
Solution 5 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed
in the beginning of the lecture on Thursday, March 27. The exercises marked with (⋆) are
graded homework. The exercises marked with (Python) are implementation based and can
be solved in the Jupyter notebooks which are available on Moodle/Noto. The deadline for
submitting your solutions to the homework is Friday, March 28 at 10h15.

Quiz
(a) Consider a linear system Ax = b with a given matrix A ∈ Rn×n and a right-hand side

b. Which of the following statements are correct?
(i) The linear system has a solution if and only if A is invertible (that is, det A ̸= 0).

□ True ■ False

(ii) If A is not invertible then there is either no solution or infinitely many solutions.

■ True □ False

(iii) A random matrix (that is, a matrix with independent normally distributed entries)
is invertible with probability 1.

■ True □ False

(b) What is the complexity of Gaussian elimination for solving Ax = b?

□ O(n)

□ O(n!)

■ O(n3)

□ O(n2)

(c) Let ∥ · ∥p denote the ℓp norm of a vector for 1 ≤ p ≤ ∞. Which of the following
statements are correct?
(i) ∥x∥1 ≤ n∥x∥∞ and ∥x∥∞ ≤ ∥x∥1 for x ∈ Rn

■ True □ False

(ii) ∥x∥2 ≤
√

n∥x∥1 and ∥x∥1 ≤ ∥x∥2 for x ∈ Rn

□ True ■ False

(iii) |⟨x, y⟩| ≤ ∥x∥p∥y∥p for x, y ∈ Rn and any 1 ≤ p ≤ ∞
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□ True ■ False

(iv) ∥ · ∥p is not a norm for p = 1/2

■ True □ False

Solution.

(a) (i) Numerous counter-examples exist. For example

Ax =
(

1 0
0 0

)(
x1
x2

)
=
(

1
0

)
= b

has infinitely many solutions, despite det A = 0.

(ii) If det A = 0, then the kernel of A is non-trivial. Thus, if x solves Ax = b, then
also A(x + y) = b for any y ∈ ker(A), giving rise to infinitely many solutions
x + y.

(iii) The probability that pairwise distinct columns of this matrix are linearly depen-
dent is zero. Hence, it is invertible with probability 1.

(b) See algorithm (there are three nested for-loops).

(c) (i) We can bound

∥x∥1 = |x1| + |x2| + · · · + |xn| ≤ n max
i=1,2,...,n

|xi| = n∥x∥∞

and
∥x∥∞ = max

i=1,2,...,n
|xi| ≤ |x1| + |x2| + · · · + |xn| = ∥x∥1.

(ii) There exist many counter-examples. For instance x = (1, 1)⊤ has ∥x∥1 = 1+1 = 2
whereas ∥x∥2 =

√
12 + 12 =

√
2.

(iii) The inequality often does not hold, for example for p = ∞ if x = y = (1, 1)⊤:

|⟨x, y⟩| = |⟨(1, 1)⊤, (1, 1)⊤⟩| = |1 + 1| = 2

but
∥x∥∞∥y∥∞ = ∥(1, 1)⊤∥∞∥(1, 1)⊤∥∞ = 1 · 1 = 1

(iv) The triangle inequality does not hold. Consider for instance x = (1, 0)⊤ and
y = (0, 1)⊤:

∥x + y∥1/2 = ∥(1, 1)⊤∥1/2 = (
√

1 +
√

1)2 = 4

but
∥x∥1/2 + ∥y∥1/2 = ∥(1, 0)⊤∥1/2+∥(0, 1)⊤∥1/2 = 1 + 1 = 2
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Exercises
Problem 1. The goal of this exercise is to prove Theorem 2.12; the three-term recurrence
relation for the Legendre polynomials defined in the lecture notes:

(n + 1)qn+1(x) = (2n + 1)xqn(x) − nqn−1(x), |x| < 1. (1)

(a) Using that q0, . . . , qn is an orthogonal basis for Pn, we consider the expansion

xqn =
n+1∑
i=0

αiqi, αi = ⟨xqn, qi⟩
⟨qi, qi⟩

,

where ⟨·, ·⟩ denotes the L2 inner product on [−1, 1]. Show that αi = 0 except for
i = n − 1, n + 1.

(b) Use Theorem 2.11 to determine the leading coefficient of qn and use this to show that

2n + 1
n + 1 xqn − qn+1 ∈ Pn

(c) Using (b), compute αn−1 and αn+1. You may use ⟨qn, qn⟩ = 2
2n+1 . From this deduce

the recurrence relation (1).

Bonus: Prove ⟨qn, qn⟩ = 2
2n+1 using Theorem 2.12.

Solution.

(a) Let i ̸= n − 1, n, n + 1. Then αi = ⟨xqn, qi⟩ = ⟨qn, xqi⟩ = 0 because xqi is of degree at
most n − 1 and qn is orthogonal to all such polynomials.

Now, if i = n we have αn =
∫ 1

−1 xqn(x)2dx. Now, if we show that qn is even/odd for
even/odd n we can show αn = 0 ∵ xq2

n is odd which implies αn = 0.

We show this by induction. For n = 0 this follows immediately from that q0(x) = 1 is
an odd function. Similarly, for n = 1 it is clear that q1(x) = x is odd.

