

Advanced Numerical Analysis

Lecture 5
Spring 2025

Daniel Kressner

Quiz from Exercise Set 4

Given a function $f \in C^\infty([a, b])$, we consider the composite trapezoidal rule $Q_h^{(1)}[f]$ and the composite Simpson rule $Q_h^{(2)}[f]$ on the interval $[a, b]$. Which of the following statements are correct?

(i) $\lim_{h \rightarrow 0} Q_h^{(1)}[f] = \lim_{h \rightarrow 0} Q_h^{(2)}[f] = \int_a^b f(x) dx.$

True

False

(ii) $|Q_h^{(1)}[f] - \int_a^b f(x) dx| \leq |Q_H^{(1)}[f] - \int_a^b f(x) dx|$ if $h \leq H$.

True

False

(iii) $|Q_h^{(2)}[f] - \int_a^b f(x) dx| \leq |Q_h^{(1)}[f] - \int_a^b f(x) dx|$ for suff. small $h > 0$.

True

False

(iv) If $f(x) \geq 0$ for all $x \in [a, b]$ then $0 \leq Q_h^{(1)}[f] \leq \int_a^b f(x) dx$.

True

False

(v) If f is convex on $[a, b]$ then $Q_h^{(1)}[f] \geq \int_a^b f(x) dx$.

True

False

Legendre polynomials

Theorem (Theorem 2.11)

The polynomial q_n defined by

$$q_n(x) = c_n \frac{d^n}{dx^n} (x^2 - 1)^n, \quad c_n := \frac{1}{2^n n!},$$

is the n th Legendre polynomial.

Theorem (Theorem 2.12)

The Legendre polynomials q_0, q_1, \dots satisfy the three-term recurrence relation

$$q_{n+1}(x) = \frac{2n+1}{n+1} x q_n(x) - \frac{n}{n+1} q_{n-1}(x), \quad q_0(x) = 1, \quad q_1(x) = x.$$

Legendre polynomials

$$q_0(x) = 1$$

$$q_1(x) = x$$

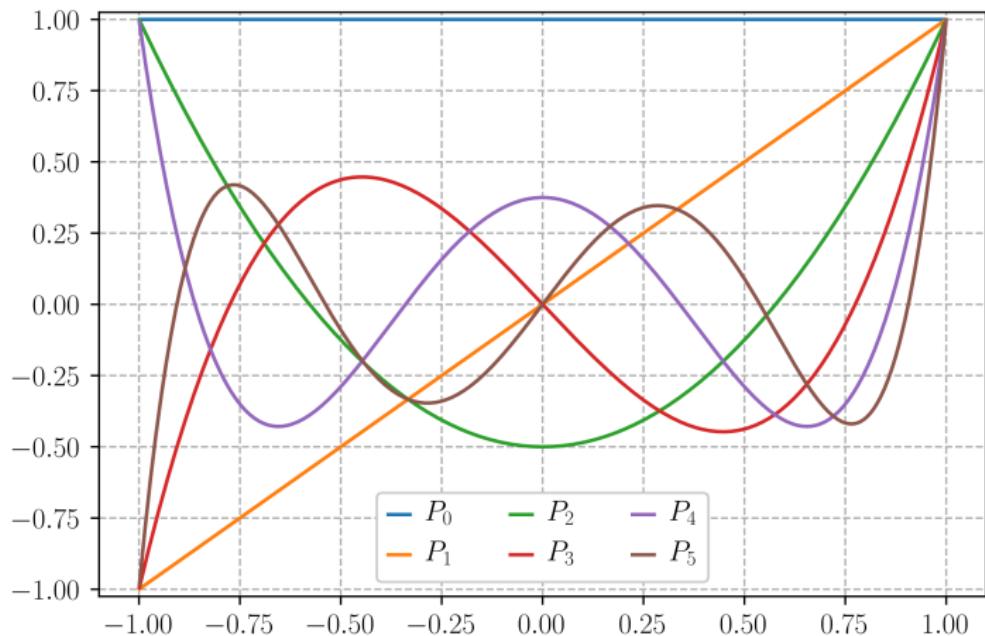
$$q_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$q_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$q_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

