

Advanced Numerical Analysis

Lecture 3
Spring 2025

EPFL

Fabio Matti

Quiz from Exercise Set 2

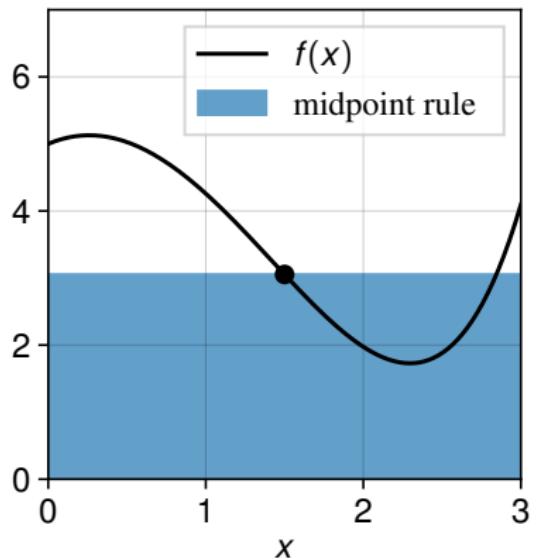
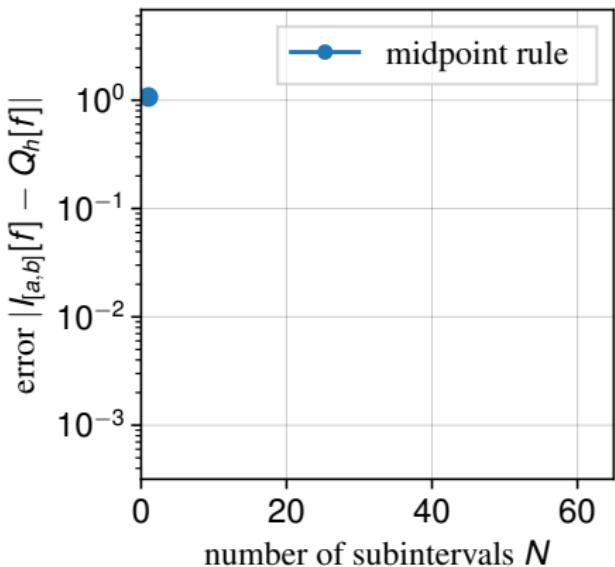
a) Consider the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$, which is known to diverge. When attempting to compute the partial sum $1 + 1/2 + 1/3 + \dots + 1/n$ (from the smallest to the largest) in double precision, what will happen as $n \rightarrow \infty$?

- The computed partial sums will overflow.
- The computed partial sums will stagnate (“converge”) to ≈ 34 .
- The computed partial sum will stagnate (“converge”) to $\approx 2 \times 10^{16}$.
- The computed partial sum will stagnate (“converge”) to $\approx 10^{300}$.

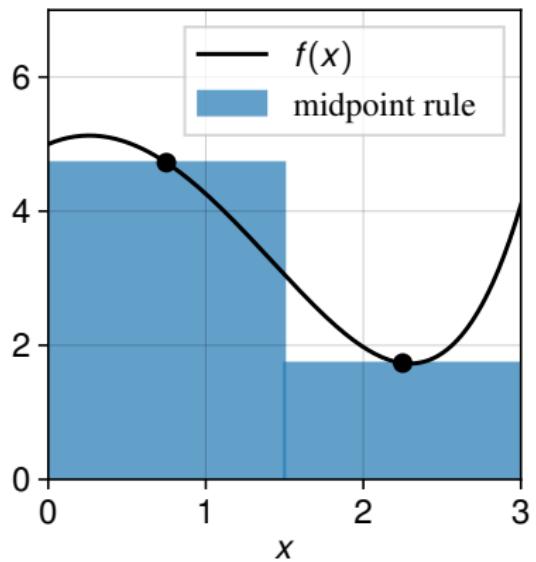
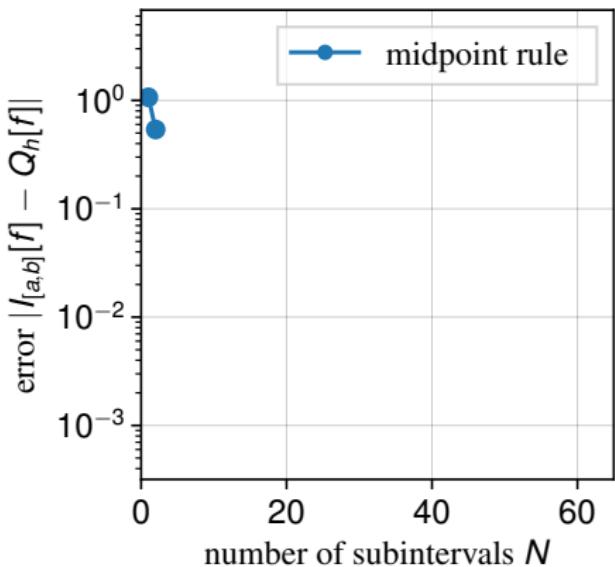
b) Consider the same question for the alternating harmonic series $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k}$, which is known to converge to $\log(2)$.

