
Solution 5 – MATH-250 Numerical Analysis

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed
in the beginning of the lecture on Thursday, March 27. The exercises marked with (⋆) are
graded homework. The exercises marked with (Python) are implementation based and can
be solved in the Jupyter notebooks which are available on Moodle/Noto. The deadline for
submitting your solutions to the homework is Friday, March 28 at 10h15.

Problem 4.

We consider the integral ∫ 1

−1
f(x)w(x) dx, w(x) = 1√

1 − x2
.

Additionally, we define the following inner product

⟨u, v⟩w =
1∫

−1

u(x)v(x)w(x) dx. (1)

(a) Consider

In =
1∫

−1

xnw(x) dx.

For n odd, meaning that n ≡ 1 mod 2, explain why In = 0. Compute the value of I0.
For even n, meaning n ≡ 0 mod 2, derive the recurrence relation

In = n − 1
n

In−2.

(b) Apply the Gram-Schmidt algorithm to orthogonalize the monomials 1, x, x2, x3 with
respect to the inner product ⟨·, ·⟩w as defined in (1). Use the result from (a) to perform
these calculations. Normalize the resulting orthogonal polynomials p0, p1, p2, and p3
such that pi(1) = 1 for i = 0, 1, 2, 3.

It turns out that the resulting polynomials, orthogonal with respect to the scalar
product defined in (1), are the so called Chebyshev polynomials, and it can be shown
that the roots of pn+1 are the Chebyshev nodes

xi = cos
(

π
2i + 1

2(n + 1)

)
, i = 0, 1 . . . , n.

Write a Python script that verifies this equality. For the handling of polynomials,
NumPy provides the class numpy.polynomial.polynomial.Polynomial. Use this
class and its associated function roots to compute the roots.

Hint: The Jupyter notebook provided on Moodle imports the Polynomial class under
the alias poly. Hence, you can directly call poly to create your polynomials.

1

(c) Now let pn+1 ∈ Pn+1 be the polynomial that is orthogonal to Pn with respect to (1) and
satisfies pn+1(1) = 1. The polynomial pn+1 has n+1 distinct roots x0, . . . , xn ∈ (−1, 1),
defined above. Consider the quadrature rule defined by

Qn[f] =
n∑

i=0
αif(xi), αi =

1∫
−1

ℓi(x)w(x) dx,

where ℓ0, ℓ1, . . . , ℓn are the usual Lagrange polynomials associated with x0, x1, . . . , xn.

Show that the quadrature rule Qn has order 2n + 2 for the weighted integral, that is,

Qn[p] =
1∫

−1

p(x)w(x) dx ∀p ∈ P2n+1.

Hint: Adapt the arguments made in the beginning of Section 2.5 in the lecture notes.

(d) Write a Python function cheb_quad(f, num) implementing the quadrature rule Qn[f]
from (c) using the weights

αi = π

n + 1 , i = 1, 2, . . . , n.

Apply Qn[f] to f1(x) = |x|1/5

|x+2|+|x−2| and f2(x) = exp (−x2)
cos x|x| for n = 1, 2, . . . , 1000. Display

the approximation errors of f1 on a loglog plot, and the approximation errors of f2 on
a semilogy plot, with the x-axis showing the number of nodes n. For the computation
of the reference integral you can use SciPy’s integration module with the function
scipy.integrate.quad(f, -1, 1, epsabs=1e-16). Make sure you use the correct
function f !

Solution.

All Python code is available in the Jupyter notebook homework05-sol.ipynb on Moo-
dle.

(a) Let n be odd, n ≡ 1 mod 2. Observe that fn(x) = xn
√

1−x2 satisfies fn(x) = −fn(−x).
This implies that we can split the interval [−1, 1] into [−1, 0] and [0, 1], and that

0∫
−1

fn(x) dx = −
1∫

0

fn(x) dx

holds true. Hence, the integral In equals 0 for odd values of n.

For n = 0 we note that the primitive of f0(x) = 1
1−x2 is F0(x) = arcsin (x) + C, and

therefore the integral has the value I0 = π.

2

Now, let n > 1. Applying integration by parts twice results in the following equation

In =
1∫

−1

xn−1 x

1 − x2 dx = (n − 1)
1∫

−1

xn−2
√

1 − x2 dx

= (n − 1)
1∫

−1

xn−2 1 − x2
√

1 − x2
dx

= (n − 1)
1∫

−1

xn−2√
(1 − x2)

dx − (n − 1)
1∫

−1

xn

√
1 − x2

dx

= (n − 1)In−2 − (n − 1)In.

Rearranging these terms gives us In = n−1
n In−2.

(b) We start with p0(x) = 1.

• ⟨x, p0⟩w = I1 = 0, and hence p1(x) = x.

• ⟨x2, p0⟩w = I2 = π
2 , ⟨p0, p0⟩w = I0 = π, and ⟨x2, p1⟩w = I3 = 0; hence we get

p2(x) = x2 − 1
2 .

• ⟨x3, p0⟩w = I3 = 0, ⟨x3, p1⟩w = I4 = 3π
8 , ⟨p1, p1⟩w = I2 = π

2 , and ⟨x3, p2⟩w =
I5 − π

2 I3 = 0; hence we get p3(x) = x3 − 3
4x.

Normalization of the above polynomials gives us

p̂0(x) = 1, p̂1(x) = x, p̂2(x) = 2x2 − 1, and p̂3(x) = 4x3 − 3x.

Please find the Python code for this task in the Jupyter notebook on Moodle.

(c) Applying the Lagrange interpolation ansatz we see that

Qn[f] =
n∑

i=0

1∫
−1

f(xi)ℓi(x)w(x) dx.

Here, we have used n interpolation points, whence Qn[f] must be exact for polynomials
of degree up to n, meaning that the order of Qn is at least n + 1.

Now, let f(x) ∈ P2n+1 and define g(x) =
n∏

i=0
(x − xi). Polynomial division yields

f(x) = g(x)q(x) + r(x) (2)

with two polynomials q, r ∈ Pn. Integrating (2), we observe
1∫

−1

f(x)w(x) dx −
1∫

−1

g(x)q(x)w(x) dx =
1∫

−1

r(x)w(x) dx =
n∑

i=0
αir(xi) = Qn[r].

Now we can choose the xi to be the zeros of a polynomial h ∈ Pn+1 such that h is
orthogonal to Pn w.r.t. ⟨·, ·⟩w. This means that

1∫
−1

g(x)q(x)w(x) dx = 0,

3

and further, and finally, we get from the original polynomial division (2) that
n∑

i=0
αir(xi) =

n∑
i=0

αif(xi).

This concludingly proves that the quadrature rule Qn has the order 2n + 2.

(d) Please find the Python code for this task in the Jupyter notebook on Moodle.

4