Hence, now suppose that our hypothesis holds up to some n ∈ N. Then, if c is
some constant we know

cqn+1(x) = xn+1 −
n∑

i=0

⟨xn+1, qi⟩
⟨qi, qi⟩

qi(x)

= xn+1 − ⟨xn−1, qn−1⟩
⟨qn−1, qn−1⟩

qn−1(x) − ⟨xn−3, qn−3⟩
⟨qn−3, qn−3⟩

qn−3(x) − · · ·

Because if n + 1 is even/odd we know from our inductive assumption ⟨xn+1, qi⟩ = 0 for
odd/even i. Hence, qn+1 is a sum of even/odd functions. Thus, qn+1 is even/odd.

(b) From Theorem 2.11 we know that the leading coefficient of qn is (2n)!
(n!)22n , since the

leading coefficient of dn

dxn [(x2 − 1)n] is (2n)!
n! .
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To prove this, we can write: (x2 − 1)n =
∑n

k=0
(n

k

)
(−1)n−kx2k and hence:

dn

dxn
[(x2 − 1)n] =

n∑
k=0

(
n

k

)
(−1)n−k dnx2k

dxn
(2)

=
n∑

k=0

(
n

k

)
(−1)n−k(2k)(2k − 1) . . . (2k − n + 1)︸ ︷︷ ︸

ak

x2k−n (3)

It is possible to find the leading coefficient as the one corresponding to the index k = n,
that is an =

(n
n

)
(2n)(2n − 1) . . . (n + 1) = (2n)!

n!

This implies that 2n+1
n+1 xqn − qn+1 ∈ Pn because

2n + 1
n + 1

(2n)!
(n!)22n

= (n + 1)(2n + 1)!
(n + 1)(n + 1)!n!2n

= (2n + 2)(2n + 1)!
((n + 1)!)22n+1 = (2n + 2)!

((n + 1)!)22n+1

(c) The result from (b) implies that xqn = n+1
2n+1qn+1 + p for some p ∈ Pn. Combining this

with the result from (a) and ⟨qn, qn⟩ = 2
2n+1 gives

αn+1 = ⟨xqn, qn+1⟩
⟨qn+1, qn+1⟩

= n + 1
2n + 1

⟨qn+1, qn+1⟩
⟨qn+1, qn+1⟩

+ ⟨p, qn+1⟩ = n + 1
2n + 1

and

αn−1 = ⟨xqn, qn−1⟩
⟨qn−1, qn−1⟩

= ⟨qn, xqn−1⟩
⟨qn−1, qn−1⟩

= n

2n − 1
⟨qn, qn⟩

⟨qn−1, qn−1⟩
= n

2n − 1
2n − 1
2n + 1 = n

2n + 1

This gives,
xqn = n + 1

2n + 1qn+1 + n

2n + 1qn−1

which implies
(n + 1)qn+1 = (2n + 1)xqn − nqn−1

which is the desired three-term recurrence relation.

Problem 2. Using Theorem 2.12, show that any root λ of the Legendre polynomial qn+1 is
also a root of det(λB − A) with

B =


1

3
. . .

2n + 1

 , A =



0 1
1 0 2

2 . . . . . .
. . . . . . n

n 0


Verify this statement for small n (say n = 1, 2) in Python with scipy.linalg.eigvalsh(A,B).
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Solution. Define the following vector, depending on x

q(x) =


q0(x)
q1(x)

...
qn(x)


by the three-term recurrence relation be can see that

(n + 1)qn+1(x)en+1 + Aq(x) = xBq(x) (4)

If λ is a root of qn+1 then we see that (4) turns into

Aq(λ) = λBq(λ) ⇔ 0 = λBq(λ) − Aq(λ) ⇔ det(λB − A) = 0

The solution to the Python implementation is available in the Jupyter notebook serie05-sol.ipynb
on Moodle.

Problem 3. (Python) Consider the logarithmic spiral curve, whose x- and y-coordinate at
time t is given by {

x(t) = exp(−at) cos(t),
y(t) = exp(−at) sin(t);

t ∈ [0, 8π]. (5)

The parameter a > 0 controls how rapidly the spiral curves inward.

(a) Write a Python function which approximates the length of the logarithmic spiral
(5). Specifically, ask Chat-GPT to give you the formula for computing the length
of a general, smooth curve. Approximate the integral in this formula using the
simple Gaussian quadrature with n = 5 quadrature points, which is implemented
in scipy.integrate.fixed_quad/sp.integrate.fixed_quad. Use your function to
compute the length of the logarithmic spiral (5) for a = 0.1 and a = 0.5.

(b) Compute the exact length of the logarithmic spiral. Specifically, Ask Chat-GPT to
(analytically) compute the length of the logarithmic spiral with the formula it gave
you previously. Evaluate the expression for a = 0.1 and a = 0.5. How far away are
they from the approximation?
Warning: It often happens that Chat-GPT gives a wrong answer. Verify that every
step in the provided explanation is reasonable, and correct it if necessary.

(c) Visualize the logarithmic spiral for a = 0.1 and a = 0.5 along with the 5 quadra-
ture nodes of the simple Gaussian quadrature. You can obtain the nodes for the interval
[−1, 1] with the function scipy.special.roots_legendre/sp.special.roots_legendre,
but will have to rescale them to the interval [0, 8π]. Use their locations to explain why
the approximation error is significantly larger for one of the values of a.

Solution. Available in the Jupyter notebook serie05-sol.ipynb on Moodle.
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