

Advanced Numerical Analysis

Lecture 1
Spring 2025

Daniel Kressner

What is numerical analysis?

- ▶ *Approximate* solution of mathematical problems that are difficult or impossible to solve by hand
- ▶ Design and analysis of algorithms
- ▶ Analysis and control of error (approximation, floating point, measurement)
- ▶ Beautiful mathematics¹

¹sometimes 😊

What is numerical analysis?

- ▶ Daniel Kressner, Lecturer
 - ▶ Professor of mathematics at MATH, EPFL
 - ▶ Research areas: numerical linear algebra/analysis, design and fast implementation of algorithms, applications (e.g., simulating plasma in EPFL's tokamak)
- ▶ Fabio Matti, principal assistant
 - ▶ PhD student of mathematics at EDMA
 - ▶ Research topic: Randomized numerical linear algebra
- ▶ Team of assistants: Thomas Michel, Peter Oehme, Marija Vukšić, Zhipeng Xue
- ▶ Ways to contact us: lectures/exercise sessions, *Ed Discussion Board*, e-mail

Lectures

- ▶ Thursday 14h15–15h00, 15h15–16h00, CE 1 5
- ▶ First lecture 20.2., last lecture 22.5.
- ▶ **Lecture notes** on moodle will be provided chapter-by-chapter during the semester (Chapter 1 is already online).
- ▶ Additional references are provided, but only material discussed in class room, the **lecture notes**, and the exercises is relevant.
- ▶ Lectures mainly on blackboard. Slides mainly for illustration (no extra material).

Exercises

- ▶ Exercise session: Friday 10h15–12h00
CO 020 (last names A–F) and CO 021 (last names G–Z)
- ▶ First session 21.2., last session 30.5.
- ▶ Each week there will be an exercise sheet.
- ▶ In week n , the exercise sheet will be put online on Wednesday and contains 3 parts:
 1. Quiz:
Concerns the understanding of lecture material, will be discussed in the beginning of the lecture of week $n + 1$
 2. Exercises:
To be solved during (and after) the exercise session on Friday in week n . Several assistants will be available to help you.
Corrections are put online in week $n + 1$.
 3. Homework:
Mix of theoretical and programming exercises to be submitted until Friday 10h15 of week $n + 1$. Homework grading will be handled by Peter Oehme.

Final exam

- ▶ Closed book exam.
One *handwritten* A4 page (both sides) allowed
- ▶ Only topics discussed in lecture and exercises relevant for the exam (detailed summary during the last week).
- ▶ Basic knowledge of Python needed to solve the exam.
This is not a programming course!
- ▶ Homework will contribute to the grade as follows:
 - ▶ Each week you can attain between 0 and 2 points.
 - ▶ $Y = \text{sum of your points} / (2 \cdot \text{number of homeworks})$
 - ▶ $X = \text{grade in exam}$, $X = 6$ is possible!
 - ▶ Final grade = $\min(X + Y, 6)$

Notes on Python

- ▶ This week's exercise session will be concerned with training lecture-relevant Python skills by going through tutorials and solving simple exercises.
- ▶ Use Jupyter Notebooks on a local installation or Noto:

`https:`

`//go.epfl.ch/advanced-numerical-analysis-2025`

- ▶ Reach out to 1234 if you have installation problems.
- ▶ For Python related questions (beyond installation issues) use Ed Discussion Board.

Contents of this lecture

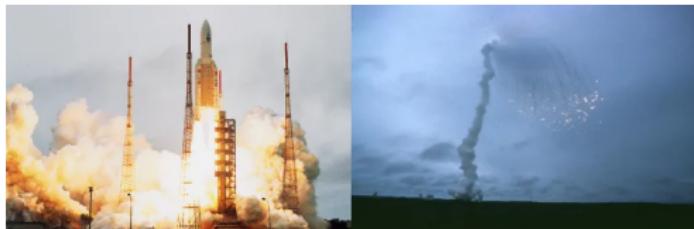
1. Representation of numbers
2. Numerical integration
3. Polynomial interpolation
4. Linear systems – small matrices
5. Linear systems – large matrices
6. Regression and least squares
7. Fourier transform

...and now a brief journey...

