℓj(x) = ωn+1(x)
λj

x− xj

,

with ωn+1(x) defined as in (2.7). It follows that

pn(x) =

n∑

j=0

fjℓj(x) = ωn+1(x)

n∑

j=0

λjfj
x− xj

. (2.9)

Now, only O(n) operations are needed for each operation (after λj has been com-
puted). We can simplify this even further. When considering the interpolation of
the constant function 1, the relation (2.9) reduces to

1 = ωn+1(x)

n∑

j=0

λj

x− xj

.

Inserted into (2.9), this yields the barycentric interpolation formula

pn(x) =
n∑

j=0

λjfj
x− xj

/
n∑

j=0

λj

x− xj

.
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Example Let x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6 and fj = cos(xj). Then the
parameters of the barycentric interpolation formula are given by

λ0 =
1

(x0 − x1)(x0 − x2)(x0 − x3)
= −20.8333,

λ1 =
1

(x1 − x0)(x1 − x2)(x1 − x3)
= 62.5000,

λ2 =
1

(x2 − x0)(x2 − x1)(x2 − x3)
= −62.5000,

λ3 =
1

(x2 − x0)(x2 − x1)(x2 − x3)
= 20.8333.

The interpolating polynomial in the Lagrange representation is given by

p3(x) = y0ℓ0(x) + y1ℓ1(x) + y2ℓ2(x) + y3ℓ3(x)

= y0λ0(x − x1)(x − x2)(x − x3) + y1λ1(x− x0)(x− x2)(x − x3)

+y2λ2(x− x0)(x− x1)(x− x3) + y3λ3(x − x0)(x − x1)(x− x2)

= −20.8333(x− x1)(x − x2)(x − x3) + 61.2542(x− x0)(x − x2)(x− x3)

−57.5663(x− x0)(x − x1)(x − x3) + 17.1945(x− x0)(x − x1)(x− x2).

cos (red) und p3(x) (blue) Interpolation error
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2.2 Newton-Cotes formulae

We now come back to the idea of approximating the definite integral (2.1) by in-
tegrating an interpolating polynomial. If the interpolation nodes are uniformly
distributed, the quadrature rule resulting from this approach is called a Newton-
Cotes formula. In the following, we first treat in detail the three classic cases before
discussing the general case.

1. Midpoint rule
The function f is interpolated by a constant polynomial p0 ∈ P0 in the middle
of the interval:

p0(x) ≡ f
(a+ b

2

)

.
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Figure 2.2: Illustration of midpoint and trapezoidal rule for approximating the

definite integral
∫ b

a
f(x) dx.

The resulting approximation of the integral is given by

∫ b

a

f(x) dx ≈
∫ b

a

p0(x) dx = (b− a) · f
(a+ b

2

)

=: Q
(0)
[a,b][f ],

see Figure 2.2 for an illustration.

2. Trapezoidal rule
The linear polynomial p1 ∈ P1 interpolating f at the two end-points of the
interval [a, b] (that is, p1(a) = f(a) and p1(b) = f(b) holds) is given by

p1(x) =
x− b

a− b
f(a) +

x− a

b− a
f(b).

The resulting approximation of the integral is the trapezoidal rule given by

∫ b

a

f(x) dx ≈
∫ b

a

p1(x) dx = f(a)

∫ b

a

x− b

a− b
dx+ f(b)

∫ b

a

x− a

b− a
dx

= f(a)(b− a)

∫ 1

0

y dy + f(b)(b− a)

∫ 1

0

y dy

= (b− a)
(1

2
f(a) +

1

2
f(b)

)

=: Q
(1)
[a,b][f ].

3. Simpson rule
Let p2 ∈ P2 be the quadratic polynomial interpolating f at the mid- and
end-points:

p2(a) = f(a), p2(x1) = f(x1), p2(b) = f(b), x1 =
a+ b

2
.
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This polynomial is given by

p2(x) =
(x − x1)(x − b)

(a− x1)(a− b)
f(a) +

(x − a)(x− b)

(x1 − a)(x1 − b)
f(x1) +

(x − a)(x− x1)

(b − a)(b− x1)
f(b).

