
Solution 8 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, April 17. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, May 2 at 10h15.

Quiz
a) If A is not invertible then A does not have an LU factorization (without pivoting).

□ True ■ False

b) If A is invertible then Algorithm 4.13 in the lecture notes does not fail, that is, it
always finds nonzero pivot elements |aik| (in exact arithmetic) and produces an LU
factorization with pivoting for A.

■ True □ False

c) The norm defined by ∥A∥max := maxij |aij | is a matrix norm but it is not submultiplac-
tive.

■ True □ False

d) On the vector space of square symmetric matrices, trace(A) = a11 + · · ·+ann is a matrix
norm.

□ True ■ False

e) Given a diagonal matrix A = diag(a11, . . . , ann), which of the following statements is
wrong?

□ ∥A∥F = ∥d∥2 for the vector d =
[a11, a22, . . . , ann]

□ ∥A∥2 = ∥d∥∞

■ ∥A∥1 = ∥d∥1

Solution.

(a) Choose A =
(

0 1
0 1

)
, clearly, A is not invertible, but A = LU with

L =
(

1 0
0 1

)
, U =

(
0 1
0 1

)
.
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(b) We prove this by induction. For the first column, if there are only zero elements, then
A is already singular. Let us now examine the inductive step k 7→ k + 1.

If the k + 1-th step produces only zero elements in the pivot selection, then equivalently
the matrix Â = A[k + 1 :, k + 1 :] in Python index notation has to contain a leading
column equal to zero. Thus, Â has to be singular, which in turn implies that the
original A was already singular. This concludes the inductive proof.

(c) Obviously, the norm ∥ · ∥max fulfills all criteria to be a matrix norm. On the other hand,

we can choose A = B =
(

1 1
0 1

)
to see that ∥AB∥max = 2, but ∥A∥max = ∥B∥max = 1.

(d) The trace does not fulfill the positivity requirement.

(e) We have that ∥A∥1 = maxj
∑

i |aij | = maxj |ajj | by definition, but ∥d∥1 =
∑

i |di|.

Exercises
Problem 1.

(a) Show that for x ∈ Rn

(i) ∥x∥2 ≤ ∥x∥1 ≤
√

n∥x∥2
(ii) ∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞
(iii) ∥x∥∞ ≤ ∥x∥2 ≤

√
n∥x∥∞

In addition, show that the bounds are tight.

(b) For A ∈ Rn×n and p ≥ 1, the matrix p-norm of A is defined as

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

Show that

(i) 1√
n
∥A∥2 ≤ ∥A∥1 ≤

√
n∥A∥2

(ii) 1√
n
∥A∥∞ ≤ ∥A∥2 ≤

√
n∥A∥∞

(c) For A ∈ Rn×n the Frobenius norm of A is defined as

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

a2
ij

Show that ∥A∥F =
√

tr(AT A) =
√

tr(AAT ) where tr(A) =
n∑

i=1
aii.

(d) Show that for A, B ∈ Rn×n and p ≥ 1 we have

(i) ∥AB∥p ≤ ∥A∥p∥B∥p using the definition of the matrix p-norm.

(ii) ∥AB∥F ≤ ∥A∥F ∥B∥F
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(e) Show that for A ∈ Rn×n

(i) ∥A∥1 = max
1≤j≤n

n∑
i=1
|aij |

(ii) ∥A∥∞ = max
1≤i≤n

n∑
j=1
|aij |

Solution.

(a) (i)

∥x∥22 =
n∑

i=1
x2

i ≤
n∑

i=1
x2

i + 2
∑
i ̸=j

|xi||xj |

=
(

n∑
i=1
|xi|
)2

= ∥x∥21

Hence, ∥x∥2 ≤ ∥x∥1. Equality is achieved by letting x = e1, where e1 is the first
canonical vector.

Let e be the vector with all ones. Let |x| be the vector that results from
taking the elementwise absolute value of x. Then using the Cauchy-Schwarz
inequality we get

∥x∥1 = ⟨|x|, e⟩
≤ ∥|x|∥2∥e∥2 =

√
n∥x∥2

Hence, ∥x∥1 ≤
√

n∥x∥2. Equality is achieved by letting x = e.

