
Chapter 1

Representation of

numbers
Since none of the numbers which we take out from loga-
rithmic and trigonometric tables admit of absolute pre-
cision, but all are to a certain extent approximate only,
the results of all calculations performed by the aid of
these numbers can only be approximately true.
It may happen, that in special cases the effect of the er-
rors of the tables is so augmented that we may be obliged
to reject a method, otherwise the best, and substitute an-
other in its place.
— Carl F. Gauss, Theoria Motus (1809)1

Matlab’s creator Dr. Cleve Moler used to advise for-
eign visitors not to miss the country’s two most awe-
some spectacles: the Grand Canyon, and meetings of
IEEE p754.
— William M. Kahan

2

The aim of this chapter is to understand how numbers are represented in com-
puters. While the set of real numbers is infinite, computers can only represent and
work with a finite subset. Therefore, we need to understand which numbers are
representable and how the operations are performed in this set of representable real
numbers. This topic has regained importance during the last years with the advent
of GPUs and TPUs for scientific computing and machine learning. In particular,
TPUs are designed to perform a high volume of low precision computation and one
cannot expect high accuracy.

Example 1.1 The following expression for Euler’s number e is known from Anal-
ysis:

e = lim
n→∞

(
1 +

1

n

)n

.

One therefore expects that en =
(
1 + 1

n

)n
yields increasingly good approximations

to e as n increases. In exact arithmetic this is indeed true. On the computer,

1Translated and quoted in Higham (2002).
2See http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html.

1

2 Version February 18, 2025 Chapter 1. Representation of numbers

roundoff error affects the accuracy of computations and the computed value ên
behaves quite differently:

Python

Approximation of e, numpy package needed to include e

import numpy as np

for i in range(1,16):

n = 10.0 ** i; en = (1 + 1/n) ** n

print(’10^%2d %20.15f %20.15f’ % (i,en,en-np.e))

n Computed ên Error ên − e

101 2.593742460100002 -0.124539368359044

102 2.704813829421529 -0.013467999037517

103 2.716923932235520 -0.001357896223525

104 2.718145926824356 -0.000135901634689

105 2.718268237197528 -0.000013591261517

106 2.718280469156428 -0.000001359302618

107 2.718281693980372 -0.000000134478673

108 2.718281786395798 -0.000000042063248

109 2.718282030814509 0.000000202355464

1010 2.718282053234788 0.000000224775742

1011 2.718282053357110 0.000000224898065

1012 2.718523496037238 0.000241667578192

1013 2.716110034086901 -0.002171794372145

1014 2.716110034087023 -0.002171794372023

1015 3.035035206549262 0.316753378090216

Initially, the accuracy gets better as n increases, as expected. However, at around
n = 108, the accuracy stagnates and even gets worse when n continues to increase;
for n = 1015 not even a single (decimal) digit of e is computed correctly. ⋄

Example 1.2 From Analysis, we know that the Taylor series for the exponential
function converges for every x ∈ R:

ex =
∞∑

k=0

xk

k!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+

In practice, one can of course only compute a partial sum

si(x) =

i∑

k=0

xk

k!
.

The remainder of the Taylor expansion admits the expression

ex − si(x) =
eξxi+1

(i+ 1)!

for some ξ ∈ R with 0 < |ξ| < |x|. If we choose i such that |x|i+1/(i+1)! ≤ tol·|si(x)|
is satisfied for a (small) chosen tolerance tol then for negative x it holds that

|ex − si(x)| ≤
|x|i+1

(i+ 1)!
≤ tol · |si(x)| ≈ tol · ex.