- The computed partial sums will overflow.
- The computed partial sums will stagnate (“converge”) to $\approx \log(2)$.
- The computed partial sums will underflow.
- The computed partial sum will stagnate (“converge”) to ≈ 0 .

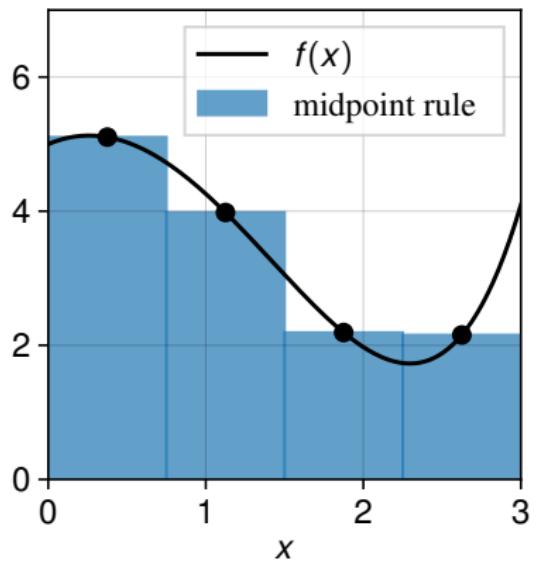
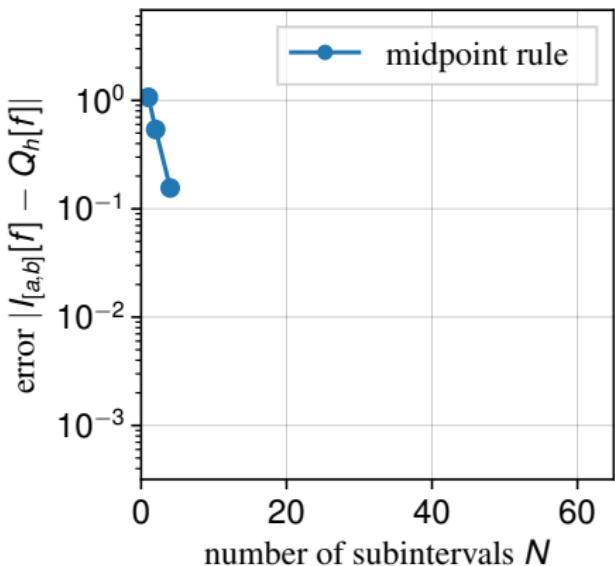
Midpoint rule



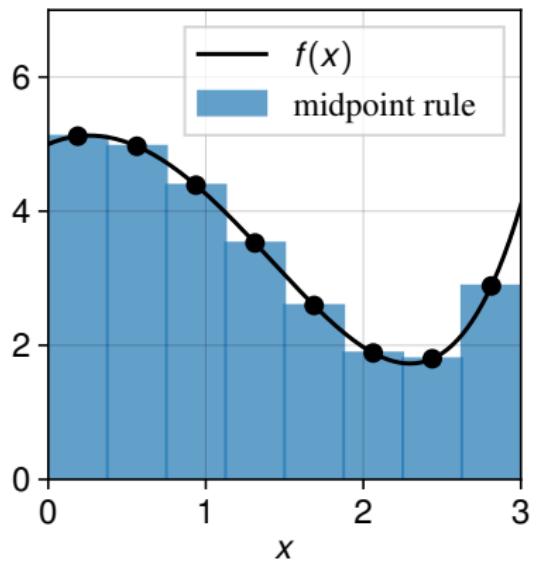
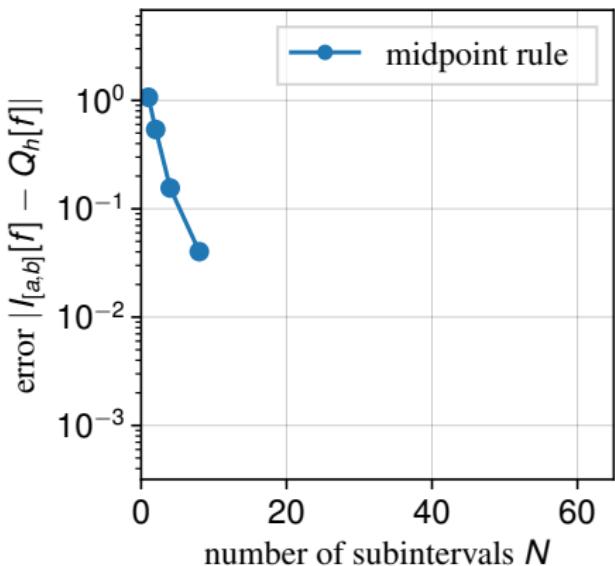
Midpoint rule



