
Solution 7 – MATH-250 Advanced Numerical Analysis I

Problem 4. (⋆)

Let A ∈ Rn×n be an invertible matrix, and u, v ∈ Rn be two vectors.

(a) Show that the Sherman-Morrison formula

(A + uv⊤)−1 = A−1 − 1
1 + v⊤A−1u

A−1uv⊤A−1

holds true.

(b) Given that v⊤A−1u = −1 holds, argue whether or not M = A + uv⊤ can be invertible.
If you find that M can be invertible, give an example for A, u, and v. Otherwise, prove
that M cannot be invertible.

(c) Let A be the tridiagonal matrix with diagonals (a1, a2, . . . , an) and (b1, b2, . . . , bn−1)

A =



a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

bn−2 an−1 bn−1
bn−1 an


,

and suppose that A possesses a unique LU factorisation A = LU . From Algorithm 4.9
one can verify that L and U are given by

L =



1
ℓ1 1

ℓ2 1
. . . . . .

ℓn−2 1
ℓn−1 1


, U =



u1 b1
u2 b2

u3 b3
. . . . . .

un−1 bn−1
un


with the individual entries u1 = a1, ℓk = bk

uk
, uk = ak − ℓk−1bk−1, k > 1. Hence,

computing the LU factorisation of A only requires O(n) arithmetic operations. Fur-
thermore, forwards and backwards substitution in Algorithms 4.4 and 4.3, respectively,
also require O(n) operations each. In total, we can therefore solve the system Ax = b
in O(n) arithmetic operations.

Using the facts above, give an algorithm which solves the system Cx = b in O(n)
operations for a vector b ∈ Rn and the matrix C ∈ Rn×n given by

C =



α1 β1 βn

β1 α2 β2
β2 α3 β3

. . . . . . . . .
βn−2 αn−1 βn−1

βn βn−1 αn


.
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(d) Let’s assume that b = [1, 1, . . . , 1]⊤ is given and that the values of C satisfy

α1 = αn = −2, α2 = α3 = · · · = αn−1 = −4, β1 = β2 = · · · = βn = 2.

Implement a Python function solve(n) for the algorithm you developped in task (c)
that returns the solution x of the linear system and the relative error ∥Cx−b∥2

∥b∥2
. For

n = 10, print the output x of your algorithm and the relative error ∥Cx−b∥2
∥b∥2

. For
n ∈ np.logspace(2, 7, num=6, dtype=int), plot the elapsed computational times
of your algorithm and the relative errors depending on n in a doubly logarithmic plot
with plt.loglog (or matplotlib.pyplot.loglog if you are not using the Jupyter
notebook provided on Moodle).

Hints:

(i) This code will be excessively slow if you use NumPy to construct the matrix.
Instead, use SciPy’s sparse submodule. We recommend using sps.diags_array
and sps.coo_array (or instead use, respectively, scipy.sparse.diags_array
and scipy.sparse.coo_array if you are not using the Jupyter notebook we
provided on Moodle).

(ii) SciPy’s sparse submodule has a few ways of solving sparse linear systems.
Use SciPy sparse’s linalg.splu to compute the LU decomposition and solve
the linear system, or scipy.sparse.linalg.splu if you are not using the
Jupyter notebook provided on Moodle. This function returns an object lu =
sps.linalg.splu(A) with a solve function such that x = lu.solve(b) returns
the solution of the linear system.

(iii) When assembling the uv⊤ matrix, make sure you use a sparse matrix and not a
dense NumPy array.

Solution.

(a) Let us first verify that A−1 − 1
1+v⊤A−1u

A−1uv⊤A−1 is the right inverse of A + uv⊤.
We find that

(A + uv⊤)A−1 = id + uv⊤A−1, (1)

and
(A + uv⊤) 1

1 + v⊤A−1u
A−1uv⊤A−1 = uv⊤A−1 + uv⊤A−1uv⊤A−1

1 + v⊤A−1u

= u(1 + v⊤A−1u)v⊤A−1

1 + v⊤A−1u

= uv⊤A−1.

(2)

Finally, subtraction of (2) from (1) yields the desired result.

In an anaologous manner it can be proven that A−1 − 1
1+v⊤A−1u

A−1uv⊤A−1 is also
the left inverse of A + uv⊤.

(b) We are going to prove that if v⊤A−1u = −1, then A + uv⊤ is not invertible.

Suppose that v⊤A−1u = −1. This means, in particular, u ̸= 0. Moreover, define
x = A−1u, and therefore v⊤x = −1. Hence we can see that (A + uv⊤)x = Ax − u =
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u − u = 0. This shows that x is an element of the kernel of A + uv⊤. By assumption,
v⊤x = −1 wherefore x ̸= 0, resulting in the fact that the kernel of A+uv⊤ is nontrivial,
and the matrix itself thus not invertible.

(c) Observe that we can write C as A + uv⊤ with u = v = (1, 0, . . . , 0, βn)⊤ and

A =


α1 − 1 β1

β1 α2 β2
. . . . . . . . .

βn−1 αn−1 βn−1
βn−1 αn − β2

n

 .

This means we can use the Sherman-Morrison formula to compute x = C−1b. We
propose Algorithm 1 to solve the system. Alternatively, you can explicitly compute
the L and U factors of B and perform forward and backward substitution.

Algorithm 1: Sherman-Morrison Linear System Solution
1 Compute the LU factorisation of A — this requires O(n) operations;
2 Solve y = A−1b and z = A−1u using the LU decomposition — forward and backward

substitution require O(n) each;
3 Set c = 1 + v⊤z — this requires O(n) operations;
4 Calculate r = v⊤y and z̃ = z · r — we can directly compute z̃ = (y1 + βnyn)z which

requires O(n) operations;
5 Finally, x = y − z̃

c is the solution — this requires O(n) operations;

(d) Available in the Jupyter notebook homework07-sol.ipynb on Moodle.
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