
Exercise set 7 – MATH-250 Advanced Numerical Analysis I

There is quiz on this exercise sheet. The exercises marked with (⋆) are graded homework.
The exercises marked with (Python) are implementation based and can be solved in the
Jupyter notebooks which are available on Moodle/Noto. The deadline for submitting your
solutions to the homework is Friday, April 11 at 10h15.

Exercises
Problem 1. (Python)

The degree n best approximation in the L2 norm is the polynomial p∗
n ∈ Pn that minimizes

the L2 approximation error

∥pn − f∥2 =
√∫ 1

−1
(pn(t) − f(t))2 dt (1)

among all degree n polynomials pn ∈ Pn. It can explictly be expressed as

p∗
n =

n∑
k=0

(q̃k, f)2q̃k, (2)

where q̃k are the rescaled Legendre polynomials q̃k = qk

√
(2k + 1)/2, k = 0, 1, . . . , n, and

(u, v)2 =
∫ 1

−1 u(t)v(t) dt denotes the L2 inner product.

(a) Define a function rescaled_legendre_polynomial(k) which returns the k-th rescaled
Legendre polynomial. You can use np.polynomial.legendre.Legendre.basis which
takes as input a natural number k and returns the k-th Legendre polynomial qk.

(b) Define a function l_2_inner_product which takes as input two functions u and v and
approximates their L2 inner product (u, v)2 with a sufficiently accurate quadrature
rule of your choice.

(c) Using the two previously defined functions and the expression (2), write a function
l_2_optimal_approximation which takes as input a function f and a natural number
n and returns the L2 best approximation p∗

n.

(d) For the function f(x) = 1/(1 + 25x2) and the degrees n = 1, 2, . . . , 20, compare the
L2-error (1) of the best approximation in the L2 norm with the one for the Chebyshev
interpolant of the same degree. Use an appropriate quadrature rule of your choice to
approximate the integral.
Hint: Use np.polynomial.chebyshev.Chebyshev.interpolate to compute the Cheby-
shev interpolant.

Problem 2.

(a) For each of the following matrices, determine if an LU factorisation exists. If an LU
factorisation exists, compute it.
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(i)
(

1 2
2 1

)
(ii)

(
4 2
3 4

)
(iii)

(
3 3
1 1.5

)
(iv)

(
0 1
1 1

)

(b) Compute the LU factorisation with pivoting for the matrix

A =

 5 1 2
2 2

5 1
−4 0 6


Compare it with the Python function sp.linalg.lu. (If you are not working in the
notebooks we provided you will need to use scipy.linalg.lu.)

(c) Suppose that PA = LU is the LU factorisation with pivoting of A. Find a simple
formula for det (A) and | det (A)| in terms of L, U , and the permutation determining
P .

(d) In your linear algebra course you have seen the following definition of the determinant
of a matrix A ∈ Rn×n:

det(A) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
ai,σ(i) (3)

where Sn is the set of all permutations of length n.

Compare the computational complexity of computing the determinant with Equation (3)
and computing the determinant via the LU factorisation.

Problem 3.

Let the linear system Ax = b be given by defining

A =
(

10−4 1
1 1

)
, b =

(
1
2

)
.

Solve the system of linear equations Ax = b via the LU factorisation

(a) in exact arithmetic,

(b) without pivoting in floating point arithmetic F(10, 3, −10, 10) (i.e. with 3 significant
digits), and

(c) with partial pivoting in floating point arithmetic F(10, 3, −10, 10).

and compare the results.

(⋆) Problem 4.

Let A ∈ Rn×n be an invertible matrix, and u, v ∈ Rn be two vectors.

(a) Show that the Sherman-Morrison formula

(A + uv⊤)−1 = A−1 − 1
1 + v⊤A−1u

A−1uv⊤A−1

holds true.
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(b) Given that v⊤A−1u = −1 holds, argue whether or not M = A + uv⊤ can be invertible.
If you find that M can be invertible, give an example for A, u, and v. Otherwise, prove
that M cannot be invertible.

(c) Let A be the tridiagonal matrix with diagonals (a1, a2, . . . , an) and (b1, b2, . . . , bn−1)

A =



a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

bn−2 an−1 bn−1
bn−1 an


,

and suppose that A possesses a unique LU factorisation A = LU . From Algorithm 4.9
one can verify that L and U are given by

L =



1
ℓ1 1

ℓ2 1
. . . . . .

ℓn−2 1
ℓn−1 1


, U =



u1 b1
u2 b2

u3 b3
. . . . . .

un−1 bn−1
un


with the individual entries u1 = a1, ℓk = bk

uk
, uk = ak − ℓk−1bk−1, k > 1. Hence,

computing the LU factorisation of A only requires O(n) arithmetic operations. Fur-
thermore, forwards and backwards substitution in Algorithms 4.4 and 4.3, respectively,
also require O(n) operations each. In total, we can therefore solve the system Ax = b
in O(n) arithmetic operations.

Using the facts above, give an algorithm which solves the system Cx = b in O(n)
operations for a vector b ∈ Rn and the matrix C ∈ Rn×n given by

C =



α1 β1 βn

β1 α2 β2
β2 α3 β3

. . . . . . . . .
βn−2 αn−1 βn−1

βn βn−1 αn


.

(d) Let’s assume that b = [1, 1, . . . , 1]⊤ is given and that the values of C satisfy

α1 = αn = −2, α2 = α3 = · · · = αn−1 = −4, β1 = β2 = · · · = βn = 2.

Implement a Python function solve(n) for the algorithm you developped in task (c)
that returns the solution x of the linear system and the relative error ∥Cx−b∥2

∥b∥2
. For

n = 10, print the output x of your algorithm and the relative error ∥Cx−b∥2
∥b∥2

. For
n ∈ np.logspace(2, 7, num=6, dtype=int), plot the elapsed computational times
of your algorithm and the relative errors depending on n in a doubly logarithmic plot
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with plt.loglog (or matplotlib.pyplot.loglog if you are not using the Jupyter
notebook provided on Moodle).

Hints:

(i) This code will be excessively slow if you use NumPy to construct the matrix.
Instead, use SciPy’s sparse submodule. We recommend using sps.diags_array
and sps.coo_array (or instead use, respectively, scipy.sparse.diags_array
and scipy.sparse.coo_array if you are not using the Jupyter notebook we
provided on Moodle).

(ii) SciPy’s sparse submodule has a few ways of solving sparse linear systems.
Use SciPy sparse’s linalg.splu to compute the LU decomposition and solve
the linear system, or scipy.sparse.linalg.splu if you are not using the
Jupyter notebook provided on Moodle. This function returns an object lu =
sps.linalg.splu(A) with a solve function such that x = lu.solve(b) returns
the solution of the linear system.

(iii) When assembling the uv⊤ matrix, make sure you use a sparse matrix and not a
dense NumPy array.

Remember to upload a scan homework07.pdf of your solutions and the completed Jupyter
notebook homework07.ipynb corresponding to the homework to the submission panel on
Moodle until Friday, April 11 at 10h15. To download your notebook from Noto, use File
> Download. Only your submissions to Moodle will be considered for grading.
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