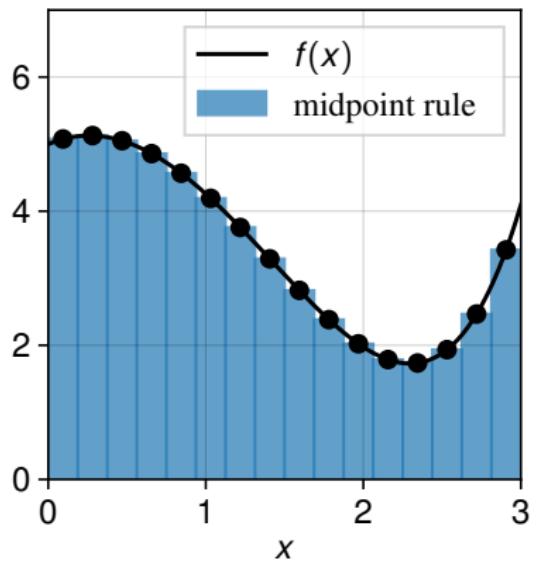
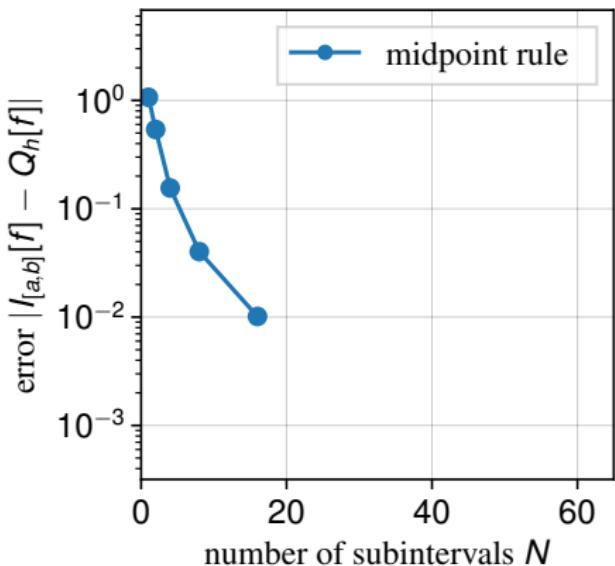
Midpoint rule



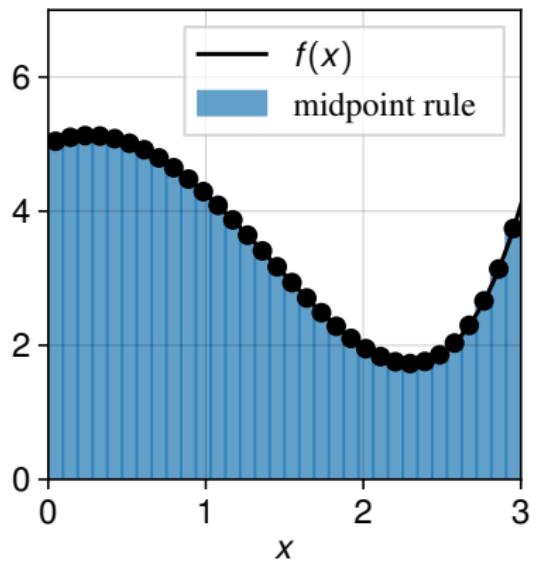
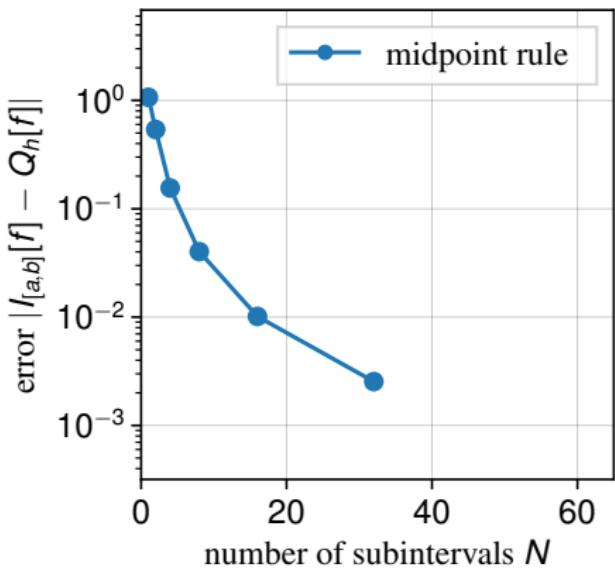
Midpoint rule



