
Exercise set 6 – MATH-250 Advanced Numerical Analysis I

Problem 5.

We want to use a quadrature rule to compute the integral
∞∫

0

f(x) exp (−x) dx. (1)

The presence of an infinite integration interval makes it impossible to directly apply a
standard quadrature rule. In applications, this can be addressed by truncating the interval
of (1) to [0, T ] for some large T > 0, however, there are more elegant and usually more
accurate methods such as the Gauss-Laguerre quadrature rule.

The basis of the Gauss-Laguerre quadrature are the Laguerre polynomials Ln and Ln+1
defined below. We use the roots ri, i = 1, 2, . . . , n, of Ln as quadrature nodes and define
the weights as

wi = ri

(n + 1)2Ln+1(ri)2 ,

allowing us to write the overall quadrature rule as

Qn[f ] =
n∑

i=1
wif(xi). (2)

(a) The Laguerre polynomials L0, L1, . . . are given by the three term recurrence

L0(x) = 1, L1(x) = 1 − x, (n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x). (3)

Implement a Python function laguerre(degree) which takes the desired degree of
the Laguerre polynomial and returns a NumPy Polynomial object equal to Ldegree
using (3) (you can import this class from np.polynomial.polynomial.Polynomial
or use the alias poly in the Jupyter notebook we provided on Moodle). Use recursion
for this implementation.

Hint: When implementing multiplications like q(x) = (1 − x) ∗ p(x) in Python you
need to use a separate Polynomial object for the 1 − x factor.

(b) Internally, SciPy’s roots_laguerre function uses an eigenvalue computation to find
the roots of Ln(x). In analogy to Theorem 2.12 and Exercise 2 of Series 5 we can use
the recurrence (3) to find a tridiagonal matrix A such that

A =



a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

bn−2 an−1 bn−1
bn−1 an


with the sequences (a1, a2, . . . , an) = (1, 3, . . . , 2(n − 1) + 1) and (b1, b2, . . . , bn−1) =
(−1, −2, . . . , −n + 1).
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Show that any root λ of Ln is an eigenvalue of A. Implement a Python function
roots(degree) that computes the roots of Ln.

Hint: You can use SciPy’s linalg.eigvals_banded function. In the Jupyter notebook
on Moodle you can directly run eigvals_banded. Make sure your function returns
the proper eigenvalue for degree 1.

(c) Use the roots r1, r2, . . . , rn you found in (b) and verify their quality by comparing the
maximum absolute value of Ln(ri) to 0. Repeat this verification for the first M > 0
Laguerre polynomials and plot the results in an appropriate plot. Make sure you that
M is not too large.

(d) Implement a Python function gauss_laguerre(f, num_points) that computes the
Gauss-Laguerre quadrature rule Qn given in (2). Compute the integral for the
function f(x) = sin (x). Compute the error with respect to the exact integral∫ ∞

0 sin (x) exp (−x) dx = 0.5 for your implementation of the quadrature points and
weights, and that of SciPy using roots_laguerre. Use n ∈ np.arange(1, 25). Plot
the errors in a plot of your choice. Measure the computational time both quadratures
require with the time function and plot the elapsed times in a semi-logarithmic plot;
use the function plt.semilogy/ matplotlib.pyplot.semilogy.

The following part is for your understanding and will not be graded: Why is your
implementation so much slower than that of SciPy? If you are really interested, you
can have a look at the Cython library (cython.org).

Solution.

(a – c, e) You can find our implementation and explanations in the Jupyter notebook we
provided on Moodle.

(d) We start from the recursion

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x).

By defining the vector L(x) = [L0(x), L1(x), . . . , Ln−1(x)]⊥ we can see that the
following matrix equation holds for all values of x:

1 −1
−1 3 −2

. . .
−n + 2 2(n − 2) + 1 −n + 1

−n + 1 2(n − 1) + 1

L(x) − xL(x) = n


0
0
0
...

Ln(x)


Now, let λ be a root of Ln(x) and define A as the matrix in the previous equation.
This means that we have

0 = AL(λ) − λL(λ) = (A − λ id)L(λ).

Generally, L(λ) ̸= 0 and thus det (A − λ id) = 0 has to be true. Therefore, we have
shown that λ is a root of det (A − λid), concluding the proof.

You can find our implementation in the Jupyter notebook we provided on Moodle.
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