
Exercise set 5 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed
in the beginning of the lecture on Thursday, March 27. The exercises marked with (⋆) are
graded homework. The exercises marked with (Python) are implementation based and can
be solved in the Jupyter notebooks which are available on Moodle/Noto. The deadline for
submitting your solutions to the homework is Friday, March 28 at 10h15.

Quiz
(a) Consider a linear system Ax = b with a given matrix A ∈ Rn×n and a right-hand side

b. Which of the following statements are correct?
(i) The linear system has a solution if and only if A is invertible (that is, det A ̸= 0).

□ True □ False

(ii) If A is not invertible then there is either no solution or infinitely many solutions.

□ True □ False

(iii) A random matrix (that is, a matrix with independent normally distributed entries)
is invertible with probability 1.

□ True □ False

(b) What is the complexity of Gaussian elimination for solving Ax = b?

□ O(n)

□ O(n!)

□ O(n3)

□ O(n2)

(c) Let ∥ · ∥p denote the ℓp norm of a vector for 1 ≤ p ≤ ∞. Which of the following
statements are correct?
(i) ∥x∥1 ≤ n∥x∥∞ and ∥x∥∞ ≤ ∥x∥1 for x ∈ Rn

□ True □ False

(ii) ∥x∥2 ≤
√

n∥x∥1 and ∥x∥1 ≤ ∥x∥2 for x ∈ Rn

□ True □ False

(iii) |⟨x, y⟩| ≤ ∥x∥p∥y∥p for x, y ∈ Rn and any 1 ≤ p ≤ ∞
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□ True □ False

(iv) ∥ · ∥p is not a norm for p = 1/2

□ True □ False

Exercises
Problem 1. The goal of this exercise is to prove Theorem 2.12; the three-term recurrence
relation for the Legendre polynomials defined in the lecture notes:

(n + 1)qn+1(x) = (2n + 1)xqn(x) − nqn−1(x), |x| < 1. (1)

(a) Using that q0, . . . , qn is an orthogonal basis for Pn, we consider the expansion

xqn =
n+1∑
i=0

αiqi, αi = ⟨xqn, qi⟩
⟨qi, qi⟩

,

where ⟨·, ·⟩ denotes the L2 inner product on [−1, 1]. Show that αi = 0 except for
i = n − 1, n + 1.

(b) Use Theorem 2.11 to determine the leading coefficient of qn and use this to show that
2n + 1
n + 1 xqn − qn+1 ∈ Pn

(c) Using (b), compute αn−1 and αn+1. You may use ⟨qn, qn⟩ = 2
2n+1 . From this deduce

the recurrence relation (1).

Bonus: Prove ⟨qn, qn⟩ = 2
2n+1 using Theorem 2.12.

Problem 2. Using Theorem 2.12, show that any root λ of the Legendre polynomial qn+1 is
also a root of det(λB − A) with

B =


1

3
. . .

2n + 1

 , A =



0 1
1 0 2

2 . . . . . .
. . . . . . n

n 0


Verify this statement for small n (say n = 1, 2) in Python with scipy.linalg.eigvalsh(A,B).

Bonus: Prove Theorem 2.15 using this result.

Problem 3. (Python) Consider the logarithmic spiral curve, whose x- and y-coordinate at
time t is given by {

x(t) = exp(−at) cos(t),
y(t) = exp(−at) sin(t);

t ∈ [0, 8π]. (2)
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The parameter a > 0 controls how rapidly the spiral curves inward.

(a) Write a Python function which approximates the length of the logarithmic spiral
(2). Specifically, ask Chat-GPT to give you the formula for computing the length
of a general, smooth curve. Approximate the integral in this formula using the
simple Gaussian quadrature with n = 5 quadrature points, which is implemented
in scipy.integrate.fixed_quad/sp.integrate.fixed_quad. Use your function to
compute the length of the logarithmic spiral (2) for a = 0.1 and a = 0.5.