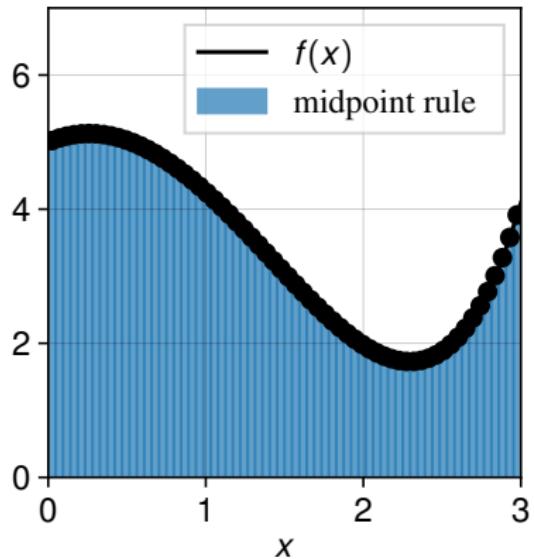
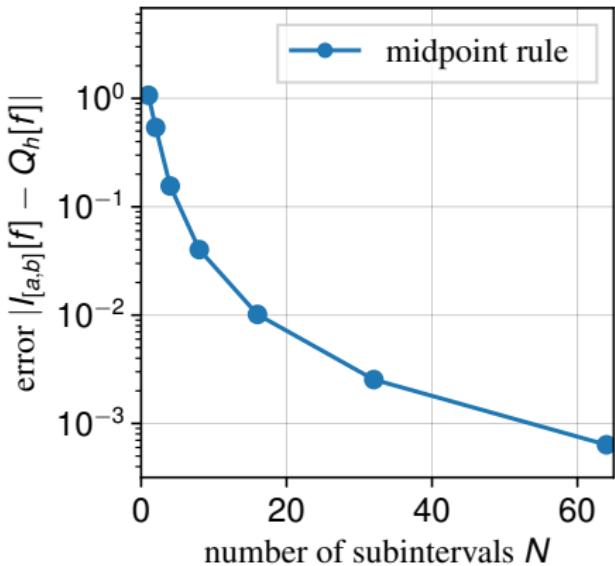
Midpoint rule



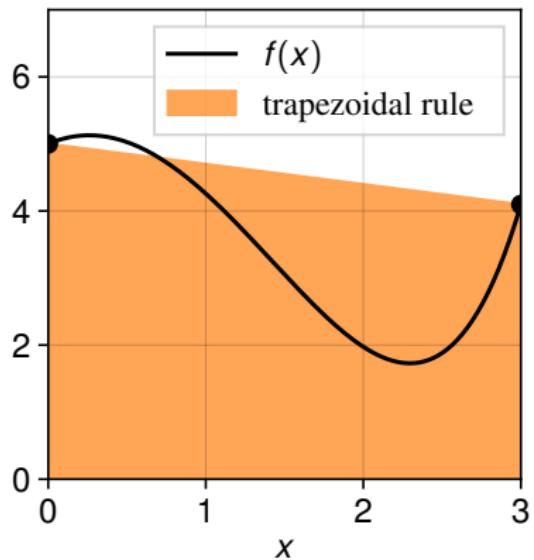
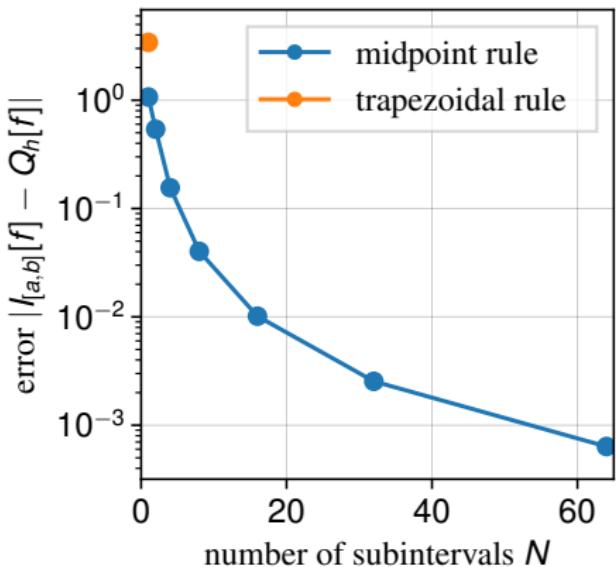
Midpoint rule



