
Exercise set 9 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, May 8. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, May 9 at 10h15.

Quiz
(a) For any invertible matrix A, right-hand side b, and starting vector x0, there is a choice

of α such that the Richardson method converges.

□ True □ False

(b) Consider a family of linear systems

Anx = bn, An ∈ Rn×n,

such that

• An is symmetric positive definite;

• κ2(An) = ∥An∥2∥A−1
n ∥2 = O(n2) for n → ∞;

• ∥x∥2 = 1.

Consider fixed accuracy ε > 0. Let kn denote the minimal number of iterations of the
Richardson method (with optimal α, zero starting vector, no preconditioner) needed
to attain ∥xkn − x∥2 ≤ ε. Then for n → ∞ it holds that

□ kn = O(1)

□ kn = O(log n)

□ kn = O(n)

□ kn = O(n2)

(c) Let f : Rn → R be continuously differentiable on Rn. If x is a minimum of f then
∇f(x) = 0.

□ True □ False

(d) Let f : Rn → R be continuously differentiable on Rn and x such that ∇f(x) ̸= 0. Then
for every ε > 0 there is y with ∥y − x∥ ≤ ε and f(y) < f(x).

□ True □ False
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Exercises
If you have skipped Problem 2 in Exercise Set 8, make sure to catch up on it this week.

Problem 1.

The aim of this exercise is to prove for A ∈ Rn×n we have

Ak → 0 as k → ∞ ⇔ ρ(A) < 1,

where ρ(A) denotes the spectral radius of A. Let ∥ · ∥2 denote the spectral norm (also
called matrix 2-norm).

(a) Show ρ(A)k ≤ ∥Ak∥2.
Hint: Use Ax = λx and submultiplicativity.

(b) Using (a), show
Ak → 0 as k → ∞ ⇒ ρ(A) < 1

(c) Consider the m × m Jordan block

Jm(λ) =


λ 1 0

λ 1
. . . . . .

λ 1
0 λ


Show that

(Jm(λ)k)ij =


0 if i > j

λk if i = j(k
l

)
λk−l if j = i + l

where we let
(k

l

)
= 0 if l > k.

Hint: First show what happens when λ = 0. Then use Jm(λ)k = (λIm + Jm(0))k.

(d) Show that if |λ| < 1 then
Jm(λ)k → 0 as k → ∞

(e) By considering the Jordan canonical form A = PJP −1 show

Ak → 0 as k → ∞ ⇐ ρ(A) < 1

Problem 2.

Consider the linear system Ax = b where

A =

 2 −1 0
−1 2 −1
0 −1 2

 and b =

1
0
1


(a) Determine if Jacobi’s method is guaranteed to converge.
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(b) Consider the following iterative method

Lx(k+1) = Lx(k) + δ(b − Ax(k)) k ≥ 0 (1)

where δ > 0 is a parameter and

L :=

 2 0 0
−1 2 0
0 −1 2


Rewrite the method (1) in the form x(k+1) = Bδx(k) + zδ, k ≥ 0, for a suitable matrix
Bδ which is to be determined.

(c) Establish for which values of the parameter δ > 0 the method (1) converges.

(d) Let δ = 4
3 . Considering the results obtained at the point (c), establish whether the

method (1) is convergent. If so, which method can be expected to converge faster
between method (1) and Jacobi?

Problem 3. Consider the linear system Ax = b where

A =
(

1 2
2 5

)
and b =

(
0

−1

)

(a) We want to solve the system by the Gauss-Seidel method. Determine the iteration
matrix BGS .

(b) What can we say about the convergence of the Gauss-Seidel method?

(c) We now consider the preconditioned Richardson method

x(k+1) = x(k) + αP −1r(k) k ≥ 0

with P = D where D is the diagonal part of A. Verify that if we take α = 1 we find
the Jacobi method.

(d) Let the starting vector be x(0) =
(

1
1

)
and calculate the first iteration of the precondi-

tioned Richardson method, with P = D being the diagonal part of A, by choosing the
optimal parameter αopt.

