

EXERCISE SET 7 – MATH-250 Advanced Numerical Analysis I

There is quiz on this exercise sheet. The exercises marked with (\star) are graded homework. The exercises marked with **(Python)** are implementation based and can be solved in the Jupyter notebooks which are available on Moodle/Noto. **The deadline for submitting your solutions to the homework is Friday, April 11 at 10h15.**

Exercises

Problem 1. (Python)

The degree n best approximation in the L^2 norm is the polynomial $p_n^* \in \mathbb{P}_n$ that minimizes the L^2 approximation error

$$\|p_n - f\|_2 = \sqrt{\int_{-1}^1 (p_n(t) - f(t))^2 dt} \quad (1)$$

among all degree n polynomials $p_n \in \mathbb{P}_n$. It can explicitly be expressed as

$$p_n^* = \sum_{k=0}^n (\tilde{q}_k, f)_2 \tilde{q}_k, \quad (2)$$

where \tilde{q}_k are the rescaled Legendre polynomials $\tilde{q}_k = q_k \sqrt{(2k+1)/2}$, $k = 0, 1, \dots, n$, and $(u, v)_2 = \int_{-1}^1 u(t)v(t) dt$ denotes the L^2 inner product.

- (a) Define a function `rescaled_legendre_polynomial(k)` which returns the k -th rescaled Legendre polynomial. You can use `np.polynomial.legendre.Legendre.basis` which takes as input a natural number k and returns the k -th Legendre polynomial q_k .
- (b) Define a function `l_2_inner_product` which takes as input two functions u and v and approximates their L^2 inner product $(u, v)_2$ with a sufficiently accurate quadrature rule of your choice.
- (c) Using the two previously defined functions and the expression (2), write a function `l_2_optimal_approximation` which takes as input a function f and a natural number n and returns the L^2 best approximation p_n^* .
- (d) For the function $f(x) = 1/(1 + 25x^2)$ and the degrees $n = 1, 2, \dots, 20$, compare the L^2 -error (1) of the best approximation in the L^2 norm with the one for the Chebyshev interpolant of the same degree. Use an appropriate quadrature rule of your choice to approximate the integral.

Hint: Use `np.polynomial.chebyshev.Chebyshev.interpolate` to compute the Chebyshev interpolant.

Problem 2.

- (a) For each of the following matrices, determine if an LU factorisation exists. If an LU factorisation exists, compute it.

$$(i) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad (ii) \begin{pmatrix} 4 & 2 \\ 3 & 4 \end{pmatrix} \quad (iii) \begin{pmatrix} 3 & 3 \\ 1 & 1.5 \end{pmatrix} \quad (iv) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

(b) Compute the LU factorisation with pivoting for the matrix

$$A = \begin{pmatrix} 5 & 1 & 2 \\ 2 & \frac{2}{5} & 1 \\ -4 & 0 & 6 \end{pmatrix}$$

Compare it with the Python function `sp.linalg.lu`. (If you are not working in the notebooks we provided you will need to use `scipy.linalg.lu`.)

(c) Suppose that $PA = LU$ is the LU factorisation with pivoting of A . Find a simple formula for $\det(A)$ and $|\det(A)|$ in terms of L , U , and the permutation determining P .

(d) In your linear algebra course you have seen the following definition of the determinant of a matrix $A \in \mathbb{R}^{n \times n}$:

$$\det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \quad (3)$$

where S_n is the set of all permutations of length n .

Compare the computational complexity of computing the determinant with Equation (3) and computing the determinant via the LU factorisation.

Problem 3.

Let the linear system $Ax = b$ be given by defining

$$A = \begin{pmatrix} 10^{-4} & 1 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Solve the system of linear equations $Ax = b$ via the LU factorisation

(a) in exact arithmetic,
 (b) without pivoting in floating point arithmetic $\mathbb{F}(10, 3, -10, 10)$ (i.e. with 3 significant digits), and
 (c) with partial pivoting in floating point arithmetic $\mathbb{F}(10, 3, -10, 10)$.

and compare the results.

(*) Problem 4.

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix, and $u, v \in \mathbb{R}^n$ be two vectors.

(a) Show that the *Sherman-Morrison formula*

$$(A + uv^\top)^{-1} = A^{-1} - \frac{1}{1 + v^\top A^{-1} u} A^{-1} u v^\top A^{-1}$$

holds true.

(b) Given that $v^\top A^{-1}u = -1$ holds, argue whether or not $M = A + uv^\top$ can be invertible. If you find that M can be invertible, give an example for A, u , and v . Otherwise, prove that M cannot be invertible.

