
Solution 9 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, May 8. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, May 9 at 10h15.

Quiz
(a) For any invertible matrix A, right-hand side b, and starting vector x0, there is a choice

of α such that the Richardson method converges.

□ True ■ False

(b) Consider a family of linear systems

Anx = bn, An ∈ Rn×n,

such that

• An is symmetric positive definite;

• κ2(An) = ∥An∥2∥A−1
n ∥2 = O(n2) for n → ∞;

• ∥x∥2 = 1.

Consider fixed accuracy ε > 0. Let kn denote the minimal number of iterations of the
Richardson method (with optimal α, zero starting vector, no preconditioner) needed
to attain ∥xkn − x∥2 ≤ ε. Then for n → ∞ it holds that

□ kn = O(1)

□ kn = O(log n)

□ kn = O(n)

■ kn = O(n2)

(c) Let f : Rn → R be continuously differentiable on Rn. If x is a minimum of f then
∇f(x) = 0.

■ True □ False

(d) Let f : Rn → R be continuously differentiable on Rn and x such that ∇f(x) ̸= 0. Then
for every ε > 0 there is y with ∥y − x∥ ≤ ε and f(y) < f(x).

■ True □ False
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Solution.

(a) Let A =
(

0 1
1 0

)
, and α ̸= 0. Clearly, A is invertible, and its eigenvalues are λ1 =

1, λ2 = −1. Therefore, the matrix I − αA has eigenvalues λ1(α) = 1 − αλ1 and
λ2(α) = 1 − αλ2, and the associated eigenvectors of A are also eigenvectors of I − αA.
The differing signs of λ1 and λ2 imply that for either λ1 or λ2 it must hold that
|λi(α)| ̸≤ 1. We now choose v to be the eigenvector of A associated with the λi

(denoted λ̂) such that |λi(α)| ≥ 1, and set the initial guess to be x0 = x + v. Thus,
the Richardson iteration diverges because we observe that

lim
k→∞

ek = lim
k→∞

(I − αA)kv = lim
k→∞

λ̂(α)kv ̸= 0.

(b) The convergence rate of the Richardson iteration is given by

∥xk+1 − x∥2 ≤
(

κ(A) − 1
κ(A) + 1

)k

∥x − x0∥2.

In order to reach the tolerance ε we need to find k such that ε =
(

n2−1
n2+1

)k
. We compute

ε =
(

n2 − 1
n2 + 1

)k

=
(

1 − 2
n2 + 1

)k

=⇒ k = log1−2/(n2+1) (ε) = log (ε)
log (1 − 2/(n2 + 1)) .

The only relevant part in this is the evaluation of 1/ log (1 − 2/(n2 + 1)) because the
other term is constant w.r.t. n. We notice that 2/(n2 + 1) → 0 for n → ∞, which
means that we will be evaluating the logarithm very close to 1, justifying the linear
approximation log (1 − 2/(n2 + 1)) ≈ 2/(n2 + 1) and finally k ≈ (n2 + 1)/2 = O(n2).

(c) For ε > 0 we define the differentiable curve γ : (−ε, ε) → Rn, t 7→ x + t∇f(x). Thus,
the scalar function f ◦ γ has a minimum at 0, and by results from Analysis I and II we
know that for the minimum of a scalar function it holds that 0 = (f ◦ γ)′(0). Next,

(f ◦ γ)′(0) = ⟨∇f(x), ∇f(x)⟩

follows by the chain rule and therefore ∇f(x) = 0.

(d) If there exists an ε > 0 such that for all y with ∥x − y∥ ≤ ε, it holds that f(y) ≥ f(x),
then it must hold ∇f(x) = 0, because f(x) is a local minimum of f . Thus ∇f(x) ̸= 0
implies the existence of y such that f(y) < f(x).

Exercises If you have skipped Problem 2 in Exercise Set 8, make sure to catch up on it
this week.

Problem 1.

The aim of this exercise is to prove for A ∈ Rn×n we have

Ak → 0 as k → ∞ ⇔ ρ(A) < 1,

where ρ(A) denotes the spectral radius of A. Let ∥ · ∥2 denote the spectral norm (also
called matrix 2-norm).
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(a) Show ρ(A)k ≤ ∥Ak∥2.
Hint: Use Ax = λx and submultiplicativity.

(b) Using (a), show
Ak → 0 as k → ∞ ⇒ ρ(A) < 1

(c) Consider the m × m Jordan block

Jm(λ) =


λ 1 0

λ 1
. . . . . .

λ 1
0 λ


Show that

(Jm(λ)k)ij =


0 if i > j

λk if i = j(k
l

)
λk−l if j = i + l

where we let
(k

l

)
= 0 if l > k.

Hint: First show what happens when λ = 0. Then use Jm(λ)k = (λIm + Jm(0))k.