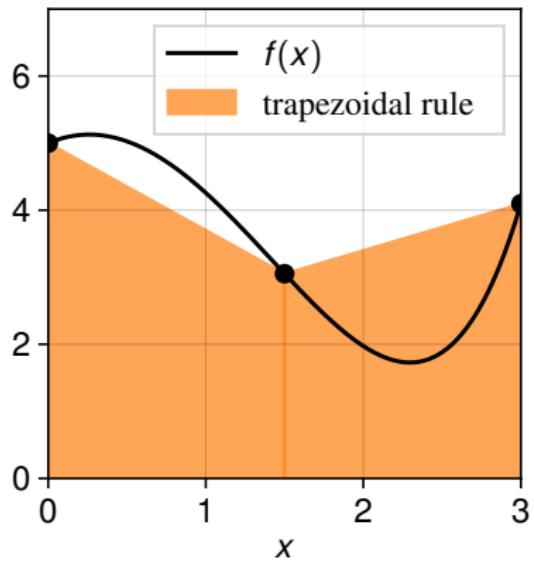
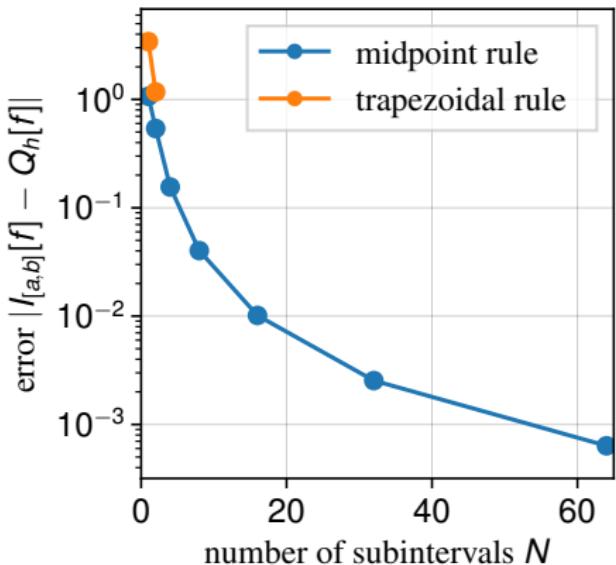
Midpoint rule



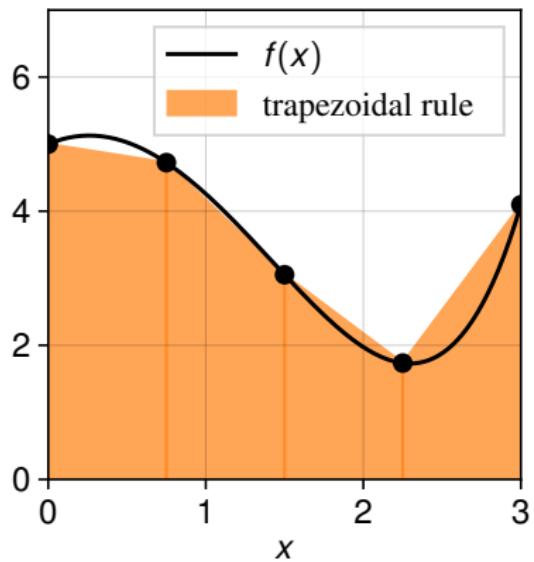
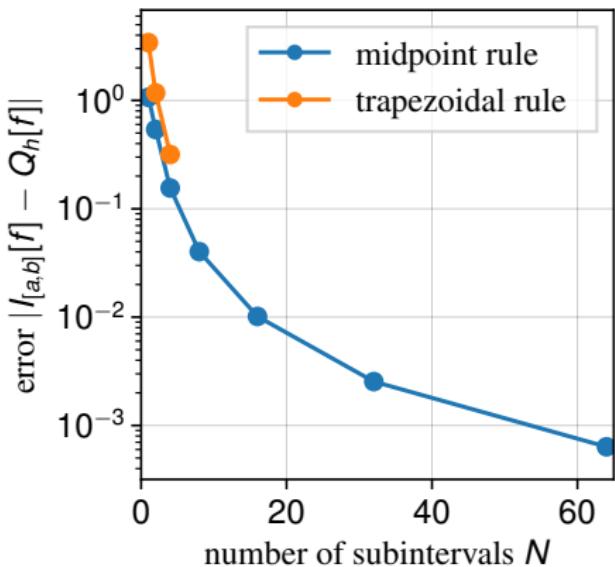
Trapezoidal rule



