
Exercise set 8 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, April 17. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, May 2 at 10h15.

Quiz
a) If A is not invertible then A does not have an LU factorization (without pivoting).

□ True □ False

b) If A is invertible then Algorithm 4.13 in the lecture notes does not fail, that is, it
always finds nonzero pivot elements |aik| (in exact arithmetic) and produces an LU
factorization with pivoting for A.

□ True □ False

c) The norm defined by ∥A∥max := maxij |aij | is a matrix norm but it is not submultiplac-
tive.

□ True □ False

d) On the vector space of square symmetric matrices, trace(A) = a11 + · · ·+ann is a matrix
norm.

□ True □ False

e) Given a diagonal matrix A = diag(a11, . . . , ann), which of the following statements is
wrong?

□ ∥A∥F = ∥d∥2 for the vector d =
[a11, a22, . . . , ann]

□ ∥A∥2 = ∥d∥∞

□ ∥A∥1 = ∥d∥1

Exercises
Problem 1.

(a) Show that for x ∈ Rn

(i) ∥x∥2 ≤ ∥x∥1 ≤
√

n∥x∥2

(ii) ∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞
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(iii) ∥x∥∞ ≤ ∥x∥2 ≤
√

n∥x∥∞

In addition, show that the bounds are tight.

(b) For A ∈ Rn×n and p ≥ 1, the matrix p-norm of A is defined as

∥A∥p = sup
x ̸=0

∥Ax∥p

∥x∥p

Show that

(i) 1√
n

∥A∥2 ≤ ∥A∥1 ≤
√

n∥A∥2

(ii) 1√
n

∥A∥∞ ≤ ∥A∥2 ≤
√

n∥A∥∞

(c) For A ∈ Rn×n the Frobenius norm of A is defined as

∥A∥F =

√√√√ n∑
i=1

n∑
j=1

a2
ij

Show that ∥A∥F =
√

tr(AT A) =
√

tr(AAT ) where tr(A) =
n∑

i=1
aii.

(d) Show that for A, B ∈ Rn×n and p ≥ 1 we have

(i) ∥AB∥p ≤ ∥A∥p∥B∥p using the definition of the matrix p-norm.

(ii) ∥AB∥F ≤ ∥A∥F ∥B∥F

(e) Show that for A ∈ Rn×n

(i) ∥A∥1 = max
1≤j≤n

n∑
i=1

|aij |

(ii) ∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |

Problem 2.

Consider the matrix A ∈ R10×10 and the vector b ∈ R10 given below

A =


1 10 0

1 10
. . . . . .

1 10
0 1

 b =


9
1
0
...
0


(a) Solve Ax = b for x exactly.

(b) Solve the perturbed system Ax̂(1) = b + ∆b where ∆b = 10−8e3, where

e3 =



0
0
1
0
...
0


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(c) Compute the relative error
∥x − x̂(1)∥∞

∥x∥∞

(d) Now consider the perturbed system (A + ∆A)x̂(2) = b where ∆A = εI10. Using results
about sensitivity of linear systems, what is the maximum value of ε so that the relative
error

∥x − x̂(2)∥∞
∥x∥∞

is guaranteed to be less than 10−3? Use Python to compute np.linalg.cond(A,
np.inf) and/or np.linalg.norm(np.linalg.inv(A), np.inf), if necessary.

(e) Let ε = 10−6 and solve the system (A + ∆A)x̂(2) = b in Python and compute the
relative error.

Problem 3.

A matrix A is strictly diagonally dominant by rows if

|aii| >
n∑

j=1
j ̸=i

|aij |, i = 1, . . . , n.

By using the Neumann series that you have seen in Proposition 4.22, show that a strictly
diagonally dominant matrix is non-singular.
Hint: Without loss of generality, assume that the diagonal entries of A all equal 1 by a
suitable scaling of the rows of A. Now recall what you know about some matrix norms,
such as the operator norms induced by ∥ · ∥1 and ∥ · ∥∞.

(⋆) Problem 4. (Do note the later submission deadline due to the Easter break.)

