

# SOLUTION 5 – MATH-250 Numerical Analysis

---

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed in the beginning of the lecture on Thursday, March 27. The exercises marked with  $(\star)$  are graded homework. The exercises marked with **(Python)** are implementation based and can be solved in the Jupyter notebooks which are available on Moodle/Noto. **The deadline for submitting your solutions to the homework is Friday, March 28 at 10h15.**

## Problem 4.

We consider the integral

$$\int_{-1}^1 f(x)w(x) dx, \quad w(x) = \frac{1}{\sqrt{1-x^2}}.$$

Additionally, we define the following inner product

$$\langle u, v \rangle_w = \int_{-1}^1 u(x)v(x)w(x) dx. \quad (1)$$

(a) Consider

$$I_n = \int_{-1}^1 x^n w(x) dx.$$

For  $n$  odd, meaning that  $n \equiv 1 \pmod{2}$ , explain why  $I_n = 0$ . Compute the value of  $I_0$ . For even  $n$ , meaning  $n \equiv 0 \pmod{2}$ , derive the recurrence relation

$$I_n = \frac{n-1}{n} I_{n-2}.$$

(b) Apply the Gram-Schmidt algorithm to orthogonalize the monomials  $1, x, x^2, x^3$  with respect to the inner product  $\langle \cdot, \cdot \rangle_w$  as defined in (1). Use the result from (a) to perform these calculations. Normalize the resulting orthogonal polynomials  $p_0, p_1, p_2$ , and  $p_3$  such that  $p_i(1) = 1$  for  $i = 0, 1, 2, 3$ .

It turns out that the resulting polynomials, orthogonal with respect to the scalar product defined in (1), are the so called *Chebyshev polynomials*, and it can be shown that the roots of  $p_{n+1}$  are the *Chebyshev nodes*

$$x_i = \cos\left(\pi \frac{2i+1}{2(n+1)}\right), \quad i = 0, 1, \dots, n.$$

Write a Python script that verifies this equality. For the handling of polynomials, NumPy provides the class `numpy.polynomial.polynomial.Polynomial`. Use this class and its associated function `roots` to compute the roots.

*Hint:* The Jupyter notebook provided on Moodle imports the `Polynomial` class under the alias `poly`. Hence, you can directly call `poly` to create your polynomials.

(c) Now let  $p_{n+1} \in \mathbb{P}_{n+1}$  be the polynomial that is orthogonal to  $\mathbb{P}_n$  with respect to (1) and satisfies  $p_{n+1}(1) = 1$ . The polynomial  $p_{n+1}$  has  $n+1$  distinct roots  $x_0, \dots, x_n \in (-1, 1)$ , defined above. Consider the quadrature rule defined by

$$Q_n[f] = \sum_{i=0}^n \alpha_i f(x_i), \quad \alpha_i = \int_{-1}^1 \ell_i(x) w(x) dx,$$

where  $\ell_0, \ell_1, \dots, \ell_n$  are the usual Lagrange polynomials associated with  $x_0, x_1, \dots, x_n$ .

Show that the quadrature rule  $Q_n$  has order  $2n + 2$  for the weighted integral, that is,

$$Q_n[p] = \int_{-1}^1 p(x) w(x) dx \quad \forall p \in \mathbb{P}_{2n+1}.$$

*Hint:* Adapt the arguments made in the beginning of Section 2.5 in the lecture notes.

(d) Write a Python function `cheb_quad(f, num)` implementing the quadrature rule  $Q_n[f]$  from (c) using the weights

$$\alpha_i = \frac{\pi}{n+1}, \quad i = 1, 2, \dots, n.$$

Apply  $Q_n[f]$  to  $f_1(x) = \frac{|x|^{1/5}}{|x+2|+|x-2|}$  and  $f_2(x) = \frac{\exp(-x^2)}{\cos x |x|}$  for  $n = 1, 2, \dots, 1000$ . Display the approximation errors of  $f_1$  on a loglog plot, and the approximation errors of  $f_2$  on a semilogy plot, with the  $x$ -axis showing the number of nodes  $n$ . For the computation of the reference integral you can use SciPy's integration module with the function `scipy.integrate.quad(f, -1, 1, epsabs=1e-16)`. Make sure you use the correct function  $f$ !

### Solution.

All Python code is available in the Jupyter notebook `homework05-sol.ipynb` on Moodle.