Version February 18, 2025 3

x Computed ŝi(x) exp(x)
| exp(x)−ŝi(x)|

exp(x)

-20 5.6218844674e-09 2.0611536224e-09 1.727542676201181
-18 1.5385415977e-08 1.5229979745e-08 0.010205938187564
-16 1.1254180496e-07 1.1253517472e-07 0.000058917020257
-14 8.3152907681e-07 8.3152871910e-07 0.000000430176956
-12 6.1442133148e-06 6.1442123533e-06 0.000000156480737
-10 4.5399929556e-05 4.5399929762e-05 0.000000004544414
-8 3.3546262817e-04 3.3546262790e-04 0.000000000788902
-6 2.4787521758e-03 2.4787521767e-03 0.000000000333306
-4 1.8315638879e-02 1.8315638889e-02 0.000000000530694
-2 1.3533528320e-01 1.3533528324e-01 0.000000000273603
0 1.0000000000e+00 1.0000000000e+00 0.000000000000000
2 7.3890560954e+00 7.3890560989e+00 0.000000000479969
4 5.4598149928e+01 5.4598150033e+01 0.000000001923058
6 4.0342879295e+02 4.0342879349e+02 0.000000001344248
8 2.9809579808e+03 2.9809579870e+03 0.000000002102584

10 2.2026465748e+04 2.2026465795e+04 0.000000002143800
12 1.6275479114e+05 1.6275479142e+05 0.000000001723845
14 1.2026042798e+06 1.2026042842e+06 0.000000003634135
16 8.8861105010e+06 8.8861105205e+06 0.000000002197990
18 6.5659968911e+07 6.5659969137e+07 0.000000003450972
20 4.8516519307e+08 4.8516519541e+08 0.000000004828738

Table 1.1: Numerical approximation of ex by the truncated Taylor series si(x),
where i has been chosen such that the relative error is (approximately) bounded by
tol = 10−8 in exact arithmetic.

In turn, the relative error |ex − si(x)|/|ex| is approximately bounded by tol. For
positive x a similar bound can be found by a refined analysis of the remainder
(EFY=Exercise For You).

Python

def expeval(x, tol):

#Approximation of e^x

s = 1; k = 1

term = 1

while (abs(term)>tol*abs(s)):

term = term * x / k

s = s + term

k = k + 1

return s

Table 1.1 shows the results for tol = 10−8. In contrast to the theoretical results,
the relative error is above the imposed (approximate) bound tol = 10−8 for very
negative x. ⋄

One goal of this chapter is to better understand (and avoid if possible) the phenom-
ena observed in Examples 1.1 and 1.2. To achieve this, we first need to discuss the
representation and approximation of real numbers on computers.

For more interesting stories of what has gone (terribly) wrong in the world be-
cause of roundoff errors, see [4].

4 Version February 18, 2025 Chapter 1. Representation of numbers

1.1 Representation of real numbers

The first step in representing a real number on a computer is to express it in terms
of its digits with respect to a base β ≥ 2. The following theorem, which we state
without proof, gives the so called normalized representation or scientific notation of
a number.

Theorem 1.3 Given a base 2 ≤ β ∈ N, every nonzero x ∈ R can be represented
as

x = ±βe

(
d1
β

+
d2
β2

+
d3
β3

+ · · ·
)

(1.1)

with the digits d1, d2, . . . ,∈ {0, 1, 2, . . . , β − 1}, where d1 6= 0, and the exponent
e ∈ Z.

The representation (1.1) becomes unique if we additionally require that there is an
infinite subset N1 ⊂ N such that dk 6= β−1 for all k ∈ N1. Otherwise, x = +101 ·0.1
and x = +100 ·0.999 . . . would be two different representations of the same number.
However, this aspect will be irrelevant for us; on a computer we can only work with
a finite number of digits anyway.

System β Digits

Decimal 10 0, 1, 2, . . . , 9

Binary 2 0, 1

Octal 8 0,1,2,. . . ,7

Hexadecimal 16 0, 1, 2, . . . , 9, A,B,C,D,E,F

Les doits ou les poings⋆

In daily life we mostly use the decimal system (β = 10). But there are exceptions, β = 12 also plays a
role (hours, months, dozen / douzaine). Also, some tribes used their toes for counting as well (β = 20).
Some regions of the world also use 4, 8 or 16, see https://en.wikipedia.org/wiki/Numeral_system. For
obvious reasons, almost every computer operates with a binary system (β = 2) and the hexadecimal
system is only used for representing binary numbers more conveniently. A computer developed in
Moscow at the end of the 1950ies was based on the ternary system (β = 3) but it was not a huge
success.