(d) Show that if |λ| < 1 then
Jm(λ)k → 0 as k → ∞

(e) By considering the Jordan canonical form A = PJP −1 show

Ak → 0 as k → ∞ ⇐ ρ(A) < 1

Solution.

(a) Let (λ, x) be an eigenpair of A and let ∥x∥2 = 1. One can immediately see that

Akx = λkx

Hence, (λk, x) is an eigenpair of Ak. Now let λ be such that |λ| = ρ(A). Since ∥x∥2 = 1
we have

0 ≤ ρ(A)k = |λ|k

= ∥λkx∥2 = ∥Akx∥2

≤ ∥Ak∥2∥x∥2 = ∥Ak∥2

as required.

(b) Since 0 ≤ ρ(A)k ≤ ∥Ak∥2 → 0 as k → ∞ we immediately have ρ(A)k → 0 as k → ∞.

(c) We should note that

Jm(0)k =
{

1 if j = i + k

0 otherwise
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which can be proven by induction. k = 0 is immediate since Jm(0)0 = Im. For general
k + 1 ∈ N we have

(Jm(0)kJm(0))ij =
m∑

l=1
δi+k,lδl+1,j =

{
1 if j = i + k + 1
0 otherwise

because the only non-zero term in the sum occurs when i + k = l and l + 1 = j. Now
we note that

Jm(λ)k = (λk + Jm(0))k

=
k∑

l=0

(
k

l

)
λk−lJm(0)l

which implies the result.

(d) We should note that
(k

k

)
λk−l → 0 as k → ∞. Hence, each of the terms in Jm(0)k tends

to 0 as k → ∞. This implies Jm(0)k → 0 as k → ∞.

(e) Every matrix can be written as A = PJP −1 where

J =


Jn1(λ1)

Jn2(λ2)
. . .

Jns(λs)


is a block diagonal matrix with diagonal blocks being Jordan blocks that corresponds
to the eigenvalues of A. Note that by (d) we have

Jk =


Jn1(λ1)k

Jn2(λ2)k

. . .
Jns(λs)k


Hence, Jk → 0 as k → ∞ if ρ(A) < 1. This implies

Ak = PJkP −1 → 0 as k → ∞

if ρ(A) < 1, as required.

Problem 2.

Consider the linear system Ax = b where

A =

 2 −1 0
−1 2 −1
0 −1 2

 and b =

1
0
1


(a) Determine if Jacobi’s method is guaranteed to converge.
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(b) Consider the following iterative method

Lx(k+1) = Lx(k) + δ(b − Ax(k)) k ≥ 0 (1)

where δ > 0 is a parameter and

L :=

 2 0 0
−1 2 0
0 −1 2


Rewrite the method (1) in the form x(k+1) = Bδx(k) + zδ, k ≥ 0, for a suitable matrix
Bδ which is to be determined.

(c) Establish for which values of the parameter δ > 0 the method (1) converges.

(d) Let δ = 4
3 . Considering the results obtained at the point (c), establish whether the

method (1) is convergent. If so, which method can be expected to converge faster
between method (1) and Jacobi?

Solution.

(a) We will investigate the spectral radius of the iteration matrix BJ :

BJ = I − D−1A =

1 0 0
0 1 0
0 0 1

−

1/2 0 0
0 1/2 0
0 0 1/2


 2 −1 0

−1 2 −1
0 −1 2


=

 0 1/2 0
1/2 0 1/2
0 1/2 0


which has eigenvalues λ1 = 0, λ2,3 = ±1/

√
2 Hence, ρ(BJ) = 1/

√
2 < 1. We therefore

conclude that the Jacobi method will converge.

(b) We have

Lx(k+1) = Lx(k) + δb − Ax(k)

⇒ Lx(k+1) = (L − δA)x(k) + δb

and observe that L is invertible. Hence, we write

x(k+1) = L−1(L − δA)x(k) + δL−1b = (I − δL−1A)x(k) + δL−1b.

We note that

L−1 =

1/2 0 0
1/4 1/2 0
1/8 1/4 1/2

 ,

Therefore,

Bδ =

1 − δ δ/2 0
0 1 − 3δ/4 δ/2
0 δ/8 1 − 3δ/4

 .
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(c) The eigenvalues of Bδ are the zeros of the polynomial

(1 − δ − λ)
(

λ2 − 2λ

(
1 − 3

4δ

)
+
(

1 − 3
4δ

)2
− δ2

16

)
= 0,

which gives
λ1 = 1 − δ, λ2 = 1 − δ, λ3 = 1 − δ/2.

Hence,
ρ(Bδ) = max {|1 − δ| , |1 − δ/2|} , δ > 0.

from which we conclude that ρ(Bδ) < 1 whenever 0 < δ < 2.

(d) With δ = 4/3, the method convergences and ρ(Bδ) = 1/3; therefore it is expected to
converge faster than the Jacobi method.

