
Exercise set 6 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, April 3. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, April 4 at 10h15.

Quiz
Let Tn, n = 0, 1, 2, . . . denote the Chebyshev polynomials.

(a) For m ≥ n it holds Tn(x)Tm(x) = Tm+n(x) + Tm−n(x).

□ True ■ False

(b) The (n + m)-th derivative of Tn(x)Tm(x) at x = 0 for m, n ≥ 1 is

□ 0

□ 2n+m(n + m)!

■ 2n+m−2(n + m)!

□ (−1)n+m(n + m)!

(c) The Chebyshev interpolant of a nonnegative function is nonnegative.

□ True ■ False

Solution.

(a) We know that Tn(x) = cos (n arccos (x)) = cos (ny) if we define y = arccos (x). We
now apply the trigonometric addition theorem for the cosine and see

cos (my) cos (ny) = 1
2(cos ((m + n)y) + cos ((m − n)y)), (1)

meaning that the claim is false.

(b) We begin with (1) and write it as Chebyshev polynomials

Tm(x)Tn(x) = 1
2(Tm+n(x) + Tm−n(x)).

The right-hand side thus consists of two polynomials, Tm+n of degree m + n, and
Tm−n of degree strictly less than m + n. Therefore, the (m + n)-th derivative of Tm−n

vanishes and we only need to compute the (m + n)-th derivative of Tm+n. We denote
am+n the leading coefficient of Tm+n — if we can compute am+n, then the m + n-th
derivative of Tm+n will be am+n · (m + n)! because no other monomials will be left.

We now show that ak = 2ak−1 for k > 1. On the one hand, we can express Tk as

Tk(x) = akxk + pk−1(x), (2)

1

where pk−1 is a polynomial of degree k − 1, and on the other hand we know that Tk is

Tk(x) = 2x · Tk−1(x) − Tk−2(x). (3)

In (3) it is evident that Tk−2 does not influence the coefficient ak from (2) because its
degree is k − 2. We thus see that ak = 2ak−1, where the recurrence terminates with
a1 = 1, and hence ak = 2k−1. Lastly, we need to account for the factor 1/2 from (1) to
obtain 2m+n−2(m + n)! and conclude the proof.

(c) We consider the function f(x) = exp (−3x) on the interval (−1, 1) and use 5 interpola-
tion points.

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

xx = np.linspace(-1, 1)
cheb = np.polynomial.chebyshev.chebpts1(5)
f = lambda x: np.exp(-3 * x)
fhat = sp.interpolate.lagrange(cheb, f(cheb))

plt.plot(xx, f(xx), xx, fhat(xx))
plt.show()

Exercises
Consider n + 1 points x0, x1, . . . , xn. Suppose the interpolant of some data y0, y1, . . . , yn

at these points is pn(x) =
n∑

i=0
aix

i. One method to determine the coefficients a0, a1, . . . , an

is to solve the linear system
Vnan = y (4)

where Vn is the Vandermonde matrix defined by

Vn =


1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

1 xn x2
n · · · xn

n

 (5)

and

an =


a0
a1
...

an

 , y =


y0
y1
...

yn


To facilitate the other exercises, write a function interpolate_data which takes as input
an array y of n+1 values y0, y1, . . . , yn and an array x of n+1 points x1, x2, . . . , xn; creates

2

Vn with the Python function numpy.vander/np.vander; and solves the linear system (4)
with numpy.linalg.solve/np.linalg.solve; and finally returns the coefficients an of
the corresponding interpolating polynomial pn.

Write a second function, interpolate_function, which takes as input a function f and
does the same as interpolate_data on y0 = f(x0), y1 = f(x1), . . . , yn = f(xn).

Solution. Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 1. (Python) Consider n + 1 points x0, x1, . . . , xn ∈ [−1, 1], the functions

f (1)(x) = 1
1 + 9x2 , f (2)(x) = sin(x),

and the interpolating polynomials p
(1)
n and p

(2)
n which interpolate f (1) and f (2), respectively,

at the points x0, x1, . . . , xn. Suppose p
(j)
n (x) =

n∑
i=0

a
(j)
i xi, j = 1, 2.

(a) Use the Python function numpy.vander/np.vander to get the Vandermonde matrix
Vn. For n = 2, 3, . . . , 40, plot the condition number of the Vandermonde matrix κ(Vn)
uniformly distributed interpolation nodes and Chebyshev nodes on [−1, 1]. As will
be seen later in the course, the condition number measures the sensitivity of a linear
system to roundoff error. Large condition numbers usually mean that the accuracy of
the computed solution is low.
Hint: The condition number can be computed with numpy.linalg.cond/np.linalg.cond.

(b) For n = 10, 20, 30, 40 compute the coefficients a(j)
n of the interpolants of f (j), j = 1, 2 for

uniformly distributed interpolation nodes and Chebyshev nodes. Use these coefficients
to plot the evaluation of p

(j)
n (x) at 500 evenly spaced values x. Compare them to f (j)

for j = 1, 2. Explain what you observe.
Hint: You can evaluate a polynomial from its coefficients with numpy.polyval/np.polyval.

(c) Approximate the error
max

x∈[−1,1]
|f (j)(x) − p(j)

n (x)|

by replacing the maximum in [−1, 1] with the maximum at 500 evenly spaced points
in [−1, 1]. and plot it against n = 2, 3, . . . , 40 for j = 1, 2.

