
Solution 8 – MATH-250 Advanced Numerical Analysis I

(⋆) Problem 4. (Do note the later submission deadline due to the Easter break.)

Let k : [0, 1] × [0, 1] → R and u : [0, 1] → R be continuous functions. We define the integral
operator F : [0, 1] → R as the integral of u with the kernel k using

F (x) =
1∫

0

k(x, y)u(y) dy. (1)

For a partition of [0, 1] into N > 0 subintervals denote h = 1
N and let Qh be the composite

trapezoidal rule on the N subintervals of length h. Further define the subinterval’s boundary
points xi = i · h for i = 0, 1, . . . , N .

(a) We want to apply Qh to approximate the operator (1) at each xi

Qh[k(xi, ·)u(·)] = F̂ (xi) ≈ F (xi) =
1∫

0

k(xi, y)u(y) dy, i = 0, 1, . . . , N.

To this end we define the function value vectors

f̂ = [F̂ (x0), F̂ (x1), . . . , F̂ (xN )]⊤ and u = [u(x0), u(x1), . . . , u(xN )]⊤.

Show that there exists an (N + 1) × (N + 1) matrix A such that Au = f̂ . Provide
explicit formulae for the entries aij of A.

(b) We now consider the opposite idea of (a). Given a vector of the integral operator’s
evaluations f = [F (x0), F (x1), . . . , F (xN )]⊤ we solve Aû = f , and use the result to
approximate F (z) for any arbitrary value of z ∈ [0, 1].

Assume that the matrix

K =


k(x0, x0) k(x0, x1) · · · k(x0, xN )
k(x1, x0) k(x1, x1) · · · k(x1, xN )

...
... . . . ...

k(xN , x0) k(xN , x1) · · · k(xN , xN )

 (2)

is invertible and show that

F̂ (z) = [k(z, x0), k(z, x1), . . . , k(z, xN )]K−1f (3)

holds true.

(c) For N = 4 suppose that the corresponding matrix K from (b) is invertible.

Show that F̂ (xi) = F (xi) for i = 0, 1, 2, 3, 4.

(d) We choose the radial basis function kernel k(x, y) = exp (−(x − y)2/4).

Implement a Python function approximate_operator(F, N, z) that computes the
vector F̂ (z) = [F̂ (z1), F̂ (z2), . . . , F̂ (zm)]⊤ given a vector z = [z1, z2, . . . , zm]⊤, m > 0,
using (3). Assure that your implementation requires O(N3 + mN2) operations.
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(e) Let N ∈ {2, 5, 10}, m = 1000, z = np.linspace(0, 1, num=1000), and define

F1(x) = sin (3πx) and F2(x) = exp
(
−

∣∣x − 0.5
∣∣2/3)

.

For each N and each Fi plot the true function Fi(z) and its approximation F̂i(z).
Compute the maximum absolute error maxj=1,2,...,m |Fi(zj)− F̂i(zj)| and clearly display
this error.

(f) Explain the behaviour for the approximation of F2 with N = 10.

To mitigate this bad approximation we utilize regularisation. This means that instead
of (3) we compute

F̂ (γ)(z) = [k(z, x0), k(z, x1), . . . , k(z, xN )](K + γ id)−1f

for some small γ > 0.

Implement a Python function approximate_operator_reg(F, N, z, gamma) to com-
pute F̂ (γ) similarly to (d); you may reuse your code from (d). Determine a value for γ
such that the maximum absolute error of the approximation for F2 and N = 10 is less
than or equal to 10−1.

(g) Bonus (This part is not needed to get full marks.): Prove that the matrix K from (2)
is always symmetric and positive semidefinite for the radial basis kernel k(x, y) =
exp (−(x − y)2/4). You can use the Schur product theorem or any other technique.

Schur Product Theorem. Let A, B ∈ Rn×n be two symmetric and positive semidefinite
matrices. Then their elementwise product (A ⊙ B)ij = aij · bij is once again symmetric
and positive semidefinite.

