SOLUTION 5 — MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed
in the beginning of the lecture on Thursday, March 27. The exercises marked with (x) are
graded homework. The exercises marked with (Python) are implementation based and can
be solved in the Jupyter notebooks which are available on Moodle/Noto. The deadline for
submitting your solutions to the homework is Friday, March 28 at 10h15.

Quiz
(a) Consider a linear system Ax = b with a given matrix A € R™*" and a right-hand side
b. Which of the following statements are correct?

(i) The linear system has a solution if and only if A is invertible (that is, det A # 0).

O True B False

(ii) If A is not invertible then there is either no solution or infinitely many solutions.

B True O False

(iii) A random matrix (that is, a matrix with independent normally distributed entries)
is invertible with probability 1.

W True O False

(b) What is the complexity of Gaussian elimination for solving Ax = b?

O O(n) m O(n?)
O O(n!) O O(n?)
(c) Let || - ||, denote the 7 norm of a vector for 1 < p < oco. Which of the following

statements are correct?

(1) lIxllr < nlixflec and [[x[loo < [Ix][1 for x € R"

B True O False

(i) lIxll2 < v/nlix|ly and [Ix]l1 < [[x[]2 for x € R"

O True B False

(iii) [(x,y)| < [|x|lp/lyll, for x,y € R™ and any 1 < p < o0



O True Bl False

(iv) || - |lp is not a norm for p = 1/2
B True O False
Solution.

(a) (i) Numerous counter-examples exist. For example

)

has infinitely many solutions, despite det A = 0.

(ii) If det A =0, then the kernel of A is non-trivial. Thus, if x solves Ax = b, then
also A(x +y) = b for any y € ker(A4), giving rise to infinitely many solutions
X+Yy.

iii e probability that pairwise distinct columns of this matrix are linearly depen-
iii) Th bability that pairwise distinct col f thi tri li ly d
dent is zero. Hence, it is invertible with probability 1.

(b) See algorithm (there are three nested for-loops).
(¢) (i) We can bound

Il = for | + ool 4+ ol <0 max ] = nlx]lo

e ek M)

and
Iloe = _max fai] < [ + ol + -+ + fza] = ]l

=1,4,...,

(ii) There exist many counter-examples. For instance x = (1,1)" has |x||; = 1+1 =2

whereas ||x||2 = V12 + 12 = /2.

(iii) The inequality often does not hold, for example for p = co if x =y = (1,1)":
[y =1L, A1) =1 +1] =2

but
% [loo [[¥llse = I1(1, 1) oo [[(1, 1) Tloo =1+ 1 =1

(iv) The triangle inequality does not hold. Consider for instance x = (1,0)" and
y=(0,1)T:
I+ ylhye = 1L, 1) hye = (VI+V1)? =4
but
[l 2 + 1yl 2 = 1(1,0) o+ 1(0, 1) e =1 +1 =2



Exercises

Problem 1. The goal of this exercise is to prove Theorem 2.12; the three-term recurrence
relation for the Legendre polynomials defined in the lecture notes:

(n+ 1)gnt1(x) = (2n + Dzgp () — ngn—1(x), lz| < 1. (1)
(a) Using that qo,...,qn is an orthogonal basis for IP,,, we consider the expansion
s, (2qn, q:)

Tn = ) 0, = ,
n ; 1117 3 <ql7qz>

where (-,-) denotes the L? inner product on [—1,1]. Show that a; = 0 except for
t=n—1,n+1.
(b) Use Theorem 2.11 to determine the leading coefficient of g, and use this to show that

2n+1
T
n-+1 e

n— qni1 € Py

(¢) Using (b), compute a;,—1 and ay,41. You may use (gn, ¢n) = ﬁ From this deduce
the recurrence relation (1).

Bonus: Prove (qn, qn) using Theorem 2.12.

_ 2
— 2n+1
Solution.

(a) Let i #n —1,n,n+ 1. Then o; = (xqn, ¢;) = (qn,xq;) = 0 because zq; is of degree at

most n — 1 and ¢, is orthogonal to all such polynomials.

Now, if i = n we have «a,, = f_ll 2qn(x)?dz. Now, if we show that ¢, is even/odd for
even/odd n we can show o, =0 - xq% is odd which implies «;, = 0.

We show this by induction. For n = 0 this follows immediately from that go(x) =1 is
an odd function. Similarly, for n =1 it is clear that ¢;(z) = x is odd.

