

# SOLUTION 5 – MATH-250 Advanced Numerical Analysis I

---

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed in the beginning of the lecture on Thursday, March 27. The exercises marked with  $(\star)$  are graded homework. The exercises marked with **(Python)** are implementation based and can be solved in the Jupyter notebooks which are available on Moodle/Noto. **The deadline for submitting your solutions to the homework is Friday, March 28 at 10h15.**

## Quiz

(a) Consider a linear system  $A\mathbf{x} = \mathbf{b}$  with a given matrix  $A \in \mathbb{R}^{n \times n}$  and a right-hand side  $\mathbf{b}$ . Which of the following statements are correct?

(i) The linear system has a solution if and only if  $A$  is invertible (that is,  $\det A \neq 0$ ).

True

False

(ii) If  $A$  is not invertible then there is either no solution or infinitely many solutions.

True

False

(iii) A random matrix (that is, a matrix with independent normally distributed entries) is invertible with probability 1.

True

False

(b) What is the complexity of Gaussian elimination for solving  $A\mathbf{x} = \mathbf{b}$ ?

$O(n)$

$O(n^3)$

$O(n!)$

$O(n^2)$

(c) Let  $\|\cdot\|_p$  denote the  $\ell^p$  norm of a vector for  $1 \leq p \leq \infty$ . Which of the following statements are correct?

(i)  $\|\mathbf{x}\|_1 \leq n\|\mathbf{x}\|_\infty$  and  $\|\mathbf{x}\|_\infty \leq \|\mathbf{x}\|_1$  for  $\mathbf{x} \in \mathbb{R}^n$

True

False

(ii)  $\|\mathbf{x}\|_2 \leq \sqrt{n}\|\mathbf{x}\|_1$  and  $\|\mathbf{x}\|_1 \leq \|\mathbf{x}\|_2$  for  $\mathbf{x} \in \mathbb{R}^n$

True

False

(iii)  $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\|_p \|\mathbf{y}\|_p$  for  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  and any  $1 \leq p \leq \infty$

□ True

■ False

(iv)  $\|\cdot\|_p$  is not a norm for  $p = 1/2$

■ True

□ False

**Solution.**

(a) (i) Numerous counter-examples exist. For example

$$A\mathbf{x} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{b}$$

has infinitely many solutions, despite  $\det A = 0$ .

(ii) If  $\det A = 0$ , then the kernel of  $A$  is non-trivial. Thus, if  $\mathbf{x}$  solves  $A\mathbf{x} = \mathbf{b}$ , then also  $A(\mathbf{x} + \mathbf{y}) = \mathbf{b}$  for any  $\mathbf{y} \in \ker(A)$ , giving rise to infinitely many solutions  $\mathbf{x} + \mathbf{y}$ .

(iii) The probability that pairwise distinct columns of this matrix are linearly dependent is zero. Hence, it is invertible with probability 1.

(b) See algorithm (there are three nested for-loops).

(c) (i) We can bound

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n| \leq n \max_{i=1,2,\dots,n} |x_i| = n\|\mathbf{x}\|_\infty$$

and

$$\|\mathbf{x}\|_\infty = \max_{i=1,2,\dots,n} |x_i| \leq |x_1| + |x_2| + \cdots + |x_n| = \|\mathbf{x}\|_1.$$

(ii) There exist many counter-examples. For instance  $\mathbf{x} = (1, 1)^\top$  has  $\|\mathbf{x}\|_1 = 1+1 = 2$  whereas  $\|\mathbf{x}\|_2 = \sqrt{1^2 + 1^2} = \sqrt{2}$ .

(iii) The inequality often does not hold, for example for  $p = \infty$  if  $\mathbf{x} = \mathbf{y} = (1, 1)^\top$ :

$$|\langle \mathbf{x}, \mathbf{y} \rangle| = |\langle (1, 1)^\top, (1, 1)^\top \rangle| = |1+1| = 2$$

but

$$\|\mathbf{x}\|_\infty \|\mathbf{y}\|_\infty = \|(1, 1)^\top\|_\infty \|(1, 1)^\top\|_\infty = 1 \cdot 1 = 1$$

(iv) The triangle inequality does not hold. Consider for instance  $\mathbf{x} = (1, 0)^\top$  and  $\mathbf{y} = (0, 1)^\top$ :

$$\|\mathbf{x} + \mathbf{y}\|_{1/2} = \|(1, 1)^\top\|_{1/2} = (\sqrt{1} + \sqrt{1})^2 = 4$$

but

$$\|\mathbf{x}\|_{1/2} + \|\mathbf{y}\|_{1/2} = \|(1, 0)^\top\|_{1/2} + \|(0, 1)^\top\|_{1/2} = 1 + 1 = 2$$