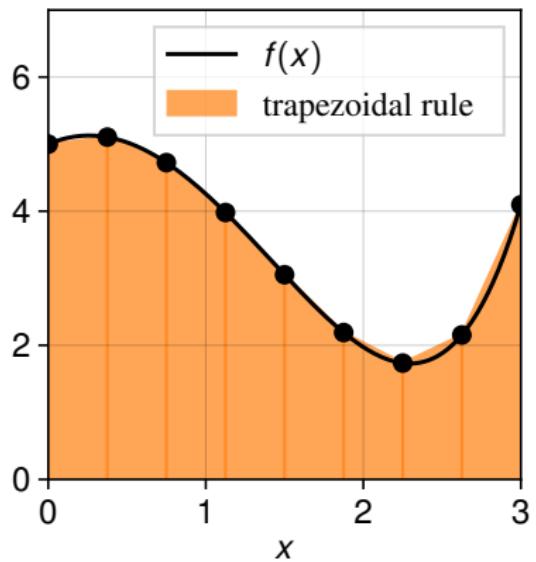
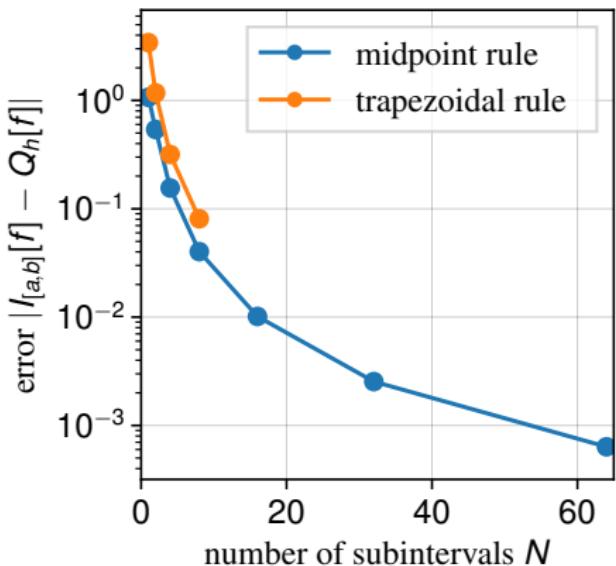
Trapezoidal rule



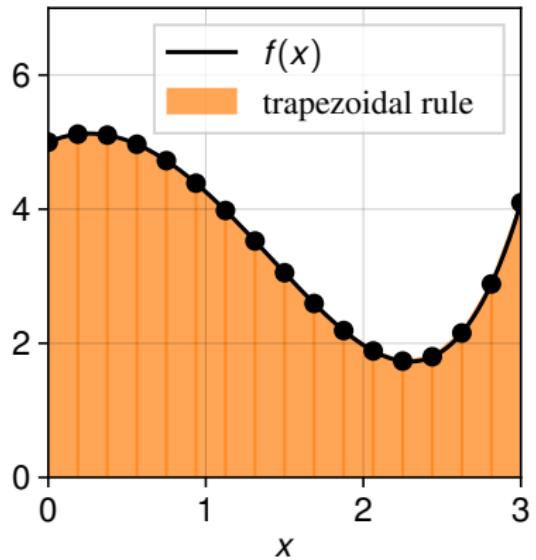
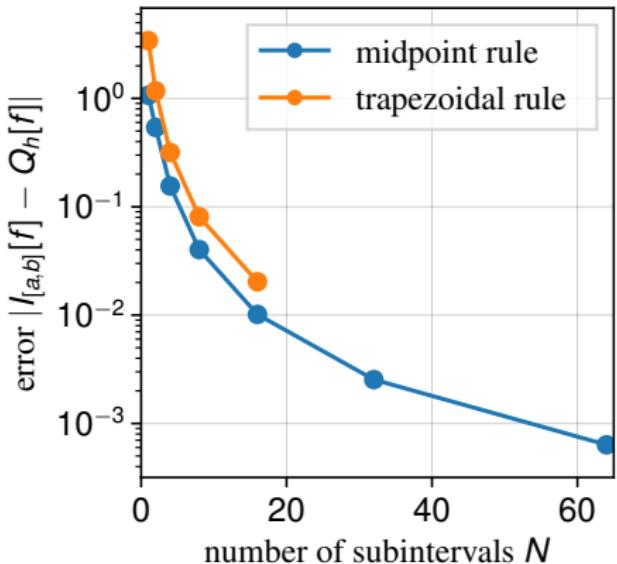
Trapezoidal rule



