SOLUTION 4 - MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 20. The exercises marked
with (%) are graded homework. The deadline for submitting your solutions to the homework
is Friday, March 21 at 10h15.

Quiz
(a) Given a function f € C*([a,b]), we consider the composite trapezoidal rule Q;Ll)[ f]

and the composite Simpson rule QEZQ) [f] on the interval [a,b]. Which of the following
statements are correct?

(i) lim Q1) = lim Q”[f) = J} f(x) da.
B True O False
(i) Q1 = fi f(a) da| < QY7 1f) - Jy f(@) dal if h < H.
O True B False
(iii) ]Qf) [f] —f: f(z)dz| < \Qg)[ﬂ —ff f(z) dz| for all sufficiently small values h > 0.

O True B False
(iv) If f(z) > 0 for all = € [a, b] then

b
0<@1N< [ @

O True B False

(v) If f is convex on [a, b] then

@ﬁmzLZ@Mm

B True O False

Solution.
(a) (i) See error bounds (Theorem 2.6 in Lecture Notes).

(ii) There are many counter-examples for this. In fact, every function f with f(—1) =
—l and f(1) =1 and f_ll f(x) de =0 but f(0) # 0 has an exact approximation
for H = 2, but not for h = 1.

(iii) There always exist similar counter-examples as the one in (ii).



(iv) The first inequality always holds. For the second inequality there exist many
counter-examples. For example the function f(z) = 22 on the interval [—1,1] for
h = 2 violates it:

f(x)

—_ —1— —_—

-1 1

(v) For a convex function f, any line connecting two function values lies entirely
above or on f. Hence, the trapezoidal rule will always over estimate the integral
on all subintervals:

/()

—_— 1 —_—>

-1 1

Exercises (Exercises marked (x) will be graded.)

Problem 1.

(a) Compute the approximation errors for the trapezoidal rule and Simpson rule applied
to the integrals:
1 1
/ z*dz  and / 20 dx
0 0

(b) Find C such that the trapezoidal rule gives the exact result for the integral

1
/ 2° — Ozt dax.
0

(c) Show that the trapezoidal rule gives a better approximation than the Simpson rule in
the case that % <C< %.

Solution.



(a) Let QE‘SJ] [f] and Q%,l} [f] be the approximate integral of any function f defined on

[0, 1] obtained, respectively, with the trapezoidal rule and Simpson rule. Then

1 )
/0 2idr — Q[T(M] _
1 ]
/0 2°dx — Q[j&” _
1 ]
/0 2ide — Q[%J] _

1 o
/0 z’da — Qﬁ;,l] _;U5_

11 3
5 27 0
11 1
6 27 3
1 5 1
=5 a2 1w
19 1
6 &

The errors are then the absolute values of each expression.

(b) Using the results in the previous question and since both the integral and the quadrature
rules are linear, one can verify that

/01 (3;5 _ Cx4) dz — Q[T[M] [xs) _ Cmﬂ _ 1 N 3

Therefore, the trapezoidal rule is exact if iC’ -

Similarly, for the Simpson rule

/01 (:U5 — C’:U4) dzr —

—C.
3 10
1 . 10
10 5—0, that is, whenC—j.
1 1
s 5 4] 41
Qi [2° - €] = 18 120

1 1 5
Therefore, the Simpson rule is exact if —C — — = 0, that is, when C' = —.

120 48 2

(c) Based on the previous question, the trapezoidal rule gives a better approximation than

the Simpson rule when

3
10

1 1 1
‘J<1m0‘@-

This inequality is satisfied whenever C'y < C' < Cs where

3

10 '
3~
10 2

85

. 15
That is, Ch = 1 and Cy = 7k

Problem 2.

R
120 ' 48

1
-
1 1 1

3—‘(m&3‘@)

Let {b;}Y, € R and {¢;}Y, € [0,1] define a quadrature rule Q[f] = SN, b; f(c;) with
N € N nodes for approximating fol f(z)dz. The quadrature rule @ is called symmetric if

ci=1—cnq1—;and by =byy1_y, foralle=1,2,...

