SOLUTION 8 - MATH-250 Advanced Numerical Analysis I

(¥) Problem 4. (Do note the later submission deadline due to the Easter break.)

Let k: [0,1] x [0,1] — R and u: [0,1] — R be continuous functions. We define the integral
operator F': [0,1] — R as the integral of u with the kernel k using

1
F(a) = [ k(z,y)uly) dy (1
0

For a partition of [0, 1] into N > 0 subintervals denote h = % and let @y, be the composite
trapezoidal rule on the IV subintervals of length h. Further define the subinterval’s boundary
points x; =¢-h fori =0,1,..., N.

(a)

()

(d)

We want to apply @ to approximate the operator (1) at each z;

1
Qulk(ai, Ju()] = Fla) = Fla) = [haiyul)dy, i =01,
0

To this end we define the function value vectors

A R . . T

f= [F($()),F($1),,F(.’EN)] and u= [U(aj‘o),u($1),...,U(Z‘N)]T.
Show that there exists an (N + 1) x (N + 1) matrix A such that Au = f. Provide
explicit formulae for the entries a;; of A.

We now consider the opposite idea of (a). Given a vector of the integral operator’s
evaluations f = [F(z), F(z1),..., F(zxn)]" we solve At = f, and use the result to
approximate F(z) for any arbitrary value of z € [0, 1].

Assume that the matrix

k(zo,xo0) k(xo,z1) -+ k(zo,zN)
K /C(lez, xo) k(x1:,1'1> k($1:$N) (2)
k’(x]\;,a:o) k(x]\;,ml) k:(xN', TN)

is invertible and show that

A

F(2) = [k(z,20), k(z,21), ..., k(z, zn)| K 'f (3)
holds true.

For N = 4 suppose that the corresponding matrix K from (b) is invertible.

Show that F'(x;) = F(x;) for i = 0,1,2,3,4.

We choose the radial basis function kernel k(z,y) = exp (—(z — y)?/4).

Implement a Python function approximate_operator(F, N, z) that computes the
~ ~ ~ ~ T

vector F(z) = [F(z1), F(22),...,F(zm)] given a vector z = [z1,20,...,2m] ,m > 0,

using (3). Assure that your implementation requires O(N?3 + mN?) operations.



()

Let N € {2,5,10},m = 1000,z = np.linspace(0, 1, num=1000), and define

Fi(z) =sin(37x) and Fy(x) =exp (—‘x — 0.5|2/3) .

For each N and each F; plot the true function Fj(z) and its approximation Fj(z).
Compute the maximum absolute error max;j—i 2 . m |Fi(2;) — Fi(2;)| and clearly display
this error.

Explain the behaviour for the approximation of F» with N = 10.

To mitigate this bad approximation we utilize regularisation. This means that instead
of (3) we compute

F(V)(z) = [k(z,20),k(z,21), ..., k(z,zN)] (K 4+~ id)_lf
for some small v > 0.

Implement a Python function approximate_operator_reg(F, N, z, gamma) to com-
pute £ similarly to (d); you may reuse your code from (d). Determine a value for
such that the maximum absolute error of the approximation for F» and N = 10 is less
than or equal to 1071

Bonus (This part is not needed to get full marks.): Prove that the matrix K from (2)
is always symmetric and positive semidefinite for the radial basis kernel k(z,y) =
exp (—(x —y)?/4). You can use the Schur product theorem or any other technique.

Schur Product Theorem. Let A, B € R™*™ be two symmetric and positive semidefinite
matrices. Then their elementwise product (A ® B)ij = aj; - bsj is once again symmetric
and positive semidefinite.

Solution.

(a)

We apply the definition of the composite trapezoidal rule

N-1
N 1 [1 1
F(xz;) = N (Qk:(x,-,xo)u(xo) + Z k(x;, xj)u(x;) + Qk(a:i,xN)u(xN)) )
j=1
This computation can be seen as the inner product of the vectors u and
ti = 2 S a0) K 1) Ko ), ShGe )]
i = — | =k(z;,x Tiyx1), .., k(x, xn_1), =k(x;,
i N |2 1540/ iy L1/ ) 17N172 iy LIN )
whereupon we can evaluate these inner products for all : =0,1,..., N simultaneously,

thus yielding the linear system
f=1[lo,01,....00] u=Au

Given the matrix A from (a) we see that A = K D, where D is a diagonal matrix with the
principal diagonal equal to [5%, - - -, %+ 5] Therefore, A~! = (KD) ' =D 1K™!
and thus also u = A~'f = D~'K~'f. We further repeat the approach from (a) and
see that

~ 11 1
F(Z) = N 5]?(2’,370),]6‘(2,1‘1), cee 7k<zva—1)7 5

= [k(z,x0), k(2,21), ..., k(2,2N_1), k(z,z§)|DD LK £,

k(z,zn)| u



(c)

Using the formula from (b) we can see that

A

F(x;) = [k‘(l’l, x0), k(zi, 1), ..., k(xg, J?N)]K_lf.

Given that the row vector on the left of K~! is equal to the i-th row of K it holds
that [k(z;, 20), k(zi,71), ..., k(z;, 2n)]K ' = e; and therefore F(x;) = F(x;).

Available in the Jupyter notebook homework08-sol.ipynb on Moodle.
The code is available in the Jupyter notebook homework08-sol.ipynb on Moodle.

The issue in the bad behaviour of the approximation of F5 for N = 10 is the condition
number of K. The matrix K possesses an eigenvalue close to 0 and thus cond(K) is
very large. By adding the identity matrix we increase the magnitude the eigenvalue,
whence the error of the final approximation may be better, depending on the value of
the regularisation parameter v. For viable values of « please refer to the solution in
the Jupyter notebook.

We commence by writing exp (—1(z — y)?) = exp (—5(2? + )) exp (3xy). This means
that we have to show for K = A® B with a;; = exp (—1(2? + 22)) and b;; = exp (3z;2;)
that A and B are both positive semidefinite.

%l\')

For A this follows immediately by writing A = ww ' with

1 2 1 2 1 2 T
W= [exp(—Z:EO),eXp(—le),...,eXp(—ZxN)] :

For B we first consider the linear kernel g(x;, ;) = z;x;. The associated kernel matrix
can be written as xx | and is therefore positive semidefinite. This semidefiniteness
remains when we scale by a positive factor, thus 2XXT is also positive semidefinite.
Next, define M®* the ¢ times application of ® to M, i.e. M® =M © M ® M, and
deﬁne M®Y = E, where FE is the matrix with all entries equal to 1. This notation
allows us to compactly write the Taylor series expansion of the elementwise matrix
exponential, that is

exp (mi1) exp(mi2) ... exp(min)
exp (mo1 exp (mo2 ... exp(man > 1
exp® (M) = ) ) , ) | >0 M.
: : " : =0t
exp (mpy1) exp(mn2) ... exp(myn)

. l . -
When computing exp® (%XXT) we therefore observe that (5 XXT)Q is always positive

semidefinite by the Schur product theorem, wherefore the same must be true for B.

To conclude the proof we observe that the kernel matrix K must necessarily be
symmetric because k(z,y) = k(y, x).