To compute the representation of Theorem 1.3 for given x ∈ R \ {0}, the following
algorithm can be used:

Determine e ∈ Z such that x ∈ βex̃ with β−1 ≤ x̃ < 1. Set j = 1.
while x̃ 6= 0 do
Set x = βx̃.
Decompose x = dj + x̃ such that dj ∈ N, 0 ≤ dj ≤ β − 1 and 0 ≤ x̃ < 1.
j ← j + 1.

end while

The binary system has some unexpected consequences. As we will see below,
the decimal number 0.2 cannot be represented by a finite binary fraction, that is,

1.2. Floating point numbers on computers Version February 18, 2025 5

the algorithm above does not terminate. To avoid this effect, some specialized
applications in the finance industry use the decimal system. In most cases, this is
emulated by software and, consequently, quite slow. Hardware processors, which
directly support decimal operations, are rare; an example was the IBM Power6
processor.

Theorem 1.4 Consider a nonzero rational number x = p/q, where p, q ∈ Z have
no common divisor. Then x has a finite representation in base β ≥ 2 if and only if
each of the prime factors of the denominator q divides β.

Example 1.5 In base β = 10, a rational number has a finite representation if and
only if it can be written as ± p

2n5m for some p, n,m ∈ N. This corresponds to the
known fact that in base 10, if the divisor has a factor that is neither 2 nor 5, then
the Euclidean division does not finish and becomes periodic.

In base β = 2 instead, to have a finite representation, a number needs to be
written as ± p

2n for some p, n ∈ N. For instance, x = 1
5 = (0.2)10 does not have

a finite representation in base 2. This can be checked by applying the algorithm
above:

x = 2−20.8 ⇒ e = −2, x̃ = 0.8

x = 2x̃ = 1.6

x = 1 + 0.6 ⇒ d1 = 1, x̃ = 0.6

x = 2x̃ = 1.2 ⇒ d2 = 1, x̃ = 0.2

After two loops we are again at 0.2 and the algorithm becomes cyclic. Therefore,
1
5 = (0.00110011 . . .)2 =

(
0.0011

)
2
. ⋄

1.2 Floating point numbers on computers

Computers can only store and calculate with finitely many numbers F ⊂ R. Apart
from specialized devices, such as audio decoding hardware devices, nearly all pro-
cessors operate with floating point numbers.

Definition 1.6 (Floating point numbers F(β, t, emin, emax)) Consider β ∈
N, β ≥ 2 (base), t ∈ N (length of mantissa/significand), and emin < 0 < emax

with emin, emax ∈ Z (range of exponent). Then the set F = F(β, t, emin, emax) ⊂
R is defined as

F :=



±β

e

(
d1
β

+
d2
β2

+ · · ·+ dt
βt

)
:

d1, . . . , dt ∈ {0, . . . , β − 1},
d1 6= 0,
e ∈ Z, emin ≤ e ≤ emax.



 ∪ {0}.

Example 1.7 The floating point number +23(0.1011)2 = (5.5)10 belongs to F(2, 4,−1, 4),
but neither to F(2, 3,−1, 4), nor to F(2, 4,−2, 2).

6 Version February 18, 2025 Chapter 1. Representation of numbers

Let us consider the set F = F(10, 3,−2, 2), that is, β = 10, t = 3, and −2 ≤ e ≤ 2.
Then:

23.4 = +102 (0.234) ∈ F

−53.8 = −102 (0.538) ∈ F

3.141 = +101 (0.3141) /∈ F (4 > 3 significant digits)

3.1 = +101 (0.310) ∈ F

⋄

It is important to keep in mind that the elements of F are not uniformly dis-
tributed on the real line.
Example: Nonnegative floating point numbers for β = 2, t = 3, emin = −1, emax =
3:

1.0 2.0 3.0 4.0 5.0 6.0 7.00

Lemma 1.8 For F = F(β, t, emin, emax) one has

xmin(F) :=min{x ∈ F : x > 0} = βemin−1, (1.2)

xmax(F) :=max{x ∈ F} = βemax(1− β−t) . (1.3)

Proof. In view of Definition 1.6, the verification of (1.2)–(1.3) comes down to deter-
mining the range of the mantissa. Consider x ∈ F with mantissa d =

∑t

k=1 dkβ
−k.