To compute the definite integral of p2, we again use the variable substitution
y = x−a

b−a
to obtain

∫ b

a

(x− x1)(x− b)

(a− x1)(a− b)
dx = (b− a)

∫ 1

0

(x− 1/2)(x− 1)

1/2
dy =

1

6
(b − a).

Similarly, one computes

∫ b

a

(x− a)(x− b)

(x1 − a)(x1 − b)
dx =

4

6
(b− a),

∫ b

a

(x − a)(x− x1)

(b − a)(b− x1)
dx =

1

6
(b − a).

In turn, the resulting approximation of the integral is the Simpson rule given
by

∫ b

a

f(x) dx ≈ (b− a)
(1

6
f(a) +

4

6
f
(a+ b

2

)

+
1

6
f(b)

)

=: Q
(2)
[a,b][f ].

The calculations above can, in fact, be somewhat simplified by first performing
the variable substitution

∫ b

a

f(x) dx = (b− a)

∫ 0

1

f̃(y) dy, f̃(y) := f(a+ (b− a)y) (2.10)

and then applying interpolation to f̃ on the interval [0, 1]. This procedure
yields the same Simpson rule.

For the general case, we choose n+ 1 interpolation nodes

a ≤ x0 < x1 ≤ · · · < xn ≤ b.

We recall the Lagrange representation of the interpolating polynomial:

pn(x) =

n∑

j=0

f(xj)ℓj(x), ℓj(x) =

n∏

i=0

i6=j

x− xi

xj − xi

.

The definite integral of pn yields the approximation

∫ b

a

f(x) dx ≈ Q
(n)
[a,b][f ] :=

∫ b

a

pn(x) dx =

∫ b

a

n∑

j=0

f(xj)ℓj(x) dx

=
n∑

j=0

f(xj)

∫ b

a

ℓj(x) dx =
n∑

j=0

αjf(xj),

(2.11)
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n ξj αj/(b− a) Error

0 Midpoint rule 1
2 1 1

24 (b − a)3f (2)(ξ)

1 Trap. rule 0, 1 1
2 ,

1
2 − 1

12 (b − a)3f (2)(ξ)

2 Simpson rule 0, 1
2 , 1

1
6 ,

4
6 ,

1
6 − 1

90

(
b−a
2

)5
f (4)(ξ)

3 3
8 rule 0, 1

3 ,
2
3 , 1

1
8 ,

3
8 ,

3
8 ,

1
8 − 3

80

(
b−a
3

)5
f (4)(ξ)

4 Milne rule 0, 1
4 ,

1
2 ,

3
4 , 1

7
90 ,

32
90 ,

12
90 ,

32
90 ,

7
90 − 8

945

(
b−a
4

)7
f (6)(ξ)

Table 2.1: Newton-Cotes formulae (xj = a+ ξj(b− a)).

where the scalars αj :=
∫ b

a
ℓj(x) dx are called the weights of the quadrature rule

Q
(n)
[a,b][f ]. Using the substitution (2.10), it can be seen that αj/(b − a) is a con-

stant not depending on a, b or f . As mentioned in the beginning, if the points are
uniformly distributed,

xj = a+ jh, j = 0, . . . , n, h =
b− a

n
,

for n ≥ 1 then Q
(n)
[a,b][f ] is called a (closed) Newton-Cotes formula. Table 2.1 shows

the quadrature points xj = a+ ξj(b− a) und weights for n ≤ 4. The fourth column
contains the quadrature error, which will be discussed in the next section.

2.3 Order and error analysis

The order of a quadrature rule is determined by its ability to integrate polynomials
up to a certain degree exactly.

Definition 2.4 A quadrature rule Q[a,b] has order s+ 1, if

∫ b

a

ps(x) dx = Q[a,b][ps], ∀ps ∈ Ps.

Every commonly used quadrature rule Q[a,b] is a linear operator and, hence, Defi-
nition 2.4 is equivalent to verifying that

Q[0,1][1] = 1, Q[0,1][x] =
1

2
, . . . , Q[0,1][x

s] =
1

s+ 1
.