1. Representation of numbers

- ▶ Computers are finite
~~ no chance to operate with all numbers in \mathbb{R} , \mathbb{Q} , or even \mathbb{N}
- ▶ Floating point numbers \mathbb{F} = well-chosen finite subset of \mathbb{R}
- ▶ \mathbb{F} is not closed under $+, *, \dots !$ 😕

A US\$370 million failure due to lack of closedness:



https://en.wikipedia.org/wiki/Ariane_flight_V88

2. Numerical integration

What's the integral of $\exp(-\sqrt{\sin(\tan(x))})$ from 1 to 2?

The integral you're asking about is:

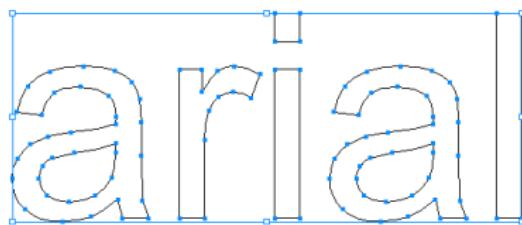
$$\int_1^2 \exp\left(-\sqrt{\sin(\tan(x))}\right) dx$$

This integral is quite complex due to the composition of functions inside the exponential and the square root. It does not have a straightforward analytical solution using elementary functions. Therefore, it typically requires numerical methods to evaluate.

- ▶ School/Analysis@EPFL: Approx of \int_a^b by rectangles/trapezoids.
- ▶ Can one do better?

3. Polynomial interpolation

Modern font shapes are represented by piecewise polynomials:



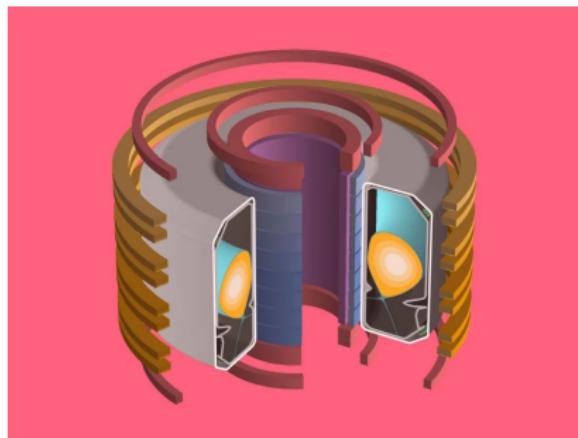
Polynomials need to pass through prescribed points + pieces need to glue smoothly together \rightsquigarrow interpolation conditions.

See https://jdiao.github.io/2018/11/27/font_shape_mathematics_bezier_curves/
(The Mathematics behind Font Shapes — Bézier Curves and More)

4./5. Linear Systems

A simple equation at the heart of computational simulations:

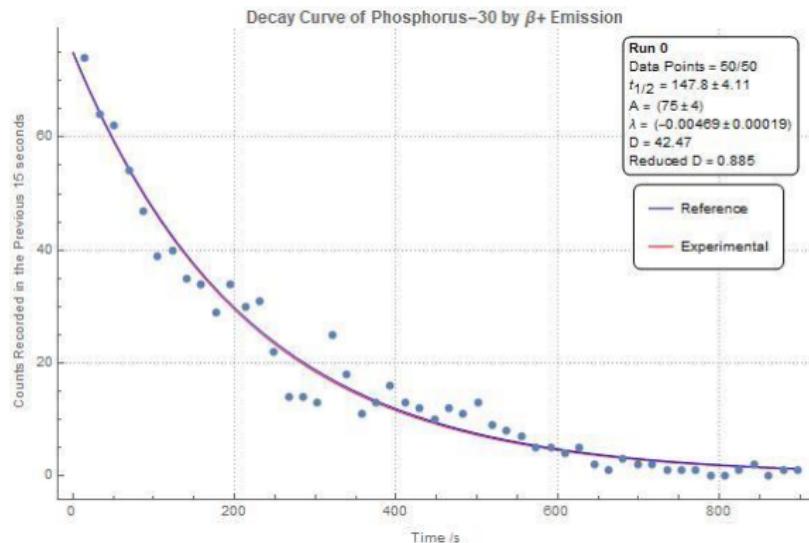
$$Ax = b$$



Collaboration between MATH + SPC:

Simulation of plasma in EPFL's tokamak requires solving **linear systems with millions of unknowns!**

6. Regression and least squares



How to fit an exponential curve to a data set of radioactive decays?