Because of d1 6= 0 we have

β−1 ≤ d ≤
t∑

k=1

β−k(β − 1) = 1− β−t

↑ ↑
d1 ≥ 1 dk ≤ β − 1 .

The smallest positive number is obtained by choosing the mantissa d1 = 1, d2 =
0, d3 = 0, . . . and the exponent e = emin. The largest number is obtained by choosing
the mantissa d1 = β− 1, d2 = β− 1, d3 = β− 1, . . . and the exponent e = emax.

Lemma 1.9 The distance between a floating point number x satisfying xmin(F) <
|x| < xmax(F) and the nearest floating point number is at least β−1ǫM |x| and at
most ǫM |x|, where ǫM = β1−t is the distance of 1 to the next larger floating point
number.

Proof. Without loss of generality, we may assume that x ∈ F is positive and that
e = 0, which implies that β−1 ≤ x ≤ 1−β−t . The next larger floating point number

1.2. Floating point numbers on computers Version February 18, 2025 7

x+ is obtaining by adding 1 to the last digit dt of the mantissa, which corresponds
to adding β−t to x. In turn, the relative distance between x and x+ satisifies

x+ − x

x
≤ β−tβ = ǫM ,

x+ − x

x
≥ β−t

1− β−t
≥ β−t = ǫM/β.

In the same manner, analogous bounds are shown for the relative distance between
x and the next smaller number x−.

Lemma 1.9 demonstrates that the length of the mantissa determines the relative
accuracy of F; the exponent bounds emin, emax determine the range of F but not its
accuracy. The number ǫM of Lemma 1.9 is usually called machine precision.

Subnormal numbers⋆

As visible in the picture above, there is a “gap” of βemin−1 between 0 and the
smallest nonnegative floating point number. This gap is caused by the normalization
d1 6= 0 of the mantissa when e = emin. The gap is bridged by adding the so called
subnormal numbers:

F̂ := F ∪
{
±βemin

(
d2
β2

+ · · ·+ dt
βt

)
: d2, . . . , dt ∈ {0, . . . , β − 1}

}
, (1.4)

where one excludes the case d2 = · · · = dt = 0. In other words, one adds numbers
with minimal exponent emin and d1 = 0.
Example: F̂ for β = 2, t = 3, emin = −1, emax = 3:

1.0 2.0 3.0 4.0 5.0 6.0 7.00

Two important remarks:

1. Lemma 1.9 does not hold for subnormal numbers, which have a lower relative
accuracy.

2. While subnormal numbers are supported by most processors; the computa-
tions can slow down significantly because processors are often not optimized
to work with subnormal numbers.

In the following, we will ignore subnormal numbers to simplify the discussion.

IEEE standard

IEEE 754 describes the standard for storing and operating with floating point num-
bers. It also describes the treatment of exceptions (1/0,∞·∞,∞−∞, . . .). These
are the two most widely used formats in base β = 2:

8 Version February 18, 2025 Chapter 1. Representation of numbers

Name Size Mantissa Exponent xmin xmax

Single precision 32 bits 24 bits 8 bits 10−38 10+38

Double precision 64 bits 53 bits 11 bits 10−308 10+308

Double precision corresponds to F(2, 53,−1022, 1023) and is the standard on central
processing units (CPUs) . One bit of the mantissa is used for the sign. On the other
hand, d1 is not saved because the normalization always implies d1 = 1 for β = 2.
In turn, there are t = 53 bits for the mantissa. The exponent field is an (unsigned)
integer from 0 to 2047; shifted such that it represents the range −1022 to +1023
(the fields all 0s and all 1 are reserved for special numbers).