$$q_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x).$$

Legendre polynomials



The miracle of the trapezoidal rule

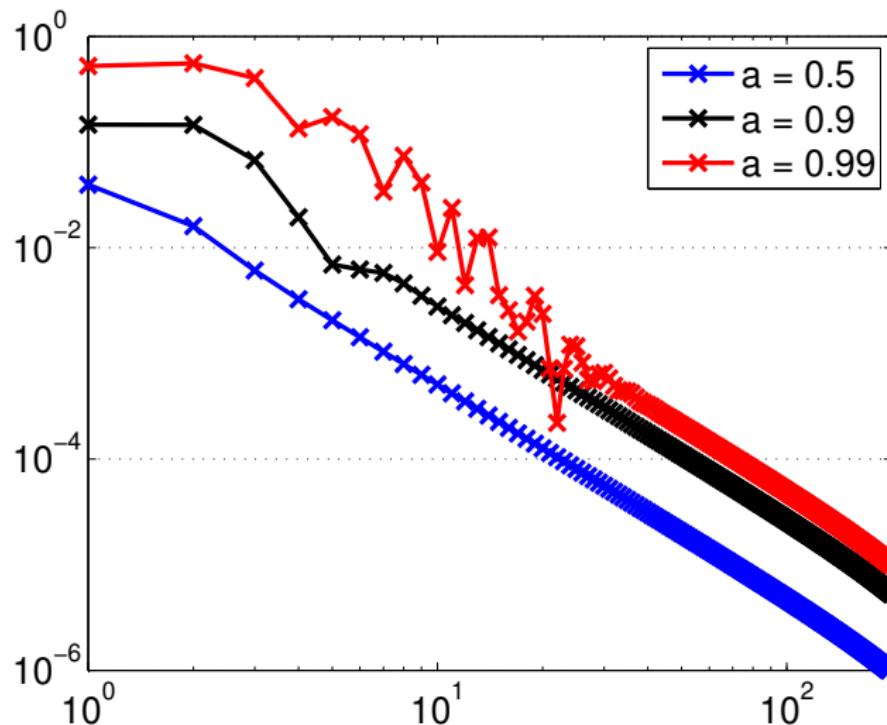
Consider the function

$$f(x) = \frac{1}{\sqrt{1 - a \cdot \sin(x - 1)}}, \quad 0 < a < 1.$$

We have:

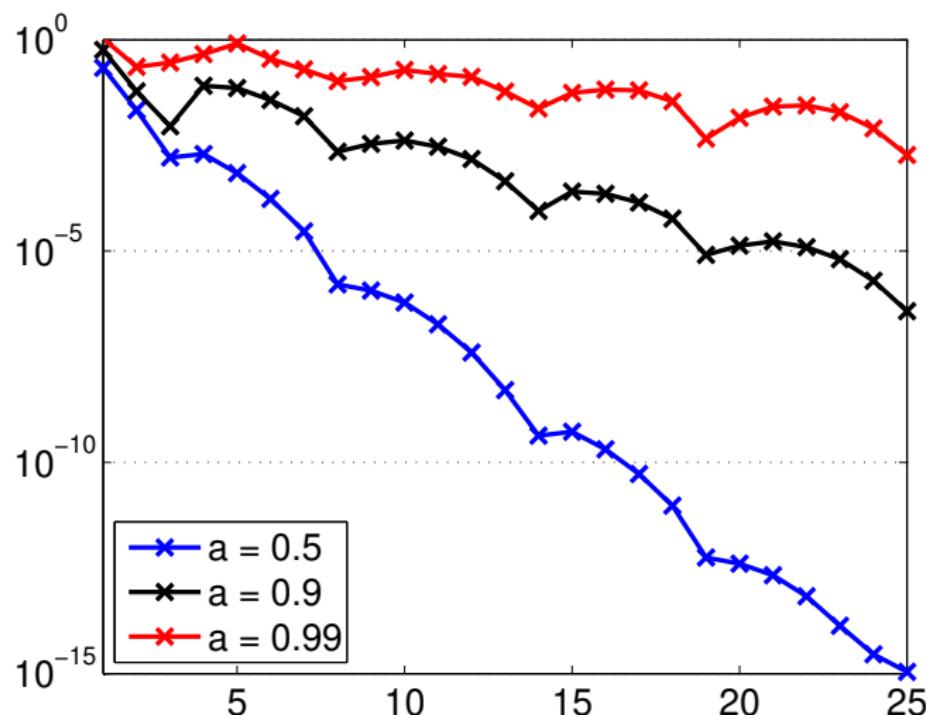
- ▶ f is periodic on the interval $[0, 2\pi]$.
- ▶ The periodic extension of f is smooth (infinitely often continuously differentiable), in fact, it is real analytic.
- ▶ As $a \rightarrow 1$, the function approaches a singularity at, e.g., $x = 2\pi/4 + 1$.

The miracle of the trapezoidal rule



Error vs. N for comp. trapezoidal applied to $\int_0^\pi f(x) dx$

The miracle of the trapezoidal rule



Error vs. N for comp. trapezoidal applied to $\int_0^{2\pi} f(x) dx$