7. Fourier transforms

Fourier transforms are everywhere:

- ▶ Imaging: JPEG, Computed Tomography, filtering, ...
- ▶ Audio: MP3, filtering, ...
- ▶ Videos: Compression (MPEG-2, H.264 / AVC, VP9, H.265 / HEVC, ...)

The Fast Fourier Transform (FFT) runs the world!

Fast Fourier transforms are widely used for [applications](#) in engineering, music, science, and mathematics. The basic ideas were popularized in 1965, but some algorithms had been derived as early as 1805.^[1] In 1994, [Gilbert Strang](#) described the FFT as "the most important [numerical algorithm](#) of our lifetime",^{[3][4]} and it was included in Top 10 Algorithms of 20th Century by the [IEEE](#) magazine *Computing in Science & Engineering*.^[5]

From

[https:](https://en.wikipedia.org/wiki/Fast_Fourier_transform)

[/en.wikipedia.org/wiki/Fast_Fourier_transform](https://en.wikipedia.org/wiki/Fast_Fourier_transform)

Finite differences

Analysis 1: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x \in \mathbb{R}$. Then

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}.$$

Expectation: Approximation of $f'(x)$ by finite difference quotient tends to get better as h approaches 0.

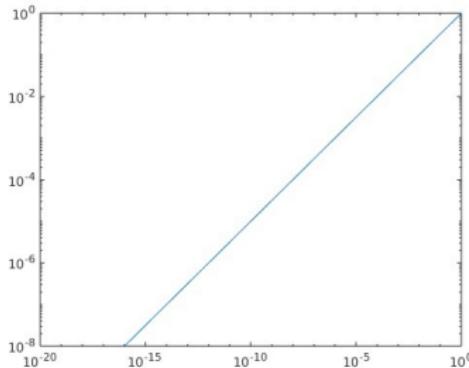
Python:

```
import numpy as np
import matplotlib.pyplot as plt

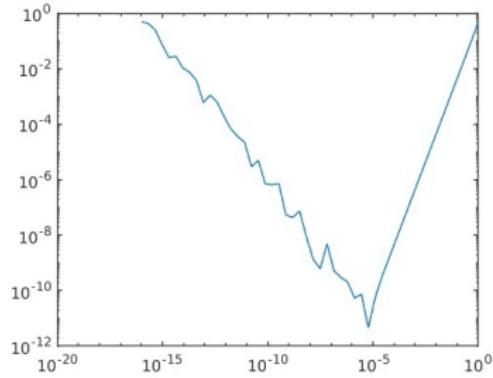
h = np.logspace(-16, 0)
fd = (np.exp(1 + h) - np.exp(1)) / h
error = np.abs(fd - np.exp(1))
plt.loglog(h, error)
```

Quiz: Which of these figures corresponds to the Python program?

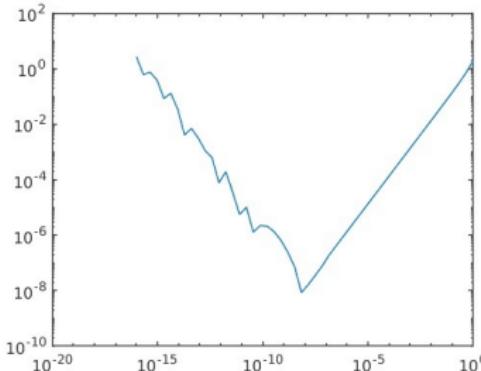
(A)



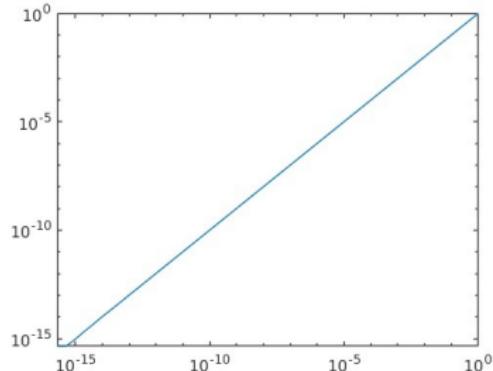
(B)



(C)



(D)



The number e (Example 1.1 in lecture notes)

Analysis 1:

$$e = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n.$$

Expectation: $e_n = \left(1 + \frac{1}{n}\right)^n$ becomes increasingly closer to e as n gets larger.