By construction, the Newton-Cotes formula Q
(n)
[a,b][f ] has order at least n+1 because

polynomials of degree up to n are interpolated and, hence, integrated exactly. It is
easy to verify that the mid-point rule has, in fact, one order higher, order 2. The
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trapezoidal rule also has order 2 and the Simpson rule has order 4, again one order
higher.

The order has a pronounced influence on the quadrature error
∫ b

a
f dx−Q[a,b][f ]

if f is sufficiently smooth and the interval [a, b] is small. To see this intuitively,
consider the (truncated) Taylor expansion of f at a

f(x) = ts(x) +
f (s+1)(ξx)

(s+ 1)!
(x− a)s+1, ts ∈ Πs.

Because ts is integrated exactly, the quadrature error is determined by the second
term. The absolute value of the second term is O(hs+1) for h := b − a → 0.
Integrating it over an interval of length h gives an integration error of O(hs+2) .
Finer estimates can be obtained by applying Theorem 2.3. The following theorem
and proof establish the quadrature error for n = 0 and n = 1; the other entries in
Table 2.1 can be established in an analogous fashion.

Theorem 2.5 Let f ∈ C2[a, b].

i) There is ξ ∈ [a, b] such that the error of the midpoint rule satisfies

∫ b

a

f(x) dx− (b− a) f
(a+ b

2

)

=
(b− a)3

24
f ′′(ξ).

ii) There is ξ ∈ [a, b] such that the error of the trapezoidal rule satisfies

∫ b

a

f(x) dx− b − a

2

[

f(a) + f(b)
]

= − (b− a)3

12
f ′′(ξ).

Proof. ii) We first prove the second part, because it follows directly from Theo-
rem 2.3:

f(x) − p1(x) =
f ′′(ξx)

2
(x− a)(x − b).

for some ξx ∈ [a, b] (depending on x). Integrating both sides yields

∫ b

a

f(x) dx−Q
(1)
[a,b][f ] =

∫ b

a

f ′′(ξx)

2
(x− a)(x− b) dx. (2.12)

Let

c =

∫ b

a

f ′′(ξx)
2 (x− a)(x− b) dx

1
2

∫ b

a
(x− a)(x− b) dx

=

∫ b

a
f ′′(ξx)(x − a)(x− b) dx

− 1
6 (b− a)3

.

Because (x− a)(x− b) ≤ 0 for every x in [a, b], it follows that

min
x∈[a,b]

f ′′(x) ≤ c ≤ max
x∈[a,b]

f ′′(x).

Since f ′′ is continuous, the intermediate value theorem shows that there exists
ξ ∈ [a, b] (not depending on x) such that c = f ′′(ξ). Inserting this into (2.12)
completes the proof of part ii).
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i) Let x0 = a+b
2 . Using Taylor expansion at x0, it follows that

f(x) = f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(ξx)(x− x0)

2

for some ξx between x0 and x. In turn, the quadrature error satisfies

∫ b

a

f(x) dx−Q
(0)
[a,b][f ] = f ′(x0)

∫ b

a

(x− x0) dx+
1

2

∫ b

a

f ′′(ξx)(x− x0)
2 dx.

Note that the first term vanishes because
∫ b

a
(x−x0) dx = 0. Because (x−x0)

2 ≥ 0,
we can apply the intermediate value theorem as in part ii) to conclude that there
exists ξ ∈ [a, b] such that

1

2

∫ b

a

f ′′(ξx)(x− x0)
2 dx =

1

2
f ′′(ξ)

∫ b

a

(x− x0)
2 dx =

1

24
f ′′(ξ)(b − a)3.

Table 2.1 might suggest that it is a good idea to go even further and use very
large for n (on relatively small intervals). However, for n = 8 and larger some of
the weights become negative, which leads to numerical cancellation and limits the
usefulness of such high-order Newton-Cotes formulae.

2.4 Composite Newton-Cotes formulae

As mentioned above, the gains in accuracy by increasing the order of Newton-
Cotes formulae are limited due to the influence of roundoff error. A more effective
approach to increasing accuracy is to partition the interval [a, b] in N subintervals
and approximate I[a,b][f ] by applying a quadrature rule to each subinterval.

