EXERCISE SET 6 — MATH-250 Advanced Numerical Analysis

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, April 3. The exercises marked with
(%) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, April 4 at 10h15.

Quiz

Let T,,, n=10,1,2,... denote the Chebyshev polynomials.

(a) For m > n it holds T, ()T () = Trsn(z) + Tin—n(z).

O True B False

(b) The (n + m)-th derivative of T),(z)T(z) at x =0 for m,n > 1 is

oo B 2772 (n 4 m)!
g 2"t (n 4+ m)! O (—=1)"*™(n +m)!

(c) The Chebyshev interpolant of a nonnegative function is nonnegative.

O True B False

Solution.

(a)

We know that T),(x) = cos (narccos (x)) = cos (ny) if we define y = arccos (). We
now apply the trigonometric addition theorem for the cosine and see

cos (my) cos (ny) = %(cos ((m+n)y) + cos ((m —n)y)), (1)

meaning that the claim is false.
We begin with (1) and write it as Chebyshev polynomials

T (2T (1) = = (T () + T ().

2
The right-hand side thus consists of two polynomials, T},+, of degree m + n, and
T,n—n of degree strictly less than m + n. Therefore, the (m + n)-th derivative of 1),
vanishes and we only need to compute the (m + n)-th derivative of T},,4,,. We denote
Gm+n the leading coefficient of T),4,, — if we can compute a4y, then the m + n-th
derivative of T,y will be apyip - (M + n)! because no other monomials will be left.

We now show that ar = 2a;_1 for £ > 1. On the one hand, we can express T} as

Ti.(z) = arz®™ + pr_1(z), (2)



where pi_1 is a polynomial of degree k — 1, and on the other hand we know that T}, is

Ty(z) =2z - Tjp—1 () — Th—2().

(3)

In (3) it is evident that Tj_o does not influence the coefficient ay from (2) because its
degree is k — 2. We thus see that ap = 2a,_1, where the recurrence terminates with
a; = 1, and hence a;, = 2¥~1. Lastly, we need to account for the factor 1/2 from (1) to

obtain 2™+"~2(m + n)! and conclude the proof.

(c) We consider the function f(z) = exp (—3z) on the interval (—1,1) and use 5 interpola-

tion points.

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

xx = np.linspace(-1, 1)

cheb = np.polynomial.chebyshev.chebptsl(5)

f = lambda x: np.exp(-3 * x)

fhat = sp.interpolate.lagrange(cheb, f(cheb))

plt.plot(xx, f(xx), xx, fhat(xx))
plt.show()

Exercises

Consider n + 1 points xg, 1, ..., T,. Suppose the interpolant of some data g, y1,. ..

n .
at these points is p,(z) = > a;x'. One method to determine the coefficients ag, a1, . ..
i=0

7=
is to solve the linear system
Vean =y

where V), is the Vandermonde matrix defined by

1 zg a3 - af
1 o 22 - ¥
1z, 22 Ty
and
ag Yo
ai Y1
Ap = Y =1.
Qn Yn

yYn

y An

To facilitate the other exercises, write a function interpolate_data which takes as input

an array y of n+1 values yo, y1, . . ., Y and an array x of n+1 points x1, xs, . .

., Tn; creates



V,, with the Python function numpy.vander/np.vander; and solves the linear system (4)
with numpy.linalg.solve/np.linalg.solve; and finally returns the coefficients a,, of
the corresponding interpolating polynomial p,.

Write a second function, interpolate_function, which takes as input a function f and
does the same as interpolate_data on yo = f(x0),y1 = f(x1),. .., yn = f(zn).

Solution. Available in the Jupyter notebook serie06-sol.ipynb on Moodle.
Problem 1. (Python) Consider n + 1 points g, x1,...,z, € [—1,1], the functions

@) = g 1) = sin(a),

and the interpolating polynomials pg) and pg) which interpolate f M) and f @), respectively,

at the points g, z1,...,T,. Suppose pg)(a:) => agj)ml, j=12.
i=0

(a) Use the Python function numpy.vander/np.vander to get the Vandermonde matrix
V. For n=2,3,...,40, plot the condition number of the Vandermonde matrix x(V},)
uniformly distributed interpolation nodes and Chebyshev nodes on [—1,1]. As will
be seen later in the course, the condition number measures the sensitivity of a linear
system to roundoff error. Large condition numbers usually mean that the accuracy of
the computed solution is low.

Hint: The condition number can be computed with numpy.linalg.cond/np.linalg. cond.

(b) For n = 10,20, 30,40 compute the coefficients a,(f) of the interpolants of @), j = 1,2 for
uniformly distributed interpolation nodes and Chebyshev nodes. Use these coefficients
to plot the evaluation of p,(f )(37) at 500 evenly spaced values 2. Compare them to f()
for j = 1,2. Explain what you observe.

Hint: You can evaluate a polynomial from its coefficients with numpy.polyval/np.polyval.

(c) Approximate the error ' '
max | f9(z) - p{(2)]
z€[—1,1]
by replacing the maximum in [—1, 1] with the maximum at 500 evenly spaced points
in [-1,1]. and plot it against n = 2,3,...,40 for j =1,2.

