
Solution 10 – MATH-250 Advanced Numerical Analysis I

(⋆) Problem 4.

Let A, P ∈ Rn×n be symmetric and positive definite matrices. Consider the linear sys-
tem

Ax = b (1)

(a) We denote the Cholesky factorisation P = LLT , where L is a lower triangular matrix.

Derive a relation between the solution x of (1) and the solution x̃ to

Ãx̃ = b̃, (2)

where Ã = L−1AL−T and b̃ = L−1b.

(b) Apply the gradient method to the linear system (2) and show that it is equivalent to
an iterative method given by the update

x(k+1) = x(k) + αkP −1(b − Ax(k)). (3)

Starting from the expression for αk given in the lecture notes, derive an expression
for αk that only involves A and P −1. In particular, it should not involve Ã or the
Cholesky factor L.

(c) Define r(k) = b − Ax(k) the residual after the k-th iteration.

Show that
⟨r(k), r(k+1)⟩P −1 = 0, k ≥ 1

where ⟨y, z⟩P −1 = y⊤P −1z.

(d) The method (3) is called the preconditioned gradient method.

Write a Python function gradient(A, b, P) that implements the preconditioned
gradient method for a matrix A, a vector b, and a preconditioning matrix P . Stop the
iteration once the relative error ∥r(k)∥2

∥b∥2
is smaller than 10−6, and return the solution

x(k), the residual norms ∥r(1)∥2, ∥r(2)∥2, . . . , ∥r(k)∥2 and the number of iterations k
executed to reach the solution. Ensure that if no preconditioner is given in the function
arguments then the unpreconditioned gradient method is run.

(e) Run the gradient method for the system given by

A =

 2 −1 0
−1 2 −1
0 −1 2

 , b =

 0
−1
2


without any preconditioning. Clearly print the number of iterations.

(f) On Moodle we provide a matrix A ∈ Rn×n in the file matrix10.npz. Load this
matrix using SciPy sparse’s load_npz (or scipy.sparse.load_npz if you are not
using our provided Jupyter notebook), and define the right-hand side b = [1, 1, . . . , 1]⊤
of appropriate size.

Run the preconditioned gradient method with the preconditioners

1



• P1 = In×n,

• P2 = diag(a11, a22, . . . , ann), and

• P3 = LU .

Plot the residual norms ∥r(i)∥2 for increasing numbers of iterations for the precondi-
tioners P1, P2, and P3. Use a single plot for all three preconditioners.

Hint: Use sps.linalg.spilu to compute the incomplete LU factorisation of the sparse
matrix A (use scipy.sparse.linalg.spilu if you do not want to use the notebooks
on Moodle). This method returns a SuperLU object, meaning you can directly call its
member function solve on a matrix M to compute P −1M .

Solution.

(a) We know that L−1AL−⊤x̃ = L−1b and by assuming that (1) is solved exactly Ax = b.
Multiplying by L from the left we see that AL−⊤x̃ = b and hence x = L−⊤x̃.

(b) We begin by applying the gradient method to (2).

x̃(k+1) = x̃(k) − αk(b̃ − Ãx̃(k)) ⇐⇒ (4)
L⊤x(k+1) = L⊤x(k) + αkL−1(b − Ax(k)) ⇐⇒ (5)
Px(k+1) = Px(k) + αk(b − Ax(k)) ⇐⇒ (6)

x(k+1) = x(k) + αkP −1(b − Ax),

where in (4) we used the results from (a), in (5) we multiplied the entire system by L
from the left and defined P = LL⊤, and in (6) we applied P −1 from the left. Next, we
use

αk = ⟨r̃(k), r̃(k)⟩
⟨Ãr̃(k), r̃(k)⟩

(7)

from the lecture notes for the application of the gradient method to Ãx̃ = b̃. We
simplify (7) to further see that

αk = ⟨L−1r(k), L−1r(k), ⟩
⟨L−1r(k), L−1AP −1r(k)⟩

= ⟨r(k), P −1r(k)⟩
⟨r(k), P −1AP −1r(k)⟩

,

where we used that in analogy to (a) it holds that r̃(k) = L−1r(k) for r(k) = b − Ax(k).

(c) In the lecture we have seen that ⟨r̃(k+1), r̃(k)⟩ = 0. Applying (b) we then see

0 = ⟨L−1r(k+1), L−1r(k)⟩ = ⟨r(k+1), r(k)⟩P −1 .

(d – f) The solutions can be found in the Jupyter notebooks provided on Moodle.

2