(ii) Suppose |xj∗ | = ∥x∥∞. Hence,

∥x∥∞ = |xj∗ | ≤
n∑

i=1
|xi| ≤ n|xj∗ | = n∥x∥∞

If x = e1 we have ∥x∥∞ = ∥x∥1. If x = e we have ∥x∥1 = n∥x∥∞.

(iii) Suppose |xj∗ | = ∥x∥∞. Hence,

∥x∥∞ = |xj∗ | =
√

x2
j∗ ≤

√√√√ n∑
i=1

x2
i ≤

√
nx2

j∗ =
√

n∥x∥∞

If x = e1 we have ∥x∥∞ = ∥x∥2. If x = e we have ∥x∥1 =
√

n∥x∥∞.

(b) (i) Let x ∈ Rn

∥Ax∥2
∥x∥2

≤ ∥Ax∥1
∥x∥2

≤ ∥Ax∥2
∥x∥1/

√
n

=
√

n
∥Ax∥1
∥x∥1
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Taking supremum and yields ∥A∥2 ≤
√

n∥A∥1 ⇔ 1√
n
∥A∥2 ≤ ∥A∥1.

Similarly,

∥Ax∥1
∥x∥1

≤
√

n
∥Ax∥2
∥x∥1

≤
√

n
∥Ax∥2
∥x∥2

Taking supremum and yields ∥A∥1 ≤
√

n∥A∥2.

(ii) Let x ∈ Rn

∥Ax∥∞
∥x∥∞

≤ ∥Ax∥2
∥x∥∞

≤ ∥Ax∥2
∥x∥2/

√
n

=
√

n
∥Ax∥2
∥x∥2

Taking supremum and yields ∥A∥∞ ≤
√

n∥A∥2 ⇔ 1√
n
∥A∥∞ ≤ ∥A∥2.

Similarly,

∥Ax∥2
∥x∥2

≤
√

n
∥Ax∥∞
∥x∥2

≤
√

n
∥Ax∥∞
∥x∥∞

Taking supremum and yields ∥A∥2 ≤
√

n∥A∥∞.

(c) Note (AT A)ii =
n∑

j=1
ajiaji =

n∑
j=1

a2
ji

trace(AT A) =
n∑

i=1

n∑
j=1

a2
ji = ∥A∥2F

and ∥A∥2F = trace(AAT ) follows from ∥AT ∥F = ∥A∥F .

(d) (i) One can see that ∀x ∈ Rn we have ∥Ax∥p ≤ ∥A∥p∥x∥p. Hence, if x ∈ Rn

∥ABx∥p = ∥A(Bx)∥p ≤ ∥A∥p∥Bx∥p ≤ ∥A∥p∥B∥p∥x∥p

Hence,

∀x ∈ Rn ∥ABx∥p
∥x∥p

≤ ∥A∥p∥B∥p

Taking supremum yields the result ∥AB∥p ≤ ∥A∥p∥B∥p.
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(ii) Let cij = (AB)ij =
n∑

k=1
aikbkj . Abusing the Matlab notation, let A(i, :) denote

the i:th row of A and B(:, j) the j:th column of B. Then, cij = ⟨A(i, :), B(:, j)⟩ ≤
∥A(i, :)∥2∥B(:, j)∥2 by the Cauchy-Schwarz inequality. Hence,

∥AB∥2F =
n∑

i=1

n∑
j=1

c2
ij

≤
n∑

i=1

n∑
j=1
∥A(i, :)∥22∥B(:, j)∥22

=
n∑

i=1
∥A(i, :)∥22

n∑
j=1
∥B(:, j)∥22

= ∥A∥2F ∥B∥2F

(e) (i) Again, we will abuse the Matlab notation to denote A(:, j) to be the j:th column
of A. Let x ∈ Rn. Then,

∥Ax∥1 = ∥
n∑

j=1
xjA(:, j)∥1 ≤

n∑
j=1
|xj |∥A(:, j)∥1 ≤ ∥x∥1 max

1≤j≤n
∥A(:, j)∥1 (1)

Hence,

∥A∥1 ≤ max
1≤j≤n

∥A(:, j)∥1

Let ∥A(:, i)∥2 = max
1≤j≤n

∥A(:, j)∥1. Then, letting x = ei will attain the bound in
(1)

(ii) Let x ∈ Rn. Then,

∥Ax∥∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1
aijxj

∣∣∣∣∣∣ ≤ ∥x∥∞ max
1≤i≤n

n∑
j=1
|aij | (2)

Hence,

∥A∥∞ ≤ max
1≤i≤n

n∑
j=1
|aij |

Let k be such that
n∑

j=1
|akj | = max

1≤i≤n

n∑
j=1
|aij |. Letting x ∈ Rn be such that

xj =
{

1 if akj ≥ 0
−1 if akj < 0

then the upper bound in (2) is attained.

