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Audio signals
Let y contain an audio signal.

DFT z = F,y is called the (frequency) spectrum.

Important audio filtering operations proceed by manipulating z,
followed by a back transformation to the time domain using inverse
DFT.

Examples:
» Low-pass filter: Set high frequencies to zero (z; < 0 for larger j),
preserve low frequencies.
» High-pass filter: Set low frequencies to zero (z; «— 0 for smaller
f), preserve high frequencies.
» Compression: Set z; + 0 if |z;| < tol.




Audio signals
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The trapezoidal miracle
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The trapezoidal miracle resolved

For 27-periodic f, consider approximation of f x) dx. Because of

periodicity, composite trapezoidal rule takes the form
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with h = 2 /N. Let us now consider truncated Fourier expansion

N—1

fuo1(x) = > ce™.

k=—N+1

On the one hand, we have
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On the other hand, Lemma 7.5 shows
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The trapezoidal miracle resolved

Linearity ~~ composite trapezoidal rule with h = 27 /N integrates
truncated Fourier expansion fy exactly!

Error bound:
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For real analytic 27-periodic function, Analysis IV told you that |cx|
decays exponentially fast and, in turn, the error of the composite
trapezoidal rule also converges exponentially fast to zero!



FFT (Fast Fourier Transform)

Some random facts:
» Published in 1965 by James Cooley and John Tukey.'
» One of MATH@EPFL seminar rooms named after John Tukey.

> In 1994, Gilbert Strang described the FFT as “the most important
numerical algorithm of our lifetime”
» Our former president worked on it!
FAST FOURIER TRANSFORMS: A TUTORIAL REVIEW AND
A STATE OF THE ART

P. DUHAMEL
CNET/PAB/RPE 38-40, Rue du General Leclerc, 92131 Issy les Moulineaux, France

M. VETTERLI
Dept of EE and CTR, S.W. Mudd Building, Columbia University, 500 W 120th Street, New York, NY 10027, U.S.A.

1But, of course, Gauss did it before, in 1805.



FFT (Fast Fourier Transform)

Let n be even (later: power of 2). Then w, = e~27/" satisfies
Wk =Wkt vk ez, wl=1, wl/?=-1.

Most important relation is trivial: w3 = wj; , This induces a LOT of
structure in the DFT matrix
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Even rows (0, 2, 4) and feature even powers!



FFT (Fast Fourier Transform)

Idea: Put even rows first with perfect shuffle permutation:
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FFT (Fast Fourier Transform)
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FFT (Fast Fourier Transform)

Because of wk = wgk for k € Z, it follows that
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Theorem 10.7

Let n > 2 be even. Let P, be the permutation matrix belonging to the
permutation ¢ : {0,...,n—1} — {0,...,n— 1} with

€00 152 . 2 42 1, 0153 1 01,
2 2 2
Then
PFn _ < Fn/2 Fn/2 > _ (Fn/z > (/n/2 /n/2 >
n Fn/ZQn/Z - n/ZQn/Z Fn/2 Qn/2 _Qn/z
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