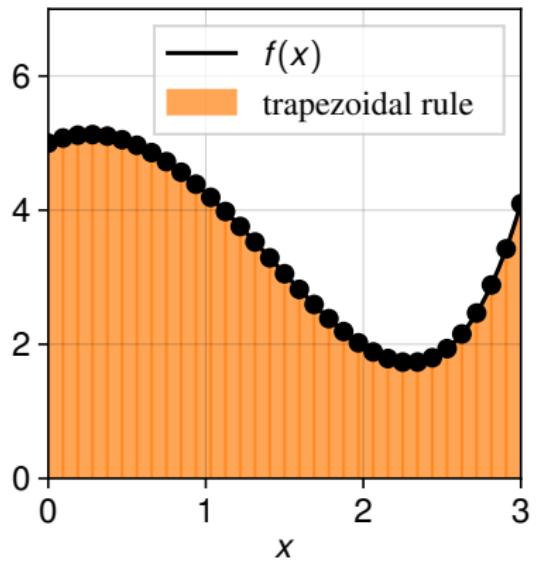
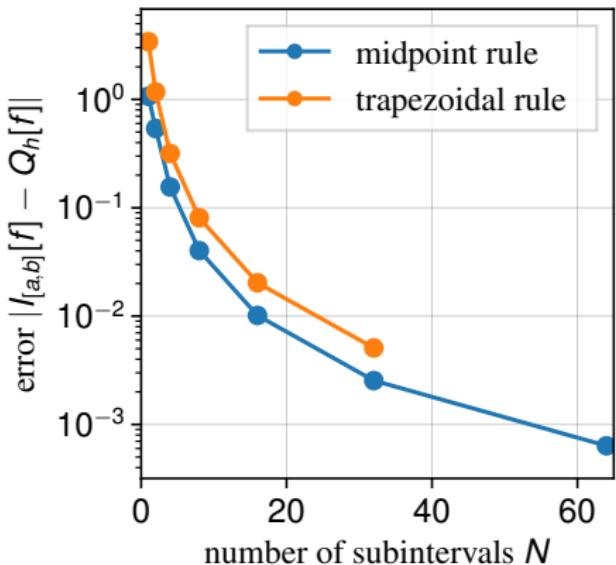
Trapezoidal rule



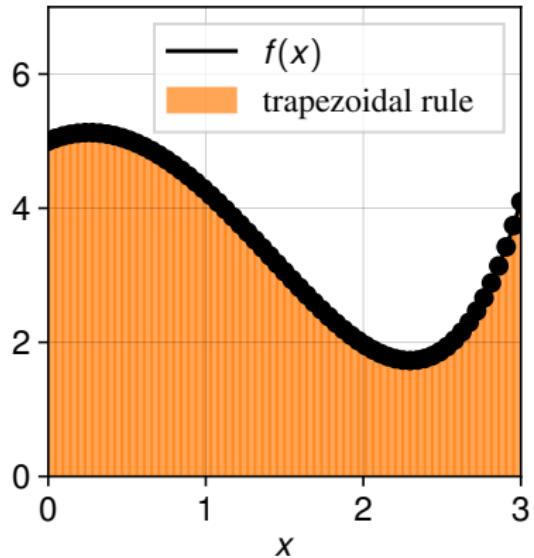
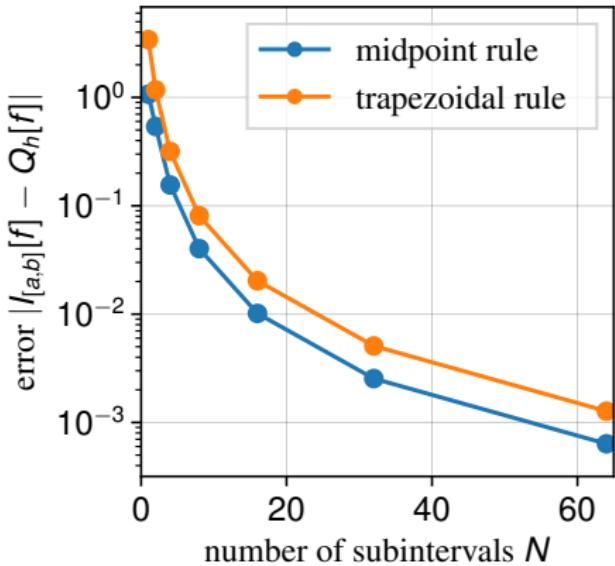
Trapezoidal rule



