
Exercise set 6 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, April 3. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, April 4 at 10h15.

Quiz
Let Tn, n = 0, 1, 2, . . . denote the Chebyshev polynomials.

(a) For m ≥ n it holds Tn(x)Tm(x) = Tm+n(x) + Tm−n(x).

□ True □ False

(b) The (n + m)-th derivative of Tn(x)Tm(x) at x = 0 is

□ 0

□ 2n+m(n + m)!

□ 2n+m−2(n + m)!

□ (−1)n+m(n + m)!

(c) The Chebyshev interpolant of a nonnegative function is nonnegative.

□ True □ False

Exercises
Consider n + 1 points x0, x1, . . . , xn. Suppose the interpolant of some data y0, y1, . . . , yn

at these points is pn(x) =
n∑

i=0
aix

i. One method to determine the coefficients a0, a1, . . . , an

is to solve the linear system
Vnan = y (1)

where Vn is the Vandermonde matrix defined by

Vn =


1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
... . . . ...

1 xn x2
n · · · xn

n

 (2)

and

an =


a0
a1
...

an

 , y =


y0
y1
...

yn



1



To facilitate the other exercises, write a function interpolate_data which takes as input
an array y of n+1 values y0, y1, . . . , yn and an array x of n+1 points x1, x2, . . . , xn; creates
Vn with the Python function numpy.vander/np.vander; and solves the linear system (1)
with numpy.linalg.solve/np.linalg.solve; and finally returns the coefficients an of
the corresponding interpolating polynomial pn.

Write a second function, interpolate_function, which takes as input a function f and
does the same as interpolate_data on y0 = f(x0), y1 = f(x1), . . . , yn = f(xn).

Problem 1. (Python) Consider n + 1 points x0, x1, . . . , xn ∈ [−1, 1], the functions

f (1)(x) = 1
1 + 9x2 , f (2)(x) = sin(x),

and the interpolating polynomials p
(1)
n and p

(2)
n which interpolate f (1) and f (2), respectively,

at the points x0, x1, . . . , xn. Suppose p
(j)
n (x) =

n∑
i=0

a
(j)
i xi, j = 1, 2.

(a) Use the Python function numpy.vander/np.vander to get the Vandermonde matrix
Vn. For n = 2, 3, . . . , 40, plot the condition number of the Vandermonde matrix κ(Vn)
uniformly distributed interpolation nodes and Chebyshev nodes on [−1, 1]. As will
be seen later in the course, the condition number measures the sensitivity of a linear
system to roundoff error. Large condition numbers usually mean that the accuracy of
the computed solution is low.
Hint: The condition number can be computed with numpy.linalg.cond/np.linalg.cond.

(b) For n = 10, 20, 30, 40 compute the coefficients a(j)
n of the interpolants of f (j), j = 1, 2 for

uniformly distributed interpolation nodes and Chebyshev nodes. Use these coefficients
to plot the evaluation of p

(j)
n (x) at 500 evenly spaced values x. Compare them to f (j)

for j = 1, 2. Explain what you observe.
Hint: You can evaluate a polynomial from its coefficients with numpy.polyval/np.polyval.

(c) Approximate the error
max

x∈[−1,1]
|f (j)(x) − p(j)

n (x)|

by replacing the maximum in [−1, 1] with the maximum at 500 evenly spaced points
in [−1, 1]. and plot it against n = 2, 3, . . . , 40 for j = 1, 2.

Problem 2. (Python) In this exercise we will study the stability of the Lagrange interpolation
polynomial on n + 1 uniformly distributed nodes and on Gauss-Legendre nodes. Gauss-
Legendre nodes are defined to be the zeros of the Legendre polynomials qn, which can be
otained with the Python function scipy.special.roots_legendre/sp.special.roots_legendre.
Consider the function

f(x) = sin(x) + x, x ∈ [0, 10]

which we will interpolate on the nodes x0, x1, . . . , xn. Further define yi = f(xi) for
i = 0, 1, . . . , n.

(a) For n = 1, 2, . . . , 15, numerically compute the Lebesgue constant Λn for uniformly
distributed nodes and plot the result. Based on the results obtained, formulate a conjec-

2



ture of the asymptotic behavior of the Lebesgue constant, e.g., O(logc n), O(nc), O(cn)
for some constant c.

(b) Plot the function f and the interpolation polynomials for n = 4 and n = 15 for
uniformly distributed nodes.

(c) For i = 0, 1, . . . , n let εi be independent uniformly distributed random variables in
[−0.1, 0.1]. For each i perturb ỹi = yi + εi. Repeat (b) with the new data ỹ0, ỹ1, . . . , ỹn.
The function numpy.random.uniform/np.random.uniform in Python will be useful.

(d) Repeat (a)-(c) with Gauss-Legendre nodes.

