SOLUTION 5 — MATH-250 Numerical Analysis

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed
in the beginning of the lecture on Thursday, March 27. The exercises marked with (x) are
graded homework. The exercises marked with (Python) are implementation based and can
be solved in the Jupyter notebooks which are available on Moodle/Noto. The deadline for
submitting your solutions to the homework is Friday, March 28 at 10h15.

Problem 4.

We consider the integral

[ @@, ) =

Additionally, we define the following inner product
1
(U, )y = /u(m)v(m)w(m) dz. (1)
-1

(a) Consider

1
I, = /:U"w(a:) dz.
1

For n odd, meaning that n =1 mod 2, explain why I,, = 0. Compute the value of Ij.
For even n, meaning n =0 mod 2, derive the recurrence relation

n—1

I, = I o.
n

(b) Apply the Gram-Schmidt algorithm to orthogonalize the monomials 1, z, 22, 2% with
respect to the inner product (-, -),, as defined in (1). Use the result from (a) to perform
these calculations. Normalize the resulting orthogonal polynomials pg, p1, p2, and p3
such that p;(1) =1 for i =0,1,2,3.

It turns out that the resulting polynomials, orthogonal with respect to the scalar
product defined in (1), are the so called Chebyshev polynomials, and it can be shown
that the roots of p,41 are the Chebyshev nodes

2141 .
r;=cos|mT—— |, +1=0,1...,n.
2(n+1)

Write a Python script that verifies this equality. For the handling of polynomials,
NumPy provides the class numpy.polynomial.polynomial.Polynomial. Use this
class and its associated function roots to compute the roots.

Hint: The Jupyter notebook provided on Moodle imports the Polynomial class under
the alias poly. Hence, you can directly call poly to create your polynomials.



(¢c) Now let pnt1 € P41 be the polynomial that is orthogonal to P,, with respect to (1) and
satisfies p,,+1(1) = 1. The polynomial p,+1 has n+1 distinct roots xg, ..., z, € (—1,1),
defined above. Consider the quadrature rule defined by

1

Qulf] = > ouf (1), ai:/&(:ﬁ)w(m) dz,
i=0

1
where £y, (1, ...,¢, are the usual Lagrange polynomials associated with xg, x1,...,Zy.

Show that the quadrature rule @), has order 2n + 2 for the weighted integral, that is,

1
Qulp) = [ p@yu(w)de p € Pasa.
1

Hint: Adapt the arguments made in the beginning of Section 2.5 in the lecture notes.

(d) Write a Python function cheb_quad(f, num) implementing the quadrature rule Q,[f]
from (c) using the weights

T
n+1’

ay = i:1,2,...,n.

1/5
Apply Q,[f] to fi(z) = % and fo(z) = e’égs(g;ﬁ) forn =1,2,...,1000. Display
the approximation errors of fi on a loglog plot, and the approximation errors of fo on
a semilogy plot, with the xz-axis showing the number of nodes n. For the computation
of the reference integral you can use SciPy’s integration module with the function
scipy.integrate.quad(f, -1, 1, epsabs=1le-16). Make sure you use the correct

function f!

Solution.

All Python code is available in the Jupyter notebook homework05-sol.ipynb on Moo-
dle.

(a) Let n be odd, n =1 mod 2. Observe that f,(z) = \/% satisfies fp,(z) = —fn(—x).

This implies that we can split the interval [—1,1] into [—1,0] and [0, 1], and that

0 1
/fn($) dzr = —/fn(x) dzx
-1 0

holds true. Hence, the integral I,, equals 0 for odd values of n.

1—22

For n = 0 we note that the primitive of fy(z) =
therefore the integral has the value Iy = .

is Fy(z) = arcsin (z) + C, and



Now, let n > 1. Applying integration by parts twice results in the following equation
1 1
x
I, = /xn_l dz=(n—-1) [ 2" 21 —22dz

-1 -1

=n—-1)1—2— (n—1)I,.
Rearranging these terms gives us I, = "T_l n—2-
(b) We start with po(z) = 1.
o (x,po)w = I1 = 0, and hence p;(z) = z.

o <$2,p0>w - IQ - %a <p07p0>w - IO =, and <x27p1>w = I3 == 07 hence we get
pe(x) = — %
3% ) and <$37p2>w -

B

o (@3, p0)w = I3 = 0,(23,p1)e = Is = ; P, P1w = Iz =
3

I5 — 513 = 0; hence we get p3(z) = 2° — .
Normalization of the above polynomials gives us

po(z) =1, pi(x) ==z, po(z)=20>—1, and p3(z) = 42® - 3a.

Please find the Python code for this task in the Jupyter notebook on Moodle.

(c) Applying the Lagrange interpolation ansatz we see that

Qn[f] :Z

n
1=0"

=

f(z)li(z)w(x) de.

[asy

Here, we have used n interpolation points, whence @,,[f] must be exact for polynomials
of degree up to n, meaning that the order of @), is at least n + 1.

Now, let f(x) € Pa,41 and define g(x) = ] (z — x;). Polynomial division yields
=0
f(@) = g(x)q(z) + r(z) (2)
with two polynomials ¢, € P,,. Integrating (2), we observe

1 1 1

/f(ac)w(w) dx — /g(a:)q(ac)w(x) dx = /r(m)w(x) dx = zn:air(:ci) = Qnlr].

-1 el =0

Now we can choose the x; to be the zeros of a polynomial h € P, such that h is
orthogonal to P, w.r.t. (-, -),,. This means that



and further, and finally, we get from the original polynomial division (2) that

n

oair(w) =Y aif (zi).
=0 i=0

This concludingly proves that the quadrature rule @),, has the order 2n + 2.
(d) Please find the Python code for this task in the Jupyter notebook on Moodle.