In Python all operations with real numbers are executed in double precision by
default. Variables in single precision are generated with the command numpy.float32()
from the numpy package.

Python

import sys

sys.float_info.min # 2.2251e-308

sys.float_info.max # 1.7977e+308

1 / 0 # Divide by zero error

3 * float(’inf’) # inf

-1 / 0 # Divide by zero error

0 / 0 # Divide by zero error

float(’inf’) - float(’inf’) # nan

Somewhat surprisingly, and not in accordance with the IEEE 754 standard3, Python
throws an error when a division by zero occurs, instead of returning a signed∞. To
avoid this, one can use float64 from numpy. For example, 1/numpy.float64(0)
returns inf (as it should).

In machine learning, precision is much less important compared to typical ap-
plications in scientific computing. On the other hand, speed and memory are key,
which makes the bfloat16 format a popular choice that is utilized in many CPUs,
GPUs, and AI processors.

Name Size Mantissa Exponent xmin xmax

bfloat16 16 bits 8 bits 8 bits 10−38 10+38

FP8 8 bits 4 bits 4 bits 10−2 240

The use of FP8, which is not standardized yet, is partly responsible for the success
of Deepseek.4 The narrow range of numbers makes it quite difficult to work with.

1.3 Rounding

A real number x ∈ R (think of,
√
2 or π) can, in general, not be represented exactly

in the computer. The process of approximating x by a number in a floating point

3See also https://wusun.name/blog/2017-12-18-python-zerodiv/ for a discussion.
4See https://verticalserve.medium.com/how-deepseek-optimized-training-fp8-framework-74e3667a2d4a.

1.3. Rounding Version February 18, 2025 9

number in F = F(β, t, emin, emax) is called rounding. More concretely, rounding is
a function

fl : r(F)→ F

which maps x ∈ r(F) to the5 nearest element in F. Here, r(F) denotes the range of
F:

r(F) := {x ∈ R : xmin(F) ≤ |x| ≤ xmax(F)};

see also Lemma 1.8.
The map fl is not uniquely determined when x is exactly in the middle between

two floating point numbers (this not a rare event when β = 2). There are several
strategies to break the tie in this situation. According to the IEEE 754 standard, fl
chooses the element for which the last digit of the mantissa is even (for β = 2 this
is zero). The following example illustrates this convention.

Example 1.10 Let β = 10, t = 3. Then fl(0.9996) = 1.0, fl(0.3345) = 0.334,
fl(0.3355) = 0.336. ⋄

The following theorem provides a useful and tight estimate of the relative error of
fl.

Theorem 1.11 For every x ∈ r(F) there exists δ ≡ δ(x) ∈ R such that

fl(x) = x(1 + δ), |δ| ≤ u,

where u = u(F) := 1
2ǫM = 1

2β
1−t.

Proof. Without loss of generality, we may assume x > 0. According to Theorem 1.3
we can represent x as follows:

x = µ · βe−t, βt−1 ≤ µ < βt.

This shows that x is between the adjacent floating point numbers y1 = ⌊µ⌋βe−t,
y2 = ⌈µ⌉βe−t, and hence fl(x) ∈ {y1, y2}. Because x is rounded to the nearest
floating point number, we have |fl(x) − x| ≤ |y2 − y1|/2 = βe−t/2, where the last
equality follows from the definition of y1, y2. This implies that

∣∣∣∣
fl(x)− x

x

∣∣∣∣ ≤
βe−t

2

µ · βe−t
≤ 1

2
β1−t = u,

establishing the claim of the theorem.

5More precisely, one would need to write a nearest element.

10 Version February 18, 2025 Chapter 1. Representation of numbers

The quantity u = u(F) := 1
2β

1−t

of Theorem 1.11 is called unit
roundoff and features promi-
nently in every round-off error
analysis.

Example 1.12
Double u = 2−53 ≈ 1.11× 10−16

Single u = 2−24 ≈ 5.96× 10−8

In Python u is computed by
sys.float_info.epsilon/2 and
numpy.finfo(numpy.float32).eps/2,
respectively.

The following variation of Theorem 1.11 is sometimes useful.