Problem 3. Consider the interpolation of the function f(x) = x−3 on [3, 4] using 4
Chebyshev nodes. Denote the interpolation polynomial p3(x).

(a) Write down the numerical values of the 4 nodes at which p3 interpolates f .

(b) Find an upper bound for the error |f(x) − p3(x)| which is valid for any x in the interval
[3, 4].

(c) How many digits of accuracy will you have when p3 is used to approximate f(x)?

(d) Calculate p3(x) numerically in Python and plot the graph of the error and the upper
bound of the error as a function of x on a semi-logarithmic scale. Compare the
interpolating polynomial obtained using the Chebyshev nodes with the one using the
equispaced nodes over the interval [3, 4].

Problem 4. In this exercise Tn denotes the nth Chebyshev polynomial in [−1, 1].

(a) Show that Tn is even if n is even and Tn is odd if n is odd.

(b) Tn is only defined in [−1, 1], but using the three-term recurrence relation one can
extend its definition outside [−1, 1]. Show that for |x| ≥ 1 we have

Tn(x) =
{

cosh(n arccosh(x)), x ≥ 1;
(−1)n cosh(n arccosh(−x)), x ≤ −1.

(⋆) Problem 5.

We want to use a quadrature rule to compute the integral
∞∫

0

f(x) exp (−x) dx. (3)

The presence of an infinite integration interval makes it impossible to directly apply a
standard quadrature rule. In applications, this can be addressed by truncating the interval
of (3) to [0, T ] for some large T > 0, however, there are more elegant and usually more
accurate methods such as the Gauss-Laguerre quadrature rule.

3



The basis of the Gauss-Laguerre quadrature are the Laguerre polynomials Ln and Ln+1
defined below. We use the roots ri, i = 1, 2, . . . , n, of Ln as quadrature nodes and define
the weights as

wi = ri

(n + 1)2Ln+1(ri)2 ,

allowing us to write the overall quadrature rule as

Qn[f ] =
n∑

i=1
wif(xi). (4)

(a) The Laguerre polynomials L0, L1, . . . are given by the three term recurrence

L0(x) = 1, L1(x) = 1 − x, (n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x). (5)

Implement a Python function laguerre(degree) which takes the desired degree of
the Laguerre polynomial and returns a NumPy Polynomial object equal to Ldegree
using (5) (you can import this class from np.polynomial.polynomial.Polynomial
or use the alias poly in the Jupyter notebook we provided on Moodle). Use recursion
for this implementation.

Hint: When implementing multiplications like q(x) = (1 − x) ∗ p(x) in Python you
need to use a separate Polynomial object for the 1 − x factor.

(b) Internally, SciPy’s roots_laguerre function uses an eigenvalue computation to find
the roots of Ln(x). In analogy to Theorem 2.12 and Exercise 2 of Series 5 we can use
the recurrence (5) to find a tridiagonal matrix A such that

A =



a1 b1
b1 a2 b2

b2 a3 b3
. . . . . . . . .

bn−2 an−1 bn−1
bn−1 an


with the sequences (a1, a2, . . . , an) = (1, 3, . . . , 2(n − 1) + 1) and (b1, b2, . . . , bn−1) =
(−1, −2, . . . , −n + 1).

Show that any root λ of Ln is an eigenvalue of A. Implement a Python function
roots(degree) that computes the roots of Ln.

Hint: You can use SciPy’s linalg.eigvals_banded function. In the Jupyter notebook
on Moodle you can directly run eigvals_banded. Make sure your function returns
the proper eigenvalue for degree 1.

(c) Use the roots r1, r2, . . . , rn you found in (b) and verify their quality by comparing the
maximum absolute value of Ln(ri) to 0. Repeat this verification for the first M > 0
Laguerre polynomials and plot the results in an appropriate plot. Make sure you that
M is not too large.

(d) Implement a Python function gauss_laguerre(f, num_points) that computes the
Gauss-Laguerre quadrature rule Qn given in (4). Compute the integral for the

4



function f(x) = sin (x). Compute the error with respect to the exact integral∫ ∞
0 sin (x) exp (−x) dx = 0.5 for your implementation of the quadrature points and

weights, and that of SciPy using roots_laguerre. Use n ∈ np.arange(1, 25). Plot
the errors in a plot of your choice. Measure the computational time both quadratures
require with the time function and plot the elapsed times in a semi-logarithmic plot;
use the function plt.semilogy/ matplotlib.pyplot.semilogy.

The following part is for your understanding and will not be graded: Why is your
implementation so much slower than that of SciPy? If you are really interested, you
can have a look at the Cython library (cython.org).

Remember to upload a scan homework06.pdf of your solutions and the completed Jupyter
notebook homework06.ipynb corresponding to the homework to the submission panel on
Moodle until Friday, April 4 at 10h15. To download your notebook from Noto, use File >
Download. Only your submissions to Moodle will be considered for grading.

5