Notation: From now on, xi, i = 0, . . . , N , denote the boundaries of the subinter-
vals, N denotes the number of subintervals, and n denotes (as before) the maximum
polynomial degree used in the integration of subintervals.

A uniform partition of [a, b] into N subintervals corresponds to

xj = a+ jh, j = 0, . . . , N, h =
b− a

N
.

Applying the quadrature rule Q
(n)
[xi,xi+1]

[f ] to each subinterval und summing the

obtained values yields the corresponding composite quadrature rule:

Q
(n)
h [f ] :=

N−1∑

i=0

Q
(n)
[xi,xi+1]

[f ]. (2.13)

For n = 1 we obtain the composite trapezoidal rule:

Q
(1)
h [f ] =

N−1∑

i=0

xi+1 − xi

2
[f(xi) + f(xi+1)] =

h

2

[

f(a) + 2

N−1∑

i=1

f(xi) + f(b)
]

.
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For n = 1 we obtain the composite Simpson rule:

Q
(2)
h [f ] =

N−1∑

i=0

xi+1 − xi

6
[f(xi) + 4f

(xi + xi+1

2

)

+ f(xi+1)
]

=
h

6

[

f(a) + 2

N−1∑

i=1

f(xi) + 4

N−1∑

i=0

f
(xi + xi+1

2

)

+ f(b)
]

.

Theorem 2.6 For the composite trapezoidal and Simpson rules it holds that

∣
∣I[a,b][f ]−Q

(1)
h [f ]

∣
∣ ≤ h2

12
(b − a) max

x∈[a,b]
|f ′′(x)|, f ∈ C2[a, b],

∣
∣I[a,b][f ]−Q

(2)
h [f ]

∣
∣ ≤ h4

2880
(b− a) max

x∈[a,b]
|f (4)(x)|, f ∈ C4[a, b].

Proof. Applying Theorem 2.5 to each subinterval yields

∣
∣I[a,b][f ]−Q

(1)
h [f ]

∣
∣ =

∣
∣
∣

N−1∑

i=0

(xi+1 − xi)
3

12
f ′′(ξi)

∣
∣
∣

≤
N−1∑

i=0

h3

12
|f ′′(ξi)| ≤

h2

12
(b − a) max

x∈[a,b]
|f ′′(x)|.

The proof for the Simpson rule proceeds analogously.

Example 2.7 Figure 2.3 shows the implementations and the errors obtained when
applying the composite trapezoidal and Simpson rules to approximating

∫ π

0

sin(x) dx = 2. (2.14)

As expected, the error of the (composite) Simpson rule converges much faster to
zero than the error of the trapezoidal rule. The asymptotic behavior is clearly O(h4)
and O(h2), as predicted by Theorem 2.6. As a consequence, the Simpson rule needs
much fewer function evaluations to attain the same accuracy.

If f is not smooth, the advantage of the Simpson rule becomes less important.
To see this, consider

∫ 1

0

√
x dx =

2

3
. (2.15)

Figure 2.4 shows the error of the composite trapezoidal and Simpson rules. For
both rules, the asymptotic behavior of the error is O(hp) with p = 3/2 (but with a
smaller constant for the Simpson rule). ⋄
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Python

import numpy as np

import matplotlib.pyplot as plt

def trapez(fun, a, b, n):

x = np.linspace(a,b,n+1)

vecfun = np.vectorize(fun)

f = vecfun(x)

f[0] = f[0]/2

f[-1] = f[-1]/2

T = (b-a) * sum(f) / n

return T

nn = 100; err = np.zeros(nn)

for n in range(nn):

err[n] = np.abs(2 -

trapez(np.sin, 0, np.pi, n + 1))

plt.loglog(range(1,nn+1), err)

Python

def simpson(fun,a,b,n):

x = np.linspace(a,b,2*n+1)

vecfun = np.vectorize(fun)

f = vecfun(x)

end = len(f) - 1

f[1:end: 2] = 4*f[1:end:2]

f[2:end-1:2] = 2*f[2:end-1:2]

T = (b-a) * sum(f) / n / 6

return T
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Figure 2.3: Errors of composite Simpson rule (left) and trapezoidal rule (right) vs.
N = O(h−1) when approximating smooth integral (2.14).