Theorem 1.13 For every x ∈ r(F) there exists δ ∈ R such that

fl(x) =
x

1 + δ
, |δ| < u.

Proof. EFY.

It is important to keep in mind that the quantity δ in Theorems 1.11 and 1.13
depends on x. In a round-off error analysis one does not operate with its explicit
value but only with the property that |δ| < u.

1.4 Elementary operations in F and round-off error

We now let ‘◦’ denote any of the four elementary binary operations:

◦ ∈ {+,−, ∗, /} .

The set R is closed under these operations, that is, with the exception of division
by zero, ◦ maps two real numbers again to a real number. This closedness property
does not hold for F. To map the result back to F, one needs to round. It would
be reasonable to require a result of an elementary operation on a computer to be
equal to what would have been obtained from first computing the result exactly and
then rounding it afterwards. In practice, a slightly weaker requirements is imposed,
which follows from combining the “first computing exactly then rounding” paradigm
with Theorem 1.11.

Definition 1.14 (Standard model of rounding) For every x, y ∈ r(F) there
exists δ ∈ R such that

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u, ◦ ∈ {+,−, ∗, /}. (1.5)

In analogy to Theorem 1.13, an alternative to (1.5) is to require

fl(x ◦ y) = x ◦ y
1 + δ′

, |δ′| ≤ u, ◦ ∈ {+,−, ∗, /}. (1.6)

1.5. Round-off error analysis Version February 18, 2025 11

It is important to remark, once more, that the quantities δ, δ′ above depend
on the inputs x, y and, in particular, they may also depend on the order of x, y.
Although fl(x ◦ y) = fl(y ◦ x) often holds in practice, commutativity is not and
cannot be taken for granted when operating in floating point arithmetic. More
importantly, associativity is frequently violated - even under the stronger “first
computing exactly then rounding” paradigm.

Example 1.15 Let β = 10, t = 2. Then

fl(fl(70 + 74) + 74) = fl(140 + 74) = 210

6= fl(70 + fl(74 + 74)) = fl(70 + 150) = 220

and

fl(fl(110− 99)− 10) = fl(11− 10) = 1

6= fl(110 + fl(−99− 10)) = fl(110− 110) = 0.

⋄

The property (1.5) is also desirable for elementary functions f ∈ {exp, sin, cos, tan, . . .}:

fl(f(x)) = f(x)(1 + δ), |δ| ≤ u. (1.7)

The development and implementation of a numerical method that computes f(x) in
finite precision arithmetic such that the result satisfies (1.7) is by no means trivial.
It is very difficult predict how many digits of f(x) need to computed accurately
such that the result obtained after rounding satisfies (1.7).6

1.5 Round-off error analysis

The standard model of rounding allows us to estimate the propagation of roundoff
errors in a computation. As an important example let us consider the computation
of the inner product of two vectors x,y ∈ R

n, that is,

xTy =

n∑

k=1

xkyk .

For the partial sums si =
∑i

k=1 xkyk, i = 1, 2, ..., evaluated in floating point arith-
metic F according to the standard model, one obtains

ŝ1 = fl(x1y1) = x1y1(1 + δ1),

ŝ2 = fl(ŝ1 + x2y2) =
(
ŝ1 + x2y2(1 + δ2)

)
(1 + δ3)

= x1y1(1 + δ1)(1 + δ3) + x2y2(1 + δ2)(1 + δ3),

6In the literature this effect is called Table Maker’s Dilemma; see also http://perso.ens-lyon.

fr/jean-michel.muller/Intro-to-TMD.htm.

12 Version February 18, 2025 Chapter 1. Representation of numbers

where |δi| ≤ u holds for all δi. To simplify the notation, it is common practice to
drop indices and let δ denote an arbitrary real number with |δ| ≤ u. Using this
convention, one gets

ŝ3 = fl(ŝ2 + x3y3) =
(
ŝ2 + x3y3(1 + δ)

)
(1 + δ)

= x1y1(1 + δ)3 + x2y2(1 + δ)3 + x3y3(1 + δ)2.