,N.



Show that any symmetric quadrature rule has an even order, that is if @) is exact for
polynomials of degree < 2m — 2 for some m € N, then it is automatically exact for
polynomials of degree 2m — 1.

Solution. Let @ be a symmetric quadrature rule on [0, 1], and assume that it is exact for
all polynomials of degree at most 2m — 2 for some m € N. Thanks to polynomial division,
every polynomial g of degree 2m — 1 can be rewritten as

s =c(t-2)"" a0,

where ¢1(t) has degree < 2m — 2. Since @ integrates exactly g; by hypothesis, then it is
2m—1
enough to show that the symmetric quadrature formula @ is exact for h(t) := (t — %) "

in order to conclude. Since h(t) is symmetric around the value % which is the middle point
of the integration interval [0, 1], then the exact value of its integral is

/Olh(t)dt:/ol (t— ;)m_l dt = 0.

Moreover, since @) is symmetric, then for all i = 1,...,s,

2

1 2m—1 1 2m—1
—bi (Ci—Q) +b2‘ (2—62‘) =

1 2m—1 1 2m—1
bih(ci) 4+ bs—1—ih(cs—1—i) = b; <Ci - > + b1 (Cs-‘,-l—i - 2>
0.

Therefore, if s is even,

s

S 2 1
Qh) = bih(ci) = 3 [bihlcs) + ba1ih(cs 1)) =0 = /0 h(t)dt,
i=1 i=1
and if s is odd, then Ccrs] = 1— crs and thus Clgj+1 = C[3] = % Therefore, from the same

previous reasoning and since h (%) = 0, then

,_
(NI

J

1 1
cumzA1wmwn+m44m%4%n+w@w(2):ozl;M@a.

(2

Problem 3.
We wish to approximate ,
luglf) = [ (@) do
using the midpoint rule, where f € C?([a, b]).
Let Q[q,[f] denote the midpoint rule. We know from Theorem 2.5 that

(b—a)®

1"
11

|I[a,b] [f] - Q[a,b} [f” <



where || f’[loc = sup [f"(z)|. Let z; = a+ih for i =0,1,...,N and h = 2. Let Qx(f)

z€la,b
denote the composite midpoint rule, where we apply the midpoint rule to each of the N
subintervals of length h.

(a) Derive an upper bound for the approximation error of the composite midpoint rule:

|Qnlf] = L0 ] (1)

(b) Let [a,b] = [0,1] and f(z) = exp (—2?) and fix ¢ > 0. Using your result from (a), find
the value for N such that (1) is guaranteed to be smaller than e.

(¢) Implement a Python function midpoint_rule(f, a, b, N) for the composite mid-
point rule. With the functions fi(z) = /x and fa(x) = ﬁ in [a,b] = [0,1] dis-
play |Qn[f] — Ijq4[f]| with respect to NV or h on a doubly logarithmic plot (use the
matplotlib function matplotlib.pyplot.loglog/plt.loglog). Using these plots,
find suitable values of p that describe the asymptotic behavior O(N~P) of the error for

f1 and fo, respectively.
Solution.

(a) The composite quadrature rule is given by

N-1
= Z Q[:cz,a:l+1][f}
=0

and we also have

N-1
a b] Z Izl,szrl]
=0
Hence, the error is
N-1
|Qh[f] - I[a,b} [f” = Z Q[xi,mi_,_ﬂ [f] - I[xi,:vi_H]
1=0
N-1
|Q[:cz,azz+1 [f] - I[xi,xi+1] [f”
=0
N-1 3
(xi—',-l - .’E,) "
<), ———— sup |[f(=)
i=0 24 TE€[x;,Tiq1]
N-—1
" 3
< ﬂ”f oo ;) (iv1 — @)
_yb=ap (b—a)® .,
= N o = L

(b) Let E(N) = |Qh[ | = Ia4[f]]