The composite midpoint rule,

Q
(0)
h [f ] =

N−1∑

i=0

(xi+1 − xi)f
(xi + xi+1

2

)

is of interest for functions with singularities at the interval boundaries; see Sec-
tion 2.6.2 below.

2.5 Gauss formulae

In the Newton-Cotes formulae, we have chosen the interpolation points to be uni-
formly distributed. In this section, we modify these points in order to obtain a
quadrature rule of higher order.

Remark 2.8 There is no quadrature rule (2.11) with n + 1 points x0, . . . , xn of
order higher than 2n + 2. If Q(n)[p] was such a quadrature rule it would be exact



2.5. Gauss formulae Version March 27, 2025 29

roughquadratur.eps

48 × 37 mm

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p=3/2p=2p=4
 

 
Trapez

Simpson

Figure 2.4: Errors of composite Simpson and trapezoidal rules vs. N = O(h−1)
when approximating non-smooth integral (2.15).

for the polynomial

p(x) =

n∏

i=0

(x− xi)
2 ∈ P2n+2 ,

which leads to the contradiction

0 <

∫ b

a

p(x) dx = Q(n)[p] = 0 .

In the following, we construct quadrature rules that attain the highest possible
order according to Remark 2.8, the so called Gauss formulae. As an additional
benefit, these formulae always have nonnegative weights and therefore avoid the
numerical problems associated with high orders for the Newton-Cotes formulae.

To construct Gauss formulae, we have to choose the quadrature points x0, . . . , xn

such that Q(n) exactly integrates all polynomials of degree at most 2n+1. Because
of linearity, it suffices to verify this property for any basis P2n+1. When choosing
the monomial basis this leads to the 2n+ 2 (nonlinear) equations

∫ 1

−1

xk dx = α0x
k
0 + · · ·+ αnx

k
n, k = 0, . . . , 2n+ 1. (2.16)

Here and in the following, we assume for simplicity that [a, b] = [−1, 1]. The
solution of the nonlinear equations (2.16) by hand or computer algebra becomes
quickly infeasible for larger n. There is a much simpler and more elegant approach,
which will be discussed in the following. Polynomial division provides the starting
point of this approach.

Theorem 2.9 (Polynomial division) Let p ∈ P2n+1 and q ∈ Pn+1. There exist
unique polynomials h ∈ Pn and r ∈ Pn such that p = hq + r.
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For integrating a polynomial p ∈ P2n+1 exactly, it must hold that

0 =

∫ 1

−1

p(x) dx−
n∑

j=0

αjp(xj)

=

∫ 1

−1

h(x)q(x) dx−
n∑

j=0

αjh(xj)q(xj) +

(∫ 1

−1

r(x) dx−
n∑

j=0

αjr(xj)

)

.(2.17)

Because r ∈ Pn, the third term (in brackets) is always zero when using an interpo-
lating quadrature rule with n+1 points. For addressing the first two terms, we will
make a clever choice of q via Legendre polynomials.

Definition 2.10 The Legendre polynomial (of order n+ 1) is the polynomial
qn+1 ∈ Pn+1 satisfying

∫ 1

−1

qn+1(x)h(x) dx = 0 ∀h ∈ Pn, qn+1(1) = 1. (2.18)

Defining the L2 inner product

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx

on the vector space Pn+1, the first condition in (2.18) states that qn+1 is orthog-
onal to the subspace Pn. In turn, this shows that Legendre polynomials can be
constructed by applying the Gram-Schmidt procedure to the monomial basis 1,
x, . . ., xn+1. The next result provides a more direct characterization of Legendre
polynomials.

Theorem 2.11 The polynomial qk defined by

qk(x) = ck
dk

dxk

[
(x2 − 1)k

]
, ck :=

1

2kk!
, (2.19)

is the kth Legendre polynomial.