Solution. Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 2. (Python) In this exercise we will study the stability of the Lagrange interpolation
polynomial on n + 1 uniformly distributed nodes and on Gauss-Legendre nodes. Gauss-
Legendre nodes are defined to be the zeros of the Legendre polynomials ¢,,, which can be
otained with the Python function scipy.special.roots_legendre/sp.special.roots_legendre.
Consider the function

f(z) =sin(z) +z, € ]0,10]

which we will interpolate on the nodes xg,x1,...,2,. Further define y; = f(z;) for
1=0,1,...,n.



(a) For n = 1,2,...,15, numerically compute the Lebesgue constant A,, for uniformly
distributed nodes and plot the result. Based on the results obtained, formulate a conjec-
ture of the asymptotic behavior of the Lebesgue constant, e.g., O(log®n), O(n), O(c")
for some constant c.

(b) Plot the function f and the interpolation polynomials for n = 4 and n = 15 for
uniformly distributed nodes.

(¢c) For i = 0,1,...,n let ¢; be independent uniformly distributed random variables in
[—0.1,0.1]. For each ¢ perturb §; = y; +&;. Repeat (b) with the new data go, 71, - - , Un.
The function numpy.random.uniform/np.random.uniform in Python will be useful.

(d) Repeat (a)-(c) with Gauss-Legendre nodes.

Solution. Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 3. Consider the interpolation of the function f(z) = x~3 on [3,4] using 4
Chebyshev nodes. Denote the interpolation polynomial p3(z).

(a) Write down the numerical values of the 4 nodes at which ps interpolates f.

(b) Find an upper bound for the error |f(z) — ps(z)| which is valid for any z in the interval
(3,4].

(¢) How many digits of accuracy will you have when p3 is used to approximate f(z)?

(d) Calculate p3(z) numerically in Python and plot the graph of the error and the upper
bound of the error as a function of z on a semi-logarithmic scale. Compare the
interpolating polynomial obtained using the Chebyshev nodes with the one using the
equispaced nodes over the interval [3,4].

Solution.
(a) Using zp = ‘%b + b*T“ oS ((2213:2)”) = % + %COS <(22k7;;12)7r) ,k=0,1,---,n we get
zo = 3.96
r1 = 3.69
To = 3.31
(b) We know by Theorem 3.6
1 1 1
B N [ CO N - @
I = pallo < gz rigrf e = gl Ve

By direct differentiation f)(x) = 360z~7 which takes it maximum at z = 3. Hence,

360 _
Hf _p3||oo < 24.97.37 =535x107°

(c) You will have approximately —log;((5.35 x 107°) ~ 4 digits of precision.



(d)

Available in the Jupyter notebook serie06-sol.ipynb on Moodle.

Problem 4. In this exercise T}, denotes the n*® Chebyshev polynomial in [—1,1].

(a)
(b)

Show that T, is even if n is even and T, is odd if n is odd.

T, is only defined in [—1,1], but using the three-term recurrence relation one can
extend its definition outside [—1,1]. Show that for |z| > 1 we have

1;

() = {Cosh(n arccosh(x)), "

>
(—1)™ cosh(narccosh(—z)), z <

Solution.

(a)

This will follow by induction. Clearly Ty(x) = 1 is even and Tj(z) = x is odd. Now
suppose the results holds for all £ < n where n is odd.

By the three term recurrence relation we have
Thi1(—z) = =227, (—x) — Tp—1(—z) = 22T, (z) — Tp—1(z) = Thg1(x).
Hence, T),+1 is even. Similarly we have

Toyo(—2) = —20Th41(—2) — Th(—2) = —(22Th41(2) — Tp(2)) = —Thta(2).
Hence, T},42 is odd. Thus, by induction the result is proven.

Consider the function

(@) = 2z~ VT = 1) + (o + VaZ — 1))

It is easy to see that to(z) = 1 and ¢1(z) = . Now we can note that ¢, (z) satisfies the
three term recurrence relation

23775”_1(.%') - tn_g( )

— (e —VE D+ x_w*t*nl VTR (o VAR D)

2
RV ) et %Hﬁ (¢ + VaZ — 1)
= t,(2).
Hence, t,(z) = Tn(z) V¥n € No. Now note
1"=1
(> =22 +1)" =1
(+ Va2 —1)(z— Va2 —1)" =1
(4 Va2 —1)" = (z — VaZ— 1)".

:1(2$2*2$\/$2 1—1)(z— Va2 — 233 +22v22 —1—1)(z 4+ Va2 — 1) 2



Hence,

1 1
To(z) = 5(3: +Vva2-1)"+ §(m +Va2-1)""
and note arcosh(z) = In(z + \/x + V22 — 1) for > 1. Thus,

1 1
To(z) = 5 exp(n arcosh(x)) + 5 exp(—narcosh(x)), z=>1

and by cosh(z) = 3 exp(z) + % exp(—z) we get
T, (z) = cosh(narcosh(z)), x> 1.
Now, when x < 1 we use the fact that T), is odd/even whenever n is odd/even to get

Tn(x) = (—=1)" cosh(narcosh(—z)), x <1.