Hence, now suppose that our hypothesis holds up to some n € N. Then, if ¢ is
some constant we know

n anrl i
g (@) =1 = 3 g )

s (gi> @)
.,Enfl q _1> <‘,L.nf3 Qn—3>

:l‘n—H—( ) 4n Gn-1(z) — ’ Gn-3(x) — -
<Qn—17Qn—1> " ( ) <Qn—37QTL—3> " ( )

Because if n + 1 is even/odd we know from our inductive assumption ("1 ¢;) = 0 for

odd/even i. Hence, gn+1 is a sum of even/odd functions. Thus, ¢,+1 is even/odd.

(b) From Theorem 2.11 we know that the leading coefficient of ¢, is (7(5)%, since the

leading coefficient of d‘fc—nn[(:v2 —1)"] is %



To prove this, we can write: (2% —1)" = Y7_, (})(—1)" ¥z and hence:

n n n dnl.Qk

k=0

- Zn: <Z> (—1)n—k(2k)(2k —1)...(2k —n+ 1)z )
k=0

ag

It is possible to find the leading coefficient as the one corresponding to the index k = n,
that is a, = (") (2n)(2n — 1) ... (n+ 1) = 22!

This implies that %:fll Tqn — qn+1 € Py, because

2n+1 (2n)!  (m+1Cn+1)! (2n+2)2n+1)! (2n+2)!

n+1 (22" (n+1)(n+ 1)nl27 ((n 4+ 1)1)22n+l ((n + 1))22n+1

(¢) The result from (b) implies that xq, = %qnﬂ + p for some p € P,,. Combining this
with the result from (a) and (g, ¢,) = T%rl gives

<$Qna Qn+l> n+1 <Qn+1a Qn+1> n+1
Qpy1 = = + P n+1) =
m (Gnt1, Gnt1) 204 1 {qnt1, Gnt1) (P: gn+1) 2n+1
and
= T Gn1) G Ta) o Gw@n) o 2=l n
" <Qn717 QH71> <Qn71y Qn71> 2n —1 <Qn71> Qn71> 2n—12n+1 2n+1
This gives,
n+1 n
xq, = —— " g
dn 2n+1‘]n+1 2n+1Qn 1

which implies
(n+1)gny1 = (2n + 1)2g, — ngn—1

which is the desired three-term recurrence relation.

Problem 2. Using Theorem 2.12, show that any root A of the Legendre polynomial ¢,1 is
also a root of det(AB — A) with

o+ 1 R
n 0

Verify this statement for small n (say n = 1, 2) in Python with scipy.linalg.eigvalsh(A,B).



Solution. Define the following vector, depending on x

by the three-term recurrence relation be can see that
(n +1gny1(2)ens1 + Ag(z) = 2Bq(x) (4)
If \ is a root of ¢,11 then we see that (4) turns into
Aq(N\) = ABq(\) & 0= ABg(\) — Ag(\) & det(AB—A) =0

The solution to the Python implementation is available in the Jupyter notebook serie05-sol.ipynb
on Moodle.

Problem 3. (Python) Consider the logarithmic spiral curve, whose z- and y-coordinate at
time ¢ is given by
t) = exp(—at) cos(t),
y(t) = exp(—at)sin(t);
The parameter a > 0 controls how rapidly the spiral curves inward.

(a) Write a Python function which approximates the length of the logarithmic spiral
(5). Specifically, ask Chat-GPT to give you the formula for computing the length
of a general, smooth curve. Approximate the integral in this formula using the
simple Gaussian quadrature with n = 5 quadrature points, which is implemented
in scipy.integrate.fixed_quad/sp.integrate.fixed_quad. Use your function to
compute the length of the logarithmic spiral (5) for a = 0.1 and a = 0.5.

(b) Compute the exact length of the logarithmic spiral. Specifically, Ask Chat-GPT to
(analytically) compute the length of the logarithmic spiral with the formula it gave
you previously. Evaluate the expression for ¢ = 0.1 and a = 0.5. How far away are
they from the approximation?

Warning: Tt often happens that Chat-GPT gives a wrong answer. Verify that every
step in the provided explanation is reasonable, and correct it if necessary.

(c) Visualize the logarithmic spiral for a = 0.1 and a = 0.5 along with the 5 quadra-
ture nodes of the simple Gaussian quadrature. You can obtain the nodes for the interval
[—1, 1] with the function scipy.special.roots_legendre/sp.special.roots_legendre,
but will have to rescale them to the interval [0, 87]. Use their locations to explain why
the approximation error is significantly larger for one of the values of a.

Solution. Available in the Jupyter notebook serie05-sol.ipynb on Moodle.