Solution.

(a) We apply the definition of the composite trapezoidal rule

F̂ (xi) = 1
N

1
2k(xi, x0)u(x0) +

N−1∑
j=1

k(xi, xj)u(xj) + 1
2k(xi, xN )u(xN )

 .

This computation can be seen as the inner product of the vectors u and

ℓi = 1
N

[1
2k(xi, x0), k(xi, x1), . . . , k(xi, xN−1), 1

2k(xi, xN )
]⊤

,

whereupon we can evaluate these inner products for all i = 0, 1, . . . , N simultaneously,
thus yielding the linear system

f̂ = [ℓ0, ℓ1, . . . , ℓN ]⊤u = Au.

(b) Given the matrix A from (a) we see that A = KD, where D is a diagonal matrix with the
principal diagonal equal to

[ 1
2N , 1

N , . . . , 1
N , 1

2N

]
. Therefore, A−1 = (KD)−1 = D−1K−1

and thus also u = A−1f = D−1K−1f . We further repeat the approach from (a) and
see that

F̂ (z) = 1
N

[1
2k(z, x0), k(z, x1), . . . , k(z, xN−1), 1

2k(z, xN )
]

u

= [k(z, x0), k(z, x1), . . . , k(z, xN−1), k(z, xN )]DD−1K−1f .
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(c) Using the formula from (b) we can see that

F̂ (xi) = [k(xi, x0), k(xi, x1), . . . , k(xi, xN )]K−1f .

Given that the row vector on the left of K−1 is equal to the i-th row of K it holds
that [k(xi, x0), k(xi, x1), . . . , k(xi, xN )]K−1 = ei and therefore F̂ (xi) = F (xi).

(d, e) Available in the Jupyter notebook homework08-sol.ipynb on Moodle.

(f) The code is available in the Jupyter notebook homework08-sol.ipynb on Moodle.

The issue in the bad behaviour of the approximation of F2 for N = 10 is the condition
number of K. The matrix K possesses an eigenvalue close to 0 and thus cond(K) is
very large. By adding the identity matrix we increase the magnitude the eigenvalue,
whence the error of the final approximation may be better, depending on the value of
the regularisation parameter γ. For viable values of γ please refer to the solution in
the Jupyter notebook.

(d) We commence by writing exp (−1
4(x − y)2) = exp (−1

4(x2 + y2)) exp (1
2xy). This means

that we have to show for K = A⊙B with aij = exp (−1
4(x2

i + x2
j )) and bij = exp (1

2xixj)
that A and B are both positive semidefinite.

For A this follows immediately by writing A = ww⊤ with

w = [exp (−1
4x2

0), exp (−1
4x2

1), . . . , exp (−1
4x2

N )]
⊤

.

For B we first consider the linear kernel g(xi, xj) = xixj . The associated kernel matrix
can be written as xx⊤ and is therefore positive semidefinite. This semidefiniteness
remains when we scale by a positive factor, thus 1

2xx⊤ is also positive semidefinite.
Next, define M⊙ℓ the ℓ times application of ⊙ to M , i.e. M⊙3 = M ⊙ M ⊙ M , and
define M⊙0 = E, where E is the matrix with all entries equal to 1. This notation
allows us to compactly write the Taylor series expansion of the elementwise matrix
exponential, that is

exp⊙ (M) =


exp (m11) exp (m12) . . . exp (m1N )
exp (m21) exp (m22) . . . exp (m2N )

...
... . . . ...

exp (mN1) exp (mN2) . . . exp (mNN )

 =
∞∑

ℓ=0

1
ℓ!M

⊙ℓ.

When computing exp⊙ (1
2xx⊤) we therefore observe that (1

2xx⊤)⊙ℓ is always positive
semidefinite by the Schur product theorem, wherefore the same must be true for B.

To conclude the proof we observe that the kernel matrix K must necessarily be
symmetric because k(x, y) = k(y, x).
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