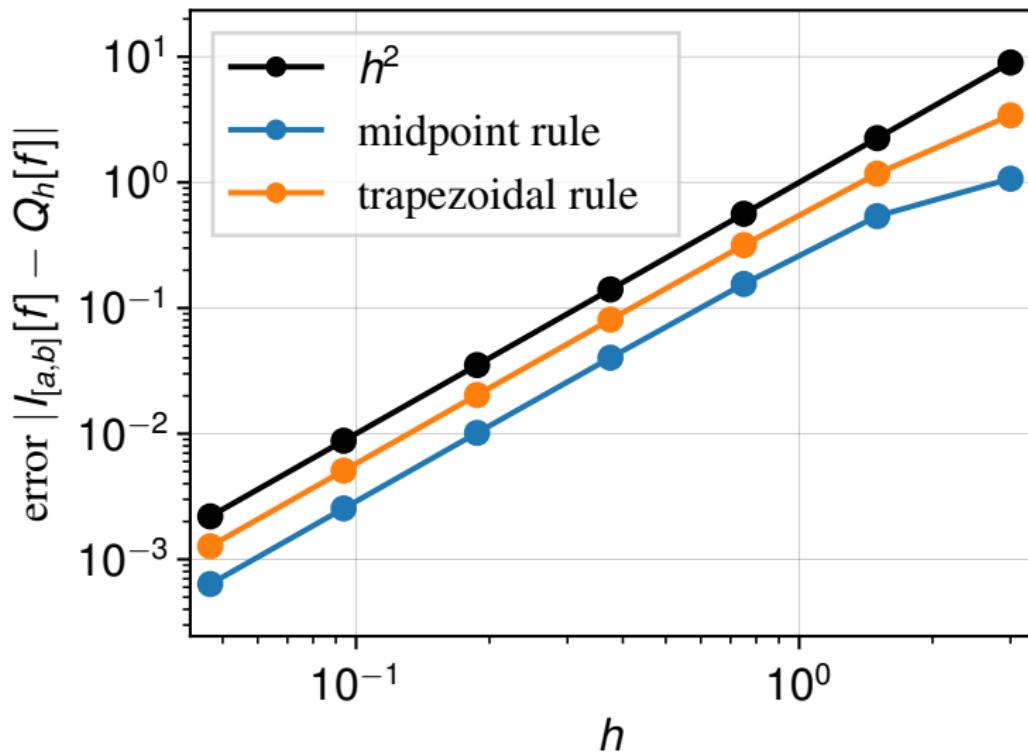
Trapezoidal rule



Trapezoidal rule



Convergence



Vandermonde matrix

Coefficients can be obtained by solving linear system involving the Vandermonde matrix

$$V = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

- ▶ Is numerically problematic
- ▶ Still the standard way in Python (NumPy)

```
450     def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
451
452         # set up least squares equation for powers of x
453         lhs = vander(x, order) → Vandermonde matrix
454         rhs = y
455
456         # apply weighting
457         if w is not None:
458             w = NX.asarray(w) + 0.0
459             if w.ndim != 1:
460                 raise TypeError("expected a 1-d array for weights")
461             if w.shape[0] != y.shape[0]:
462                 raise TypeError("expected w and y to have the same length")
463             lhs *= w[:, NX.newaxis]
464             if rhs.ndim == 2:
465                 rhs *= w[:, NX.newaxis]
466             else:
467                 rhs *= w
468
469             # scale lhs to improve condition number and solve
470             scale = NX.sqrt((lhs*lhs).sum(axis=0))
471             lhs /= scale
472             c, residuals, rank, s = lstsq(lhs, rhs, rcond) → V⁻¹x
473             c = (c.T/scale).T # broadcast scale coefficients
474
```

Lagrange basis polynomials

Interpolation nodes: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, and $x_4 = 4$