## Exercises

**Problem 1.** The goal of this exercise is to prove Theorem 2.12; the three-term recurrence relation for the Legendre polynomials defined in the lecture notes:

$$(n+1)q_{n+1}(x) = (2n+1)xq_n(x) - nq_{n-1}(x), \quad |x| < 1. \quad (1)$$

(a) Using that  $q_0, \dots, q_n$  is an orthogonal basis for  $\mathbb{P}_n$ , we consider the expansion

$$xq_n = \sum_{i=0}^{n+1} \alpha_i q_i, \quad \alpha_i = \frac{\langle xq_n, q_i \rangle}{\langle q_i, q_i \rangle},$$

where  $\langle \cdot, \cdot \rangle$  denotes the  $L^2$  inner product on  $[-1, 1]$ . Show that  $\alpha_i = 0$  except for  $i = n-1, n+1$ .

(b) Use Theorem 2.11 to determine the leading coefficient of  $q_n$  and use this to show that

$$\frac{2n+1}{n+1} xq_n - q_{n+1} \in \mathbb{P}_n$$

(c) Using (b), compute  $\alpha_{n-1}$  and  $\alpha_{n+1}$ . You may use  $\langle q_n, q_n \rangle = \frac{2}{2n+1}$ . From this deduce the recurrence relation (1).

*Bonus:* Prove  $\langle q_n, q_n \rangle = \frac{2}{2n+1}$  using Theorem 2.12.

### Solution.

(a) Let  $i \neq n-1, n, n+1$ . Then  $\alpha_i = \langle xq_n, q_i \rangle = \langle q_n, xq_i \rangle = 0$  because  $xq_i$  is of degree at most  $n-1$  and  $q_n$  is orthogonal to all such polynomials.

Now, if  $i = n$  we have  $\alpha_n = \int_{-1}^1 xq_n(x)^2 dx$ . Now, if we show that  $q_n$  is even/odd for even/odd  $n$  we can show  $\alpha_n = 0 \quad \because xq_n^2$  is odd which implies  $\alpha_n = 0$ .

We show this by induction. For  $n = 0$  this follows immediately from that  $q_0(x) = 1$  is an odd function. Similarly, for  $n = 1$  it is clear that  $q_1(x) = x$  is odd.

Hence, now suppose that our hypothesis holds up to some  $n \in \mathbb{N}$ . Then, if  $c$  is some constant we know

$$\begin{aligned} cq_{n+1}(x) &= x^{n+1} - \sum_{i=0}^n \frac{\langle x^{n+1}, q_i \rangle}{\langle q_i, q_i \rangle} q_i(x) \\ &= x^{n+1} - \frac{\langle x^{n-1}, q_{n-1} \rangle}{\langle q_{n-1}, q_{n-1} \rangle} q_{n-1}(x) - \frac{\langle x^{n-3}, q_{n-3} \rangle}{\langle q_{n-3}, q_{n-3} \rangle} q_{n-3}(x) - \dots \end{aligned}$$

Because if  $n+1$  is even/odd we know from our inductive assumption  $\langle x^{n+1}, q_i \rangle = 0$  for odd/even  $i$ . Hence,  $q_{n+1}$  is a sum of even/odd functions. Thus,  $q_{n+1}$  is even/odd.

(b) From Theorem 2.11 we know that the leading coefficient of  $q_n$  is  $\frac{(2n)!}{(n!)^2 2^n}$ , since the leading coefficient of  $\frac{d^n}{dx^n}[(x^2 - 1)^n]$  is  $\frac{(2n)!}{n!}$ .

To prove this, we can write:  $(x^2 - 1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} x^{2k}$  and hence:

$$\frac{d^n}{dx^n} [(x^2 - 1)^n] = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \frac{d^n x^{2k}}{dx^n} \quad (2)$$

$$= \sum_{k=0}^n \underbrace{\binom{n}{k} (-1)^{n-k} (2k)(2k-1)\dots(2k-n+1)}_{a_k} x^{2k-n} \quad (3)$$

It is possible to find the leading coefficient as the one corresponding to the index  $k = n$ , that is  $a_n = \binom{n}{n} (2n)(2n-1)\dots(n+1) = \frac{(2n)!}{n!}$

This implies that  $\frac{2n+1}{n+1} x q_n - q_{n+1} \in \mathbb{P}_n$  because

$$\frac{2n+1}{n+1} \frac{(2n)!}{(n!)^2 2^n} = \frac{(n+1)(2n+1)!}{(n+1)(n+1)! n! 2^n} = \frac{(2n+2)(2n+1)!}{((n+1)!)^2 2^{n+1}} = \frac{(2n+2)!}{((n+1)!)^2 2^{n+1}}$$