Proof. First, we note that qk ∈ Pk, since it is obtained by computing k derivatives
of a polynomial of degree 2k. Also, it is straightforward to see that qk(1) = 1. To
show that qk is orthogonal to every g ∈ Pk−1 we proceed via integration by parts:

ck

∫ 1

−1

dk

dxk

[
(x2 − 1)k

]
g(x) dx =− ck

∫ 1

−1

dk−1

dxk−1

[
(x2 − 1)k

] d

dx
g(x) dx

+ ck

[
dk−1

dxk−1
(x2 − 1)kg(x)

]1

−1
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Note that the second term vanishes because (x2 − 1)k has a zero of multiplicity k
at ±1. To treat the first term, we again integrate by parts:

−ck

∫ 1

−1

dk−1

dxk−1

[
(x2 − 1)k

] d

dx
g(x) dx =ck

∫ 1

−1

dk−2

dxk−2

[
(x2 − 1)k

] d2

dx2
g(x) dx

− ck

[
dk−2

dxk−2
(x2 − 1)k

d

dx
g(x)

]1

−1

.

Once again, the second term vanishes. Continuing this procedure and integrating
by parts k times, we obtain

ck

∫ 1

−1

dk

dxk

[
(x2 − 1)

]k
g(x) dx = (−1)kck

∫ 1

−1

(
x2 − 1

) dk

dxk
g(x) dx.

Since g has degree at most Pk−1 its kth derivative vanishes and, hence,

ck

∫ 1

−1

dk

dxk

[
(x2 − 1)

]k
g(x) dx = 0.

Theorem 2.11 implies a recurrence relation, which is convenient for computing
Legendre polynomials.

Theorem 2.12 The Legendre polynomials q0, q1, . . . satisfy the three-term recur-
rence relation

qn+1(x) =
2n+ 1

n+ 1
xqn(x)−

n

n+ 1
qn−1(x), q0(x) = 1, q1(x) = x.

Proof. EFY.

According to Theorem 2.12, the first five Legendre polynomials are given by

q0(x) = 1

q1(x) = x

q2(x) =
1

2
(3x2 − 1)

q3(x) =
1

2
(5x3 − 3x)

q4(x) =
1

8
(35x4 − 30x2 + 3)

q5(x) =
1

8
(63x5 − 70x3 + 15x).

Choosing q = qn+1, the first term in (2.17) vanishes. Choosing x0, . . . , xn+1 as zeros
of qn+1 then the second term vanishes as well.

Theorem 2.13 The Legendre polynomial qn+1 has n+ 1 simple zeros in (−1, 1).
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Proof. Let us define the set

N := {λ ∈ (−1, 1) : λ is a zero of odd multiplicity of qn+1}

and
h(x) := 1 for N = ∅, and

h(x) :=
m∏

i=1

(x− λi) for N = {λ1, . . . , λm} .

Then qn+1 · h ∈ Pn+m+1 is real and all its roots in (−1, 1) have even order. In
particular, it has no change of sign in (−1, 1) and therefore

(qn+1, h) =

∫ 1

−1

qn+1(x)h(x) dx 6= 0 .

If m ≤ n this contradicts qn+1 ⊥ Pn. In turn, m > n and qn+1 has at least n + 1
zeros in (−1, 1). By the fundamental lemma of algebra, qn+1 has exactly n+1 zeros
in (−1, 1).

The following theorem summarizes our observations.

Theorem 2.14 Let x0, . . . , xn ∈ (−1, 1) be the zeros of the Legendre polynomials
qn+1 let ℓ0, . . . , ℓn be the corresponding Lagrange polynomials. Choosing αj =
∫ 1

−1
ℓj(x) dx the Gauss formula

Q(n)[f ] = α0f(x0) + · · ·+ αnf(xn)

has order 2n+ 2.

For n = 1 and n = 2 we obtain the quadrature rules

Q(1)[f ] = f(−
√

1/3) + f(
√

1/3),

Q(2)[f ] =
1

9

{
5f(−

√

3/5) + 8f(0) + 5f(
√

3/5)
}
.