Problem 4.

The aim of this exercise is to prove that the iterates of the Gauss-Seidel method applied to
a strictly diagonally dominant matrix A converge to the solution x of Ax = b.

(a) Recall that the error of the Gauss-Seidel iteration can be written as

e(k+1)
i = −

i−1∑
j=1

aij

aii
e(k+1)

j −
n∑

j=i+1

aij

aii
e(k)

j

where e(k) := x(k) − x.Using this, show that there exists an index p ∈ {1, · · · , n} such
that 1 −

p−1∑
j=1

∣∣∣∣∣apj

app

∣∣∣∣∣
 ∥e(k+1)∥∞ ≤

 n∑
j=p+1

∣∣∣∣∣apj

app

∣∣∣∣∣
 ∥e(k)∥∞
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(b) Using that A is strictly diagonally dominant, show that there exists some β ∈ (0, 1)
such that

∥e(k+1)∥∞ ≤ β∥e(k)∥∞

and conclude that the Gauss-Seidel method converges.

(⋆) Problem 5.

(a) Consider two symmetric matrices A and P . Show that if P is also positive definite,
then P −1A is diagonalisable and all its eigenvalues are real.

(b) Solving this part is optional and will not be graded.

Suppose that all eigenvalues λ1 ≥ · · · ≥ λn > 0 of A are real and that A satisfies
n∑

j=1
j ̸=i

|aij | ≤ γ|aii|, i = 1, 2 . . . , n, (2)

for some γ ∈ (0, 1). Using a+ = max
i=1,2,...,n

|aii| and a− = min
i=1,2,...,n

|aii| show that

λ1
λn

≤ 1 + γ

1 − γ
· a+

a−
.

Hint: You may use Gershgorin’s circle theorem.

Gershgorin’s Circle Theorem. We define

Ri =
n∑

j=1
j ̸=i

|aij |, and Bi = B(aii, Ri) ⊂ C,

where Bi is the open complex ball with center aii and radius Ri. Then, any eigenvalue
λ lies within at least one Bi.

(c) Let A be a symmetric and positive definite matrix satisfying (2) with γ = 0.9. Use
(b) to show that the preconditioned Richardson with the diagonal preconditioner
P = diag(a11, a22, . . . , ann) converges at a rate ≤ 0.9.

(d) Write a Python function jacobi(A, b, x0, tol, kmax) that implements the Jacobi
method. Choose the right-hand side b as a random vector such that bi ∼ N0,1
for i = 1, 2, . . . , n follows the standard normal distribution. To this end, define
b = np.random.randn(n), or use numpy.random.randn if you do not want to use the
Jupyter notebooks we provided on Moodle. Run the Jacobi method for

A1 =

 9 −4 0
−4 9 −4
0 −4 9


and the 100000 × 100000 matrix A2 that we provide on Moodle in the file matrix.npz.
Plot the 2-norm of the residual vector ∥r(k)∥2 = ∥Ax(k) − b∥2 for the Jacobi iterate
x(k) and increasing numbers of iteration k.
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Hint: From SciPy’s sparse submodule use the function load_npz function. In the
Jupyter notebook provided on Moodle you can directly call sps.load_npz, otherwise
you will have to use scipy.sparse.load_npz. Look at the function signature of
richardson we provided in the Jupyter notebook on Moodle as well as the helper
functions it contains to handle dense and sparse matrices at the same time.

(e) Write a Python function richardson(A, b, x0, alpha, P, tol, kmax) that imple-
ments the Richardson method without preconditioning and with diagonal precondi-
tioning (use (c)), respectively. Plot the norms of the residuals ∥r(k)∥2 = ∥Ax(k) − b∥2
for the output of both functions for increasing numbers of iteration k. You may
choose the Richardson iteration’s parameter as α = 1.9

∥P −1A∥∞
, where P = id in case no

preconditioning is used.

Hint: Look at the function signature of richardson we provided in the Jupyter
notebook on Moodle as well as the helper functions it contains to handle dense and
sparse matrices at the same time.
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