(b) Compute the exact length of the logarithmic spiral. Specifically, Ask Chat-GPT to
(analytically) compute the length of the logarithmic spiral with the formula it gave
you previously. Evaluate the expression for a = 0.1 and a = 0.5. How far away are
they from the approximation?
Warning: It often happens that Chat-GPT gives a wrong answer. Verify that every
step in the provided explanation is reasonable, and correct it if necessary.

(c) Visualize the logarithmic spiral for a = 0.1 and a = 0.5 along with the 5 quadra-
ture nodes of the simple Gaussian quadrature. You can obtain the nodes for the interval
[−1, 1] with the function scipy.special.roots_legendre/sp.special.roots_legendre,
but will have to rescale them to the interval [0, 8π]. Use their locations to explain why
the approximation error is significantly larger for one of the values of a.

(⋆) Problem 4.

We consider the integral ∫ 1

−1
f(x)w(x) dx, w(x) = 1√

1 − x2
.

Additionally, we define the following inner product

⟨u, v⟩w =
1∫

−1

u(x)v(x)w(x) dx. (3)

(a) Consider

In =
1∫

−1

xnw(x) dx.

For n odd, meaning that n ≡ 1 mod 2, explain why In = 0. Compute the value of I0.
For even n, meaning n ≡ 0 mod 2, derive the recurrence relation

In = n − 1
n

In−2.

(b) Apply the Gram-Schmidt algorithm to orthogonalize the monomials 1, x, x2, x3 with
respect to the inner product ⟨·, ·⟩w as defined in (3). Use the result from (a) to perform
these calculations. Normalize the resulting orthogonal polynomials p0, p1, p2, and p3
such that pi(1) = 1 for i = 0, 1, 2, 3.
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It turns out that the resulting polynomials, orthogonal with respect to the scalar
product defined in (3), are the so called Chebyshev polynomials, and it can be shown
that the roots of pn+1 are the Chebyshev nodes

xi = cos
(

π
2i + 1

2(n + 1)

)
, i = 0, 1 . . . , n.

Write a Python script that verifies this equality. For the handling of polynomials,
NumPy provides the class numpy.polynomial.polynomial.Polynomial. Use this
class and its associated function roots to compute the roots.

Hint: The Jupyter notebook provided on Moodle imports the Polynomial class under
the alias poly. Hence, you can directly call poly to create your polynomials.

(c) Now let pn+1 ∈ Pn+1 be the polynomial that is orthogonal to Pn with respect to (3) and
satisfies pn+1(1) = 1. The polynomial pn+1 has n+1 distinct roots x0, . . . , xn ∈ (−1, 1),
defined above. Consider the quadrature rule defined by

Qn[f ] =
n∑

i=0
αif(xi), αi =

1∫
−1

ℓi(x)w(x) dx,

where ℓ0, ℓ1, . . . , ℓn are the usual Lagrange polynomials associated with x0, x1, . . . , xn.

Show that the quadrature rule Qn has order 2n + 2 for the weighted integral, that is,

Qn[p] =
1∫

−1

p(x)w(x) dx ∀p ∈ P2n+1.

Hint: Adapt the arguments made in the beginning of Section 2.5 in the lecture notes.

(d) Write a Python function cheb_quad(f, num) implementing the quadrature rule Qn[f ]
from (c) using the weights

αi = π

n + 1 , i = 1, 2, . . . , n.

Apply Qn[f ] to f1(x) = |x|1/5

|x+2|+|x−2| and f2(x) = exp (−x2)
cos x|x| for n = 1, 2, . . . , 1000. Display

the approximation errors of f1 on a loglog plot, and the approximation errors of f2 on
a semilogy plot, with the x-axis showing the number of nodes n. For the computation
of the reference integral you can use SciPy’s integration module with the function
scipy.integrate.quad(f, -1, 1, epsabs=1e-16). Make sure you use the correct
function f !

Remember to upload a scan homework05.pdf of your solutions and the completed Jupyter
notebook homework05.ipynb corresponding to the homework to the submission panel on
Moodle until Friday, March 28 at 10h15. To download your notebook from Noto, use File
> Download. Only your submissions to Moodle will be considered for grading.
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