By induction, we obtain

ŝn = x1y1(1 + δ)n + x2y2(1 + δ)n + x3y3(1 + δ)n−1 + · · ·+ xnyn(1 + δ)2. (1.8)

The following lemma can be used to simplify this expression.

Lemma 1.16 Let |δi| ≤ u(F) for i = 1, . . . , n and n < 1/u(F). Then there exists
θn ∈ R such that

n∏

i=1

(1 + δi) = 1 + θn, where |θn| ≤
nu(F)

1− nu(F)
=: γn(F). (1.9)

Proof. The proof proceeds by induction. For n = 1, the statement trivially holds.
Induction hypothesis: The statement holds for n− 1 with n ≥ 2.

Induction step: Using the induction hypothesis, one obtains

n∏

i=1

(1 + δi) = (1 + δn)(1 + θn−1) =: 1 + θn , θn := δn + (1 + δn)θn−1,

|θn| ≤ u+ (1 + u)
(n− 1)u

1− (n− 1)u
=

nu

1− (n− 1)u
≤ γn .

Applying Lemma 1.16 to (1.8) gives

ŝn = x1y1(1 + θn) + x2y2(1 + θ′n) + x3y3(1 + θn−1) + · · ·+ xnyn(1 + θ2), (1.10)

where |θj | ≤ γj and |θ′n| ≤ γn. Using monotonicity, 0 < γj ≤ γn, one therefore
obtains

ŝn = (x+△x)Ty = xT(y +△y), |△x| ≤ γn|x|, |△y| ≤ γn|y|, (1.11)

where |x| is the vector with elements |xi| and inequalities between vectors and
matrices are understood componentwise. Let us remark that the bounds in (1.11)
are – in contrast to (1.10) – independent of the order of summation.

The result (1.11) is an example for what is called a backward error. It states
that the computed result (inner product) is the exact inner product of slightly
perturbed input data (x and y). Since the inputs are usually perturbed by roundoff
error anyway (for example when storing the data as floating point numbers), a small
backward error is a very desirable property. It implies that the algorithm attains
an accuracy (nearly) at the level of the accuracy of the input data. The actual

1.6. Cancellation Version February 18, 2025 13

error in the computed result is called forward error. From (1.11) one obtains the
following bound on the forward error:

∣∣xTy − ŝn
∣∣ ≤ γn

n∑

i=1

|xiyi| = γn|x|T|y|. (1.12)

If |xTy| ≈ |x|T|y| then the relative error
∣∣xTy − fl(xTy)

∣∣/|xTy| is small. If, on the
other hand, |xTy| ≪ |x|T|y| then one cannot expect a small relative error.

1.6 Cancellation

Numerical cancellation happens when two numbers that are nearly equal and
already affected by roundoff error are subtracted from each other. Cancellation is
the number one reason to look for when errors get massively amplified in the course
of a computation.

Example 1.17 Consider

f(x) =
1− cos(x)

x2
, x = 1.2× 10−5.

Rounding cos(x) to 10 decimal digits gives

ĉ = 0.9999 9999 99 ,

and
1− ĉ = 0.0000 0000 01 .

Therefore (1 − ĉ)/x2 = 10−10/1.44× 10−10 = 0.6944 However, since we know
that 0 ≤ f(x) < 1

2 for x 6= 0 it is obvious that the computed result is completely
wrong. ⋄

To see the general picture, let us consider a, b ∈ R and

â = fl(a) = a(1 + δa), b̂ = fl(b) = b(1 + δb)

with |δa| ≤ u, |δb| ≤ u. Then x = a− b and x̂ = â− b̂ satisfy

∣∣∣x− x̂

x

∣∣∣ =
∣∣∣−aδa + bδb

a− b

∣∣∣ ≤ u
|a|+ |b|
|a− b| (1.13)

The relative error in the computation x = a− b is large when

|a− b| ≪ |a|+ |b|.

Let us emphasize that it is crucial in the discussion above that a and b are already
affected by roundoff error. The subtraction itself is carried out without roundoff
error for a ≈ b; it just amplifies the existing errors.