(c) The result from (b) implies that  $x q_n = \frac{n+1}{2n+1} q_{n+1} + p$  for some  $p \in \mathbb{P}_n$ . Combining this with the result from (a) and  $\langle q_n, q_n \rangle = \frac{2}{2n+1}$  gives

$$\alpha_{n+1} = \frac{\langle x q_n, q_{n+1} \rangle}{\langle q_{n+1}, q_{n+1} \rangle} = \frac{n+1}{2n+1} \frac{\langle q_{n+1}, q_{n+1} \rangle}{\langle q_{n+1}, q_{n+1} \rangle} + \langle p, q_{n+1} \rangle = \frac{n+1}{2n+1}$$

and

$$\alpha_{n-1} = \frac{\langle x q_n, q_{n-1} \rangle}{\langle q_{n-1}, q_{n-1} \rangle} = \frac{\langle q_n, x q_{n-1} \rangle}{\langle q_{n-1}, q_{n-1} \rangle} = \frac{n}{2n-1} \frac{\langle q_n, q_n \rangle}{\langle q_{n-1}, q_{n-1} \rangle} = \frac{n}{2n-1} \frac{2n-1}{2n+1} = \frac{n}{2n+1}$$

This gives,

$$x q_n = \frac{n+1}{2n+1} q_{n+1} + \frac{n}{2n+1} q_{n-1}$$

which implies

$$(n+1) q_{n+1} = (2n+1) x q_n - n q_{n-1}$$

which is the desired three-term recurrence relation.

**Problem 2.** Using Theorem 2.12, show that any root  $\lambda$  of the Legendre polynomial  $q_{n+1}$  is also a root of  $\det(\lambda B - A)$  with

$$B = \begin{bmatrix} 1 & & & \\ & 3 & & \\ & & \ddots & \\ & & & 2n+1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & & \\ 1 & 0 & 2 & \\ & \ddots & \ddots & \\ 2 & \ddots & \ddots & n \\ \ddots & \ddots & \ddots & n \\ n & 0 & & \end{bmatrix}$$

Verify this statement for small  $n$  (say  $n = 1, 2$ ) in Python with `scipy.linalg.eigvalsh(A, B)`.

**Solution.** Define the following vector, depending on  $x$

$$q(x) = \begin{bmatrix} q_0(x) \\ q_1(x) \\ \vdots \\ q_n(x) \end{bmatrix}$$

by the three-term recurrence relation we can see that

$$(n+1)q_{n+1}(x)e_{n+1} + Aq(x) = xBq(x) \quad (4)$$

If  $\lambda$  is a root of  $q_{n+1}$  then we see that (4) turns into

$$Aq(\lambda) = \lambda Bq(\lambda) \Leftrightarrow 0 = \lambda Bq(\lambda) - Aq(\lambda) \Leftrightarrow \det(\lambda B - A) = 0$$

The solution to the Python implementation is available in the Jupyter notebook `serie05-sol.ipynb` on Moodle.

**Problem 3. (Python)** Consider the logarithmic spiral curve, whose  $x$ - and  $y$ -coordinate at time  $t$  is given by

$$\begin{cases} x(t) = \exp(-at) \cos(t), \\ y(t) = \exp(-at) \sin(t); \end{cases} \quad t \in [0, 8\pi]. \quad (5)$$

The parameter  $a > 0$  controls how rapidly the spiral curves inward.

- Write a Python function which approximates the length of the logarithmic spiral (5). Specifically, ask Chat-GPT to give you the formula for computing the length of a general, smooth curve. Approximate the integral in this formula using the simple Gaussian quadrature with  $n = 5$  quadrature points, which is implemented in `scipy.integrate.fixed_quad`/`sp.integrate.fixed_quad`. Use your function to compute the length of the logarithmic spiral (5) for  $a = 0.1$  and  $a = 0.5$ .
- Compute the exact length of the logarithmic spiral. Specifically, Ask Chat-GPT to (analytically) compute the length of the logarithmic spiral with the formula it gave you previously. Evaluate the expression for  $a = 0.1$  and  $a = 0.5$ . How far away are they from the approximation?

*Warning:* It often happens that Chat-GPT gives a wrong answer. Verify that every step in the provided explanation is reasonable, and correct it if necessary.

- Visualize the logarithmic spiral for  $a = 0.1$  and  $a = 0.5$  along with the 5 quadrature nodes of the simple Gaussian quadrature. You can obtain the nodes for the interval  $[-1, 1]$  with the function `scipy.special.roots_legendre`/`sp.special.roots_legendre`, but will have to rescale them to the interval  $[0, 8\pi]$ . Use their locations to explain why the approximation error is significantly larger for one of the values of  $a$ .

**Solution.** Available in the Jupyter notebook `serie05-sol.ipynb` on Moodle.