(c) Let A be the tridiagonal matrix with diagonals (a_1, a_2, \dots, a_n) and $(b_1, b_2, \dots, b_{n-1})$

$$A = \begin{pmatrix} a_1 & b_1 & & & & \\ b_1 & a_2 & b_2 & & & \\ & b_2 & a_3 & b_3 & & \\ & & \ddots & \ddots & \ddots & \\ & & & b_{n-2} & a_{n-1} & b_{n-1} \\ & & & & b_{n-1} & a_n \end{pmatrix},$$

and suppose that A possesses a unique LU factorisation $A = LU$. From Algorithm 4.9 one can verify that L and U are given by

$$L = \begin{pmatrix} 1 & & & & & \\ \ell_1 & 1 & & & & \\ & \ell_2 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \ell_{n-2} & 1 & \\ & & & & \ell_{n-1} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} u_1 & b_1 & & & & \\ & u_2 & b_2 & & & \\ & & u_3 & b_3 & & \\ & & & \ddots & \ddots & \\ & & & & u_{n-1} & b_{n-1} \\ & & & & & u_n \end{pmatrix}$$

with the individual entries $u_1 = a_1$, $\ell_k = \frac{b_k}{u_k}$, $u_k = a_k - \ell_{k-1}b_{k-1}$, $k > 1$. Hence, computing the LU factorisation of A only requires $\mathcal{O}(n)$ arithmetic operations. Furthermore, forwards and backwards substitution in Algorithms 4.4 and 4.3, respectively, also require $\mathcal{O}(n)$ operations each. In total, we can therefore solve the system $Ax = b$ in $\mathcal{O}(n)$ arithmetic operations.

Using the facts above, give an algorithm which solves the system $Cx = b$ in $\mathcal{O}(n)$ operations for a vector $b \in \mathbb{R}^n$ and the matrix $C \in \mathbb{R}^{n \times n}$ given by

$$C = \begin{pmatrix} \alpha_1 & \beta_1 & & & & \beta_n \\ \beta_1 & \alpha_2 & \beta_2 & & & \\ & \beta_2 & \alpha_3 & \beta_3 & & \\ & & \ddots & \ddots & \ddots & \\ & & & \beta_{n-2} & \alpha_{n-1} & \beta_{n-1} \\ \beta_n & & & & \beta_{n-1} & \alpha_n \end{pmatrix}.$$

(d) Let's assume that $b = [1, 1, \dots, 1]^\top$ is given and that the values of C satisfy

$$\alpha_1 = \alpha_n = -2, \quad \alpha_2 = \alpha_3 = \dots = \alpha_{n-1} = -4, \quad \beta_1 = \beta_2 = \dots = \beta_n = 2.$$

Implement a Python function `solve(n)` for the algorithm you developed in task (c) that returns the solution x of the linear system and the relative error $\frac{\|Cx-b\|_2}{\|b\|_2}$. For $n = 10$, print the output x of your algorithm and the relative error $\frac{\|Cx-b\|_2}{\|b\|_2}$. For $n \in \text{np.logspace}(2, 7, \text{num}=6, \text{dtype=int})$, plot the elapsed computational times of your algorithm and the relative errors depending on n in a doubly logarithmic plot

with `plt.loglog` (or `matplotlib.pyplot.loglog` if you are not using the Jupyter notebook provided on Moodle).

Hints:

- (i) This code will be excessively slow if you use NumPy to construct the matrix. Instead, use SciPy's `sparse` submodule. We recommend using `sps.diags_array` and `sps.coo_array` (or instead use, respectively, `scipy.sparse.diags_array` and `scipy.sparse.coo_array` if you are not using the Jupyter notebook we provided on Moodle).
- (ii) SciPy's `sparse` submodule has a few ways of solving sparse linear systems. Use SciPy `sparse`'s `linalg.splu` to compute the LU decomposition and solve the linear system, or `scipy.sparse.linalg.splu` if you are not using the Jupyter notebook provided on Moodle. This function returns an object `lu = sps.linalg.splu(A)` with a `solve` function such that `x = lu.solve(b)` returns the solution of the linear system.
- (iii) When assembling the uv^\top matrix, make sure you use a sparse matrix and not a dense NumPy array.

Remember to upload a scan `homework07.pdf` of your solutions and the completed Jupyter notebook `homework07.ipynb` corresponding to the homework to the submission panel on Moodle until Friday, April 11 at 10h15. To download your notebook from Noto, use File > Download. Only your submissions to Moodle will be considered for grading.