Let k : [0, 1] × [0, 1] → R and u : [0, 1] → R be continuous functions. We define the integral
operator F : [0, 1] → R as the integral of u with the kernel k using

F (x) =
1∫

0

k(x, y)u(y) dy. (1)

For a partition of [0, 1] into N > 0 subintervals denote h = 1
N and let Qh be the composite

trapezoidal rule on the N subintervals of length h. Further define the subinterval’s boundary
points xi = i · h for i = 0, 1, . . . , N .

(a) We want to apply Qh to approximate the operator (1) at each xi

Qh[k(xi, ·)u(·)] = F̂ (xi) ≈ F (xi) =
1∫

0

k(xi, y)u(y) dy, i = 0, 1, . . . , N.

To this end we define the function value vectors

f̂ = [F̂ (x0), F̂ (x1), . . . , F̂ (xN )]⊤ and u = [u(x0), u(x1), . . . , u(xN )]⊤.
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Show that there exists an (N + 1) × (N + 1) matrix A such that Au = f̂ . Provide
explicit formulae for the entries aij of A.

(b) We now consider the opposite idea of (a). Given a vector of the integral operator’s
evaluations f = [F (x0), F (x1), . . . , F (xN )]⊤ we solve Aû = f , and use the result to
approximate F (z) for any arbitrary value of z ∈ [0, 1].

Assume that the matrix

K =


k(x0, x0) k(x0, x1) · · · k(x0, xN )
k(x1, x0) k(x1, x1) · · · k(x1, xN )

...
... . . . ...

k(xN , x0) k(xN , x1) · · · k(xN , xN )

 (2)

is invertible and show that

F̂ (z) = [k(z, x0), k(z, x1), . . . , k(z, xN )]K−1f (3)

holds true.

(c) For N = 4 suppose that the corresponding matrix K from (b) is invertible.

Show that F̂ (xi) = F (xi) for i = 0, 1, 2, 3, 4.

(d) We choose the radial basis function kernel k(x, y) = exp (−(x − y)2/4).

Implement a Python function approximate_operator(F, N, z) that computes the
vector F̂ (z) = [F̂ (z1), F̂ (z2), . . . , F̂ (zm)]⊤ given a vector z = [z1, z2, . . . , zm]⊤, m > 0,
using (3). Assure that your implementation requires O(N3 + mN2) operations.

(e) Let N ∈ {2, 5, 10}, m = 1000, z = np.linspace(0, 1, num=1000), and define

F1(x) = sin (3πx) and F2(x) = exp
(
−

∣∣x − 0.5
∣∣2/3)

.

For each N and each Fi plot the true function Fi(z) and its approximation F̂i(z).
Compute the maximum absolute error maxj=1,2,...,m |Fi(zj)− F̂i(zj)| and clearly display
this error.

(f) Explain the behaviour for the approximation of F2 with N = 10.

To mitigate this bad approximation we utilize regularisation. This means that instead
of (3) we compute

F̂ (γ)(z) = [k(z, x0), k(z, x1), . . . , k(z, xN )](K + γ id)−1f

for some small γ > 0.

Implement a Python function approximate_operator_reg(F, N, z, gamma) to com-
pute F̂ (γ) similarly to (d); you may reuse your code from (d). Determine a value for γ
such that the maximum absolute error of the approximation for F2 and N = 10 is less
than or equal to 10−1.
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(g) Bonus (This part is not needed to get full marks.): Prove that the matrix K from (2)
is always symmetric and positive semidefinite for the radial basis kernel k(x, y) =
exp (−(x − y)2/4). You can use the Schur product theorem or any other technique.

Schur Product Theorem. Let A, B ∈ Rn×n be two symmetric and positive semidefinite
matrices. Then their elementwise product (A ⊙ B)ij = aij · bij is once again symmetric
and positive semidefinite.

Remember to upload a scan homework08.pdf of your solutions and the completed Jupyter
notebook homework08.ipynb corresponding to the homework to the submission panel on
Moodle until Friday, May 2 at 10h15. To download your notebook from Noto, use File >
Download. Only your submissions to Moodle will be considered for grading.
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