Roundoff errors can also cancel each other, that is, a very inaccurate interme-
diate result does not necessarily lead to very inaccurate final result. This effect is
demonstrated by the following example.

14 Version February 18, 2025 Chapter 1. Representation of numbers

x Alg. 1 Alg. 2
10−3 1.0005236 1.0005002
10−4 1.0001659 1.0000499
10−5 1.0013580 1.0000050
10−6 0.9536743 1.0000005
10−7 1.1920929 1.0000001

Table 1.2: Results of Algorithms 1 and 2 in single precision. Correctly computed
digts are italic.

Example 1.18 (Computation of (ex − 1)/x for x → 0+) We aim at comput-
ing

f(x) = (ex − 1)/x =

∞∑

i=0

xi

(i + 1)!
(1.14)

in IEEE single precision by two different methods:
Python

Algorithm 1

import numpy as np

if x == 0:

f = 1

else:

f = (np.exp(x) - 1) / x;

Python

Algorithm 2

import numpy as np

y = np.exp(x)

if y == 1:

f = 1

else:

f = (y - 1) / np.log(y);

The obtained results are shown in Table 1.2.7 To understand why Algorithm 1
yields much worse accuracy, we consider x = 9.0 × 10−8 and assume that the
implementations of the elementary functions exp(·) and log(·) satisfy the standard
model (1.7). The first 9 decimal digits of the exact result are

ex − 1

log ex
= 1.00000005 .

Algorithm 1 yields

fl
(fl(fl(ex)− 1)

x

)
= fl

(1.19209290× 10−7

9.0 × 10−8

)
= 1.32454766 ;

In contrast, Algorithm 2 yields

fl
(fl(ŷ − 1)

fl(log ŷ)

)
= fl

(1.19209290× 10−7

1.19209282× 10−7

)
= 1.00000006 .

7It can be difficult to reproduce these results, especially when working in compiled languages.
Some processors work internally (registers) with higher-precision 80-bit arithmetic; so the results
may depend on whether the registers are flushed, which in turn depends on the compiler, etc. The
behavior might also change when using a debugger or displaying intermediate results, leading to
the notorious heisenbugs.

1.6. Cancellation Version February 18, 2025 15

One observes that Algorithm 2 computes, because of cancellation, a very inaccurate
result for the numerator ex − 1 = 9.00000041× 10−8 and the denominator log ex =
9× 10−8; but most of the roundoff error vanishes during the division!

The described phenomenon can be explained by a roundoff error analysis of
Algorithm 2. We have ŷ = ex(1 + δ), |δ| ≤ u. If ŷ = 1, it follows that

ex(1 + δ) = 1⇐⇒ x = − log(1 + δ) = −δ + δ2/2− δ3/3 + . . . ,

and hence
f̂ = fl

(
1 + x/2 + x2/6 + . . .

∣∣
x=−δ+O(δ2)

)
= 1 . (1.15)

If ŷ 6= 1, it follows that

f̂ = fl
(
(ŷ − 1)/ log ŷ

)
=

(ŷ − 1)(1 + δ1)

log ŷ(1 + δ2)
(1 + δ3), |δi| ≤ u . (1.16)

Defining v := ŷ − 1, we obtain

g(ŷ) : =
ŷ − 1

log ŷ
=

v

log(1 + v)
=

v

v − v2/2 + v3/3− . . .

=
1

1− v/2 + v2/3− . . .
= 1 +

v

2
+O(v2) .

For small x, we have y ≈ 1 and

g(ŷ)− g(y) ≈ ŷ − y

2
≈ exδ

2
≈ δ

2
≈ g(y)

δ

2
.

By (1.16),
∣∣∣ f̂ − f

f

∣∣∣ ≤ 3.5 u . (1.17)

While ŷ − 1 and log ŷ are very inaccurate, the quantity (ŷ − 1)/ log ŷ is a very
accurate approximation of (y − 1)/ log y at y = 1, because g(y) := (y − 1)/ log y
varies “slowly” close to 1. ⋄