PYTHON

```
# Approximation of e, numpy package needed to include e
import numpy as np
for i in range(1,16):
    n = 10.0 ** i; en = (1 + 1/n) ** n
    print('10^%2d %20.15f %20.15f' % (i,en,en-np.e))
```

The number e (Example 1.1 in lecture notes)

n	Computed \hat{e}_n	Error $\hat{e}_n - e$
10^1	2.593742460100002	-0.124539368359044
10^2	2.704813829421529	-0.013467999037517
10^3	2.716923932235520	-0.001357896223525
10^4	2.718145926824356	-0.000135901634689
10^5	2.718268237197528	-0.000013591261517
10^6	2.718280469156428	-0.000001359302618
10^7	2.718281693980372	-0.000000134478673
10^8	2.718281786395798	-0.000000042063248
10^9	2.718282030814509	0.000000202355464
10^{10}	2.718282053234788	0.000000224775742
10^{11}	2.718282053357110	0.000000224898065
10^{12}	2.718523496037238	0.000241667578192
10^{13}	2.716110034086901	-0.002171794372145
10^{14}	2.716110034087023	-0.002171794372023
10^{15}	3.035035206549262	0.316753378090216

Quiz

Only one answer is correct!

Let $x \in \mathbb{R}$.

- (A) If x has a finite decimal representation then x also has a finite binary representation.
- (B) x has a finite binary representation if and only if x has a finite hexadecimal representation.
- (C) If x has an infinite decimal representation then the representation of x in any base $\beta \geq 2$, $\beta \in \mathbb{N}$, is infinite.
- (D) There always exists some $\beta \geq 2$, $\beta \in \mathbb{N}$, in which x has a finite representation.

Finite vs. infinite representations

Theorem 1.4.

Consider a nonzero rational number $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ have no common divisor. Then x has a finite representation in base $\beta \geq 2$ if and only if each of the prime factors of the denominator q divides β .

Quiz

Only one answer is correct!

Let $\mathbb{F} = \mathbb{F}(10, 3, -3, 1)$.

- (A) $23.4 \in \mathbb{F}$
- (B) $3.141 \in \mathbb{F}$
- (C) $-0.00732 \in \mathbb{F}$
- (D) $10.0 \in \mathbb{F}$

IEEE 754 Standard

$$\beta = 2$$

Name	Size	Mantissa	Exponent	x_{\min}	x_{\max}
Single precision	32 bits	23 + 1 bit	8 bits	10^{-38}	10^{+38}
Double precision	64 bits	52 + 1 bit	11 bits	10^{-308}	10^{+308}

PYTHON

```
import sys
sys.float_info.min          # 2.2251e-308
sys.float_info.max          # 1.7977e+308
1 / 0                      # Divide by zero error
3 * float('inf')           # inf
-1 / 0                     # Divide by zero error
0 / 0                      # Divide by zero error
float('inf') - float('inf') # nan
```

Precisions for machine learning

$$\beta = 2$$

Name	Size	Mantissa	Exponent	x_{\min}	x_{\max}
bfloat16	16 bits	8 bits	8 bits	10^{-38}	10^{+38}
FP8	8 bits	4 bits	4 bits	10^{-2}	240

 Jared Friedman
@snowmaker

Lots of hot takes on whether it's possible that DeepSeek made training 45x more efficient, but [@doodlestein](#) wrote a very clear explanation of how they did it. Once someone breaks it down, it's not hard to understand. Rough summary:

- * Use 8 bit instead of 32 bit floating point numbers, which gives massive memory savings
- * Compress the key-value indices which eat up much of the VRAM; they get 93% compression ratios
- * Do multi-token prediction instead of single-token prediction which effectively doubles inference speed
- * Mixture of Experts model decomposes a big model into small models that can run on consumer-grade GPUs

Quiz

1. What is the result of $x = -0.0$; $y = 1/x$ in Python?

- (A) $y = \text{Inf}$
- (B) $y = -\text{Inf}$
- (C) $y = \text{NaN}$
- (D) Error
- (E) It depends