Problem 3. Consider the linear system Ax = b where

A =
(

1 2
2 5

)
and b =

(
0

−1

)
(a) We want to solve the system by the Gauss-Seidel method. Determine the iteration

matrix BGS .

(b) What can we say about the convergence of the Gauss-Seidel method?

(c) We now consider the preconditioned Richardson method

x(k+1) = x(k) + αP −1r(k) k ≥ 0

with P = D where D is the diagonal part of A. Verify that if we take α = 1 we find
the Jacobi method.

(d) Let the starting vector be x(0) =
(

1
1

)
and calculate the first iteration of the precondi-

tioned Richardson method, with P = D being the diagonal part of A, by choosing the
optimal parameter αopt.

Solution.

(a) The iteration matrix is BGS = −(D + L)−1U .

BGS = −
(

1 0
2 5

)−1(0 2
0 0

)
=
(

0 −2
0 4

5

)

(b) The Gauss-Seidel method will converge since the eigenvalues of BGS are 0 and 4
5 .

Hence, the spectral radius of BGS is less than 1.

(c) If we let α = 1 we get

x(k+1) = x(k) + D−1(b − Ax(k))
⇒ Dx(k+1) = Dx(k) − Ax(k) + b
⇒ Dx(k+1) = −(L + U)x(k) + b

⇒ x(k+1) = −D−1(L + U)x(k) + b

which is the Jacobi method as required.
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(d) By Theorem 5.4, since D−1A has positive real eigenvalues, we take αopt = 2
λmin+λmax

,
λmin and λmax being the smallest and the greatest eigenvalue of D−1A. In our case

D−1A =
(

1 0
0 1

5

)(
1 2
2 5

)
=
(

1 2
2
5 1

)

and the eigenvalues are λ± = 1 ± 2√
5 > 0. Thus αopt = 1. The first iterate is

x(1) = x(0) + αoptD
−1r(0). Therefore

r(0) = b − Ax(0) =
(

0
−1

)
−
(

1 2
2 5

)(
1
1

)
=
(

−3
−8

)

and
D−1r(0) =

(
−3
−8

5

)
which gives

x(1) = x(0) + αoptD
−1r(0) =

(
−2
−3

5

)
.

Problem 4.

The aim of this exercise is to prove that the iterates of the Gauss-Seidel method applied to
a strictly diagonally dominant matrix A converge to the solution x of Ax = b.

(a) Recall that the error of the Gauss-Seidel iteration can be written as

e(k+1)
i = −

i−1∑
j=1

aij

aii
e(k+1)

j −
n∑

j=i+1

aij

aii
e(k)

j

where e(k) := x(k) − x.Using this, show that there exists an index p ∈ {1, · · · , n} such
that 1 −

p−1∑
j=1

∣∣∣∣∣apj

app

∣∣∣∣∣
 ∥e(k+1)∥∞ ≤

 n∑
j=p+1

∣∣∣∣∣apj

app

∣∣∣∣∣
 ∥e(k)∥∞

(b) Using that A is strictly diagonally dominant, show that there exists some β ∈ (0, 1)
such that

∥e(k+1)∥∞ ≤ β∥e(k)∥∞

and conclude that the Gauss-Seidel method converges.

Solution.

(a) Let p ∈ {1, · · · , n} be such that |e(k+1)
p | = ∥e(k+1)∥∞ and l ∈ {1, · · · , n} such that

|e(k)
l | = ∥e(k)∥∞. Then,

∥e(k+1)∥∞ = |e(k+1)
p | ≤

p−1∑
j=1

∣∣∣∣∣apj

app

∣∣∣∣∣ |e(k+1)
j | +

n∑
j=p+1

∣∣∣∣∣apj

app

∣∣∣∣∣ |e(k)
j |

≤ ∥e(k+1)∥∞

p−1∑
j=1

∣∣∣∣∣apj

app

∣∣∣∣∣+ ∥e(k)∥∞

n∑
j=p+1

∣∣∣∣∣apj

app

∣∣∣∣∣
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Hence, 1 −
p−1∑
j=1

∣∣∣∣∣apj

app

∣∣∣∣∣
 ∥e(k+1)∥∞ ≤

 n∑
j=p+1

∣∣∣∣∣apj

app

∣∣∣∣∣
 ∥e(k)∥∞

as required.

(b) Let S1 :=
p−1∑
j=1

∣∣∣ apj

app

∣∣∣ , S2 :=
n∑

j=p+1

∣∣∣ apj

app

∣∣∣ and S3 := app. By diagonal dominance we have

S1 + S2 < S3 ⇒ β := S2/S3
1 − S1/S3

∈ (0, 1)

and from (a) we have

∥e(k+1)∥∞ ≤ S2/S3
1 − S1/S3

∥e(k)∥∞ = β∥e(k)∥∞

as required.
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