Problem 2. Consider the matrix A ∈ R10×10 and the vector b ∈ R10 given below

A =


1 10 0

1 10
. . . . . .

1 10
0 1

 b =


9
1
0
...
0


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(a) Solve Ax = b for x exactly.

(b) Solve the perturbed system Ax̂(1) = b + ∆b where ∆b = 10−8e3, where

e3 =



0
0
1
0
...
0


(c) Compute the relative error

∥x− x̂(1)∥∞
∥x∥∞

(d) Now consider the perturbed system (A + ∆A)x̂(2) = b where ∆A = εI10. Using results
about sensitivity of linear systems, what is the maximum value of ε so that the relative
error

∥x− x̂(2)∥∞
∥x∥∞

is guaranteed to be less than 10−3? Use Python to compute np.linalg.cond(A,
np.inf) and/or np.linalg.norm(np.linalg.inv(A), np.inf), if necessary.

(e) Let ε = 10−6 and solve the system (A + ∆A)x̂(2) = b in Python and compute the
relative error.

Solution.

(a) One can either see directly or obtain the solution via backward substition that the
solution is

x =


−1
1
0
...
0


(b) Backward substitution gives the solution

x̂(1)
i =


−1 + 10−6 i = 1
1− 10−7 i = 2
10−8 i = 3
0 i ≥ 4

(c) The relative error is given by ∥x−x̂(1)∥∞
∥x∥∞

. Hence, the relative error is

10−6

1 = 10−6
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(d) Using Theorem 4.23 we get that the relative error is is bounded as follows

∥x− x̂(2)∥∞
∥x∥∞

≤ κ∞(A)
1− ∥A−1∆A∥∞

· ∥∆A∥∞
∥A∥∞

.

To guarantee a relative error less than 10−3, we bound the right hand side by 10−3

and uses the special form of ∆A to obtain

κ∞(A)
1− ε∥A−1∥∞

· ε

∥A∥∞
≤ 10−3,

Now to obtain ε:
ε ≤ 10−3

(1 + 10−3)∥A−1∥∞
≈ 0.9 · 10−12.

(e) Available in the Jupyter notebook serie08-sol.ipynb on Moodle.

Problem 3. A matrix A is strictly diagonally dominant by rows if

|aii| >
n∑

j=1
j ̸=i

|aij |, i = 1, . . . , n.

By using the Neumann series that you have seen in Proposition 4.22, show that a strictly
diagonally dominant matrix is non-singular.

Hint: Without loss of generality, assume that the diagonal entries of A all equal 1 by a
suitable scaling of the rows of A. Now recall what you know about some matrix norms,
such as the operator norms induced by ∥ · ∥1 and ∥ · ∥∞.

Solution. We first note that since A is strictly diagonally dominant by rows we must have
aii ̸= 0 ∀i = 1, · · · , n because

|aii| >
n∑

j=1
j ̸=i

|aij | ≥ 0, i = 1, . . . , n. (3)

Hence, we may scale each row in A so that the diagonal entries are all 1. This is equivalent
to

A← DA, D =


1

a11 1
a22

. . .
1

ann


A non-zero scaling along the rows does not change whether A is non-singular or not. Now
let T be such that A = In − T . Then, we know since A is strictly diagonally dominant
that T is 0 along its diagonal and

n∑
j=1
|tij | =

n∑
j=1
j ̸=i

|tij | =
n∑

j=1
j ̸=i

|aij | < |aii| = 1
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which implies

∥T∥∞ = max
i=1,··· ,n

n∑
j=1
j ̸=i

|aij | < 1

Then, by the Neumann series

∥A−1∥∞ = ∥In − T∥∞∥∥∥∥∥
∞∑

k=0
T k

∥∥∥∥∥
∞

≤
∞∑

k=0
∥T k∥∞

≤
∞∑

k=0
∥T∥k∞ <∞

because ∥T∥∞ < 1. Hence, ∥A−1∥∞ <∞ and therefore A is non-singular, as required.
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