(a) Let  $n$  be odd,  $n \equiv 1 \pmod{2}$ . Observe that  $f_n(x) = \frac{x^n}{\sqrt{1-x^2}}$  satisfies  $f_n(x) = -f_n(-x)$ . This implies that we can split the interval  $[-1, 1]$  into  $[-1, 0]$  and  $[0, 1]$ , and that

$$\int_{-1}^0 f_n(x) dx = - \int_0^1 f_n(x) dx$$

holds true. Hence, the integral  $I_n$  equals 0 for odd values of  $n$ .

For  $n = 0$  we note that the primitive of  $f_0(x) = \frac{1}{1-x^2}$  is  $F_0(x) = \arcsin(x) + C$ , and therefore the integral has the value  $I_0 = \pi$ .

Now, let  $n > 1$ . Applying integration by parts twice results in the following equation

$$\begin{aligned}
I_n &= \int_{-1}^1 x^{n-1} \frac{x}{1-x^2} dx = (n-1) \int_{-1}^1 x^{n-2} \sqrt{1-x^2} dx \\
&= (n-1) \int_{-1}^1 x^{n-2} \frac{1-x^2}{\sqrt{1-x^2}} dx \\
&= (n-1) \int_{-1}^1 \frac{x^{n-2}}{\sqrt{(1-x^2)}} dx - (n-1) \int_{-1}^1 \frac{x^n}{\sqrt{1-x^2}} dx \\
&= (n-1)I_{n-2} - (n-1)I_n.
\end{aligned}$$

Rearranging these terms gives us  $I_n = \frac{n-1}{n} I_{n-2}$ .

(b) We start with  $p_0(x) = 1$ .

- $\langle x, p_0 \rangle_w = I_1 = 0$ , and hence  $p_1(x) = x$ .
- $\langle x^2, p_0 \rangle_w = I_2 = \frac{\pi}{2}$ ,  $\langle p_0, p_0 \rangle_w = I_0 = \pi$ , and  $\langle x^2, p_1 \rangle_w = I_3 = 0$ ; hence we get  $p_2(x) = x^2 - \frac{1}{2}$ .
- $\langle x^3, p_0 \rangle_w = I_3 = 0$ ,  $\langle x^3, p_1 \rangle_w = I_4 = \frac{3\pi}{8}$ ,  $\langle p_1, p_1 \rangle_w = I_2 = \frac{\pi}{2}$ , and  $\langle x^3, p_2 \rangle_w = I_5 - \frac{\pi}{2}I_3 = 0$ ; hence we get  $p_3(x) = x^3 - \frac{3}{4}x$ .

Normalization of the above polynomials gives us

$$\hat{p}_0(x) = 1, \quad \hat{p}_1(x) = x, \quad \hat{p}_2(x) = 2x^2 - 1, \quad \text{and} \quad \hat{p}_3(x) = 4x^3 - 3x.$$

Please find the Python code for this task in the Jupyter notebook on Moodle.

(c) Applying the Lagrange interpolation ansatz we see that

$$Q_n[f] = \sum_{i=0}^n \int_{-1}^1 f(x_i) \ell_i(x) w(x) dx.$$

Here, we have used  $n$  interpolation points, whence  $Q_n[f]$  must be exact for polynomials of degree up to  $n$ , meaning that the order of  $Q_n$  is at least  $n+1$ .

Now, let  $f(x) \in \mathbb{P}_{2n+1}$  and define  $g(x) = \prod_{i=0}^n (x - x_i)$ . Polynomial division yields

$$f(x) = g(x)q(x) + r(x) \tag{2}$$

with two polynomials  $q, r \in \mathbb{P}_n$ . Integrating (2), we observe

$$\int_{-1}^1 f(x) w(x) dx - \int_{-1}^1 g(x) q(x) w(x) dx = \int_{-1}^1 r(x) w(x) dx = \sum_{i=0}^n \alpha_i r(x_i) = Q_n[r].$$

Now we can choose the  $x_i$  to be the zeros of a polynomial  $h \in \mathbb{P}_{n+1}$  such that  $h$  is orthogonal to  $\mathbb{P}_n$  w.r.t.  $\langle \cdot, \cdot \rangle_w$ . This means that

$$\int_{-1}^1 g(x) q(x) w(x) dx = 0,$$

and further, and finally, we get from the original polynomial division (2) that

$$\sum_{i=0}^n \alpha_i r(x_i) = \sum_{i=0}^n \alpha_i f(x_i).$$

This concludingly proves that the quadrature rule  $Q_n$  has the order  $2n + 2$ .

(d) Please find the Python code for this task in the Jupyter notebook on Moodle.