Because of

0 <

∫ 1

−1

ℓi(x)
2 dx =

n∑

j=0

αj ℓi(xj)
2

︸ ︷︷ ︸

δij

= αi,

it follows that the weights are always positive and we avoid the numerical instability
associated with high-order Newton-Cotes formulae. For general n, one can obtain
the weights from the following linear system of equations:

n∑

j=0

αjx
i
j =

∫ 1

−1

xi dx =
1

i+ 1
(1− (−1)i+1), i = 0, . . . , n.
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The computation of the zeros of qn+1 is more difficult; the following result yields a
simple implementation.8

Theorem 2.15 (Golub/Welsh) The zeros x0, . . . , xn of qn+1 are the eigenvalues
of the matrix

J =









0 b1

b1 0
. . .

. . .
. . . bn
bn 0









,

where

bj =
j

√

4j2 − 1
.

Python

import numpy as np

def gaussQuad(n):

b = np.arange(1,n+1)

b = b / np.sqrt(4*b*b-1)

J = np.diag(b,-1) + np.diag(b,1)

x, ev = np.linalg.eigh(J) # eigh stands for symmetric EVP

a = np.array(2*(ev[0,:]*ev[0,:]))

return x,a

The following theorem establishes an expression for the error of the Gauss for-
mulae, which highlights (once more) their advantages compared to Newton-Cotes
formulae.

Theorem 2.16 (Error of Gauss quadrature) For f ∈ C2n+2[−1, 1] there ex-
ists ξ ∈ (−1, 1) such that

R(n)[f ] := Q(n)[f ]−
∫ 1

−1

f(x) dx =
f (2n+2)(ξ)

(2n+ 2)!

∫ 1

−1

n∏

j=0

(x− xj)
2 dx

=
22n+3[(n+ 1)!]4

(2n+ 3)[(2n+ 2)!]3
f (2n+2)(ξ).

Example 2.17 For the trapezoidal rule, Theorem 2.5 yields an error of the form
2/3 f ′′(ξ) on the interval [a, b] = [−1, 1]. For the Gauss quadrature for n = 1 (which
requires the same number of function evaluations), Theorem 2.16 establishes an
error of the form 1/135 f (4)(ξ). ⋄

By a linear transformation, one obtains Gauss quadrature rules on an arbitrary

8See https://pi.math.cornell.edu/~ajt/papers/QuadratureEssay.pdf for a nice account of
the history of methods for computing Gauss quadrature nodes/weights.
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interval [a, b]. For n = 1 and n = 2 one obtains

Q(1)[f ] =
b− a

2

[
f
(
c− h̃

√

1/3
)
+ f

(
c+ h̃

√

1/3
)]

,

Q(2)[f ] =
b− a

18

[
5f

(
c− h̃

√

3/5
)
+ 8f

(
c) + 5f

(
c+ h̃

√

3/5
)]

,

with c = b+a
2 and h̃ = b−a

2 . Setting xj = a+jh for j = 0, . . . , N and h = (b−a)/N),
the corresponding composite rules are given by

Q
(1)
h [f ] =

h

2

N−1∑

j=0

[f(xj + h′) + f(xj+1 − h′)]

with h′ = (12 − 1
2
√
3
)h ∼ 0.2113249 h, and

Q
(2)
h [f ] =

h

18

N−1∑

j=0

[
5f(xj + h′) + 8f

(
xj + 1

2
h
)
+ 5f(xj+1 − h′)

]

with h′ = (12 − 1
2

√
3
5 )h ∼ 0.1127012 h.

2.6 Miscellaneous⋆

2.6.1 Periodic functions

The composite trapezoidal rule has excellent convergence properties for (smooth)
periodic functions. For example, consider the function

f(x) =
1

√

1− a sin(x− 1)
, (2.20)

which is periodic on the interval [0, 2π]. Für a = 1, the function has a singularity
at 2π/4 + 1 ≈ 2.57.

