EXERCISE SET 7 - MATH-250 Advanced Numerical Analysis I

There is quiz on this exercise sheet. The exercises marked with () are graded homework.
The exercises marked with (Python) are implementation based and can be solved in the
Jupyter notebooks which are available on Moodle/Noto. The deadline for submitting your
solutions to the homework is Friday, April 11 at 10h15.

Exercises
Problem 1. (Python)

The degree n best approximation in the L? norm is the polynomial p} € P,, that minimizes
the L? approximation error

o~ 1 = \/ [oatt) ~ 507 at (1)

among all degree n polynomials p,, € P,. It can explictly be expressed as

n

P =Y (G,)20k, (2)

k=0

where g are the rescaled Legendre polynomials G = g/ (2k +1)/2,k =0,1,...,n, and
(u,v)9 = [*, u(t)v(t) dt denotes the L? inner product.

(a) Define a function rescaled_legendre_polynomial (k) which returns the k-th rescaled
Legendre polynomial. You can use np.polynomial.legendre.Legendre.basis which
takes as input a natural number k and returns the k-th Legendre polynomial gy.

(b) Define a function 1_2_inner_product which takes as input two functions u and v and
approximates their L? inner product (u,v)s with a sufficiently accurate quadrature
rule of your choice.

(c) Using the two previously defined functions and the expression (2), write a function
1_2_optimal_approximation which takes as input a function f and a natural number
n and returns the L? best approximation p.

(d) For the function f(z) = 1/(1 + 252%) and the degrees n = 1,2, ...,20, compare the
L2-error (1) of the best approximation in the L? norm with the one for the Chebyshev
interpolant of the same degree. Use an appropriate quadrature rule of your choice to
approximate the integral.

Hint: Use np.polynomial.chebyshev.Chebyshev. interpolate to compute the Cheby-
shev interpolant.

Solution. Available in the Jupyter notebook serie07-sol.ipynb on Moodle.
Problem 2.

(a) For each of the following matrices, determine if an LU factorisation exists. If an LU
factorisation exists, compute it.

ok e il e

(b) Compute the LU factorisation with pivoting for the matrix
)
A=1| 2

O UUN =
D =N

—4

Compare it with the Python function sp.linalg.lu. (If you are not working in the
notebooks we provided you will need to use scipy.linalg.1lu.)

(c) Suppose that PA = LU is the LU factorisation with pivoting of A. Find a simple
formula for det (A) and | det (A)] in terms of L, U, and the permutation determining
P.

(d) In your linear algebra course you have seen the following definition of the determinant

of a matrix A € R**";
n

det(4) = Y sen(o) [] aioq (3)

0cESL i=1

where S, is the set of all permutations of length n.

Compare the computational complexity of computing the determinant with Equation (3)
and computing the determinant via the LU factorisation.

Solution.

(a) (i) The LU factorization exists and equals (; ?) = (; (1)> (1 2)

)0)

(iii) The LU factorization exists and equals (3 3) = (} 0) <3 3)
3

(ii) The LU factorization exists and equals (g i) = (

NSV

1 15 1)\o 3

(iv) No LU factorization exists. One can see that if such factorization would exist

then
0 1y (1 0 Ul U2
1 1 - ¢ 1 0 us

which implies u; = 0, us = 1. This is a contradiction because it would mean

01
1:<1 1) =£-0+1-0=0
2,1

which is clearly a contradiction. The reason why the LU factorization does not
exist is because the first leading principal supmatrix is not invertible.

(b) Following Algorithm 4.13 we get

AO =4 P =14

5 1 2
A = -2 o 1
B VRN
5 5 5
5 1 2 1 00
AN = =4 4 38| p =10 0 1
P01 oo
5 5
A@ — 4@
Hence,
1 0 0 5 1 2 1 0 0
L:—§10,U:0§%8,P2001
0 1 00 3 010

5
and if we use P, L, U = sp.linalg.lu(A) we can see that it returns the same

madtrices.

(¢) We have det(PA) = det(P) det(A) = det(LU) = det(L) det(U) = det(A) = <UD,

Since P is a permutation matrix, det(P) equals the sign of the associated permutation,
call it o. Since L and U are triangular their determinants are equal to the product of
their diagonal elements. Since, sgn(o) = +1 we have

n

IT Cisusi n
_ =l _)
det(A) = —m sgn(a)gu,,

and
n

| det(A)] = T luil

i=1

(d) Computing the det(A) via the LU factorization requires O(n?®) operations to get the
factorization and O(n) operations to carry out the multiplications. Hence, the total

work done is O(n?).

Computing the determinant from its definition requires O(n - n!) operations, since we
need to perform n multiplications n! times and sum the resulting values.

Problem 3.
Let the linear system Ax = b be given by defining

(5)

Solve the system of linear equations Az = b via the LU factorisation

(a) in exact arithmetic,

(b) without pivoting in floating point arithmetic F(10,3, —10,10) (i.e. with 3 significant
digits), and

(c) with partial pivoting in floating point arithmetic F(10, 3, —10, 10).
and compare the results.
Solution.

(a) Exact arithmetic:

1-107% 11
6= 1 12

1-104 1 1
0 —9999 | —9998

_ 0098 _ 1
xrTo = — = _——
27 9999 9999
1 1 10000 1
71 = 170-10 ~ (1= 55997 = 09 * 9999

(b) Solution in floating point arithmetic without pivoting:

1-107% 111
o=t 1 12

Performing the operations in floating point arithmetic gives us

ase =1—1.00-10*-1=—-9.999.10% ~ —1.00 - 10*
by =2—1.00-10*-1=—-9.998-10% ~ —1.00 - 10*
1-107% 1
0 —1-10%

1
—1-10?
= x99 =1

r1=1-10"1-1)=0,

This gives us the system in the next step

whereby the result for x1 deviates significantly from the exact result.

(¢) Solution in floating point arithmetic, with pivoting. We swap lines 1 and 2 because

‘agl‘ > ’an’Z
1 11]2
1-1074 1-107% 111

Performing the operations in floating point arithmetic gives us

ap=1-1.00-10"*-1=9.999-10"" ~ 1.00 - 10°
by=1-1.00-10"4-2=9.998 - 10~ ~ 1.00 - 10°.

This gives us the system in the next step

1 12
0 11
=9 =1
r1=2-1=1,
which corresponds to the exact result rounded to 3 significant digits. Different algo-

rithms can therefore lead to different results numerically, even if the results would have
to be the same in theory.