Solution. Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 2. (Python) In this exercise we will study the stability of the Lagrange interpolation
polynomial on n + 1 uniformly distributed nodes and on Gauss-Legendre nodes. Gauss-
Legendre nodes are defined to be the zeros of the Legendre polynomials qn, which can be
otained with the Python function scipy.special.roots_legendre/sp.special.roots_legendre.
Consider the function

f(x) = sin(x) + x, x ∈ [0, 10]

which we will interpolate on the nodes x0, x1, . . . , xn. Further define yi = f(xi) for
i = 0, 1, . . . , n.

3

(a) For n = 1, 2, . . . , 15, numerically compute the Lebesgue constant Λn for uniformly
distributed nodes and plot the result. Based on the results obtained, formulate a conjec-
ture of the asymptotic behavior of the Lebesgue constant, e.g., O(logc n), O(nc), O(cn)
for some constant c.

(b) Plot the function f and the interpolation polynomials for n = 4 and n = 15 for
uniformly distributed nodes.

(c) For i = 0, 1, . . . , n let εi be independent uniformly distributed random variables in
[−0.1, 0.1]. For each i perturb ỹi = yi + εi. Repeat (b) with the new data ỹ0, ỹ1, . . . , ỹn.
The function numpy.random.uniform/np.random.uniform in Python will be useful.

(d) Repeat (a)-(c) with Gauss-Legendre nodes.

Solution. Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 3. Consider the interpolation of the function f(x) = x−3 on [3, 4] using 4
Chebyshev nodes. Denote the interpolation polynomial p3(x).

(a) Write down the numerical values of the 4 nodes at which p3 interpolates f .

(b) Find an upper bound for the error |f(x) − p3(x)| which is valid for any x in the interval
[3, 4].

(c) How many digits of accuracy will you have when p3 is used to approximate f(x)?

(d) Calculate p3(x) numerically in Python and plot the graph of the error and the upper
bound of the error as a function of x on a semi-logarithmic scale. Compare the
interpolating polynomial obtained using the Chebyshev nodes with the one using the
equispaced nodes over the interval [3, 4].

Solution.

(a) Using xk = a+b
2 + b−a

2 cos
(

(2k+1)π
2n+2

)
= 7

2 + 1
2 cos

(
(2k+1)π

2n+2

)
, k = 0, 1, · · · , n we get

x0 = 3.96
x1 = 3.69
x2 = 3.31
x3 = 3.04

(b) We know by Theorem 3.6

∥f − p3∥∞ ≤ 1
23(3 + 1)!

1
24 ∥f (4)∥∞ = 1

24 · 27 ∥f (4)∥∞.

By direct differentiation f (4)(x) = 360x−7 which takes it maximum at x = 3. Hence,

∥f − p3∥∞ ≤ 360
24 · 27 · 37 = 5.35 × 10−5

(c) You will have approximately − log10(5.35 × 10−5) ≈ 4 digits of precision.

4

(d) Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 4. In this exercise Tn denotes the nth Chebyshev polynomial in [−1, 1].

(a) Show that Tn is even if n is even and Tn is odd if n is odd.

(b) Tn is only defined in [−1, 1], but using the three-term recurrence relation one can
extend its definition outside [−1, 1]. Show that for |x| ≥ 1 we have

Tn(x) =
{

cosh(n arccosh(x)), x ≥ 1;
(−1)n cosh(n arccosh(−x)), x ≤ −1.

Solution.

(a) This will follow by induction. Clearly T0(x) = 1 is even and T1(x) = x is odd. Now
suppose the results holds for all k ≤ n where n is odd.

By the three term recurrence relation we have

Tn+1(−x) = −2xTn(−x) − Tn−1(−x) = 2xTn(x) − Tn−1(x) = Tn+1(x).

Hence, Tn+1 is even. Similarly we have

Tn+2(−x) = −2xTn+1(−x) − Tn(−x) = −(2xTn+1(x) − Tn(x)) = −Tn+1(x).

Hence, Tn+2 is odd. Thus, by induction the result is proven.

(b) Consider the function

tn(x) = 1
2((x −

√
x2 − 1)n + (x +

√
x2 − 1)n).

It is easy to see that t0(x) = 1 and t1(x) = x. Now we can note that tn(x) satisfies the
three term recurrence relation

2xtn−1(x) − tn−2(x)

= x((x −
√

x2 − 1)n−1 + (x −
√

x2 − 1)n−1) − (x −
√

x2 − 1)n−2 − (x +
√

x2 − 1)n−2

= 1
2(2x2 − 2x

√
x2 − 1 − 1)(x −

√
x2 − 1)n−2 + 1

2(2x2 + 2x
√

x2 − 1 − 1)(x +
√

x2 − 1)n−2

= 1
2(x −

√
x2 − 1)2(x −

√
x2 − 1)n−2 + 1

2(x +
√

x2 − 1)2(x +
√

x2 − 1)n−2

= tn(x).

Hence, tn(x) = Tn(x) ∀n ∈ N0. Now note

1n = 1
(x2 − x2 + 1)n = 1

((x +
√

x2 − 1)(x −
√

x2 − 1))n = 1

(x +
√

x2 − 1)−n = (x −
√

x2 − 1)n.

5

Hence,
Tn(x) = 1

2(x +
√

x2 − 1)n + 1
2(x +

√
x2 − 1)−n

and note arcosh(x) = ln(x +
√

x +
√

x2 − 1) for x ≥ 1. Thus,

Tn(x) = 1
2 exp(n arcosh(x)) + 1

2 exp(−n arcosh(x)), x ≥ 1

and by cosh(x) = 1
2 exp(x) + 1

2 exp(−x) we get

Tn(x) = cosh(n arcosh(x)), x ≥ 1.

Now, when x ≤ 1 we use the fact that Tn is odd/even whenever n is odd/even to get

Tn(x) = (−1)n cosh(n arcosh(−x)), x ≤ 1.

6