In the left part of Figure 2.5, the interval is chosen such that it matches a period
of the function. Note that the x axis is not scaled logarithmically; the quadrature
error converges exponentially fast to 0 as N increases. The speed of convergence
clearly depends on a; as a gets very close 1 one suffers from the non-smoothness of
the function for a = 1. In the right part of Figure 2.5 the interval does not match
the period of the function. Note that the x axis is scaled logarithmically. In this
situation, the quadrature error converges much more slowly and in accordance with
the result of Theorem 2.6. On the other hand, choosing a close to 1 has a less
dramatic impact on the convergence speed.

The fast convergence of the composite trapezoidal rule for a periodic function is
connected to favorable properties of the Fourier expansion, which will be discussed
later on.

For a periodic function, the composite trapezoidal rule is the method of choice. It
would do more harm than good to choose higher order quadrature rules.
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Figure 2.5: Quadrature error vs. N for composite trapezoidal rule applied to
integrating f from (2.20) for a ∈ {0.5, 0.9, 0.99} on two different intervals.

2.6.2 Singular integrals

Functions with singularities (leading to singular/improper integrals) can also be
integrated numerically, but some care is needed in the choice of quadrature rule.
For example, the composite midpoint rule converges for

∫ 1

0

1√
x

dx = 2.

Python

import numpy as np

import matplotlib.pyplot as plt

def sing(x):

return 1/np.sqrt(x)

def midpoint(fun,a,b,n):

h = (b-a)/n;

x = np.arange(a+h/2,b-h/2+h,h)

fun_vec = np.vectorize(fun)

f = fun_vec(x)

return h * sum(f)

nn = 2**np.arange(1,19,1)

err = []

for n in nn:

err.append(abs(2 -

midpoint(sing,0,1,n) ))

plt.loglog(nn,err)

The following figure shows the observed
error vs. N :
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The observed convergence order 1/2 is not very satisfying; halving the error requires
to increase the number of points by a factor four. More effective approaches to
singularities are variable transformation techniques or adaptive quadrature.
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2.6.3 Two-dimensional integrals

In practice, one is often interested in integrals in 2D, 3D or, more generally, on
domains in R

d. By domain decomposition and transformation one typically reduces
such problems to standard domains like the unit cube. To illustrate the development
of quadrature rules for such standard domains we discuss the unit square and the
unit triangle.

Unit square. Consider the integral

∫ 1

0

∫ 1

0

f(x, y) dxdy. (2.21)

Let

Qm[g] =

m∑

i=0

αig(xi)

be a quadrature rule for
∫ 1

0
g(x) dx. Denoting

F (y) =

∫ 1

0

f(x, y) dx,

we obtain from the application of Qm to the x and y variables the following product

quadrature rule Q
(m×m)
[0,1]×[0,1][f ]:

∫ 1

0

∫ 1

0

f(x, y) dx dy =

∫ 1

0

F (y) dy ≈
m∑

j=0

αjF (xj)

=
m∑

j=0

αj

∫ 1

0

f(x, xj) dx ≈
m∑

j=0

αj

m∑

i=0

αif(xi, xj)

=

m∑

i,j=0

αiαjf(xi, xj) =: Qm×m[f ].

For the hypercube in R
d the approach above would result in md terms. Hence,

the cost grows very quickly with d. This so called curse of dimensionality can
sometimes be countered with Monte Carlo methods or sparse grids.

Unit triangle. The approach for the unit square has no meaningful extension
to triangles. Instead one aims at finding quadrature rule which exactly integrate
xk1yk2 , k1+k2 ≤ M for a certain integer M . Typical examples for the unit triangle
{(x, y) : x+ y ≤ 1}:

1. Q[f ] = 1
2f(1/3, 1/3),

2. Q[f ] = 1
6

[
f(0, 0) + f(1, 0) + f(0, 1)

]
,

3. Q[f ] = 1
6

[
f(1/2, 0) + f(0, 1/2) + f(1/2, 1/2)

]
,
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4. Q[f ] = 1
6

[
f(1/6, 1/6) + f(2/3, 1/6)+ f(1/6, 2/3)

]
.

One verifies that 1 and 2 exactly integrate 1, x, y (M = 1), while 3 and 4 exactly
integrate 1, x, y, xy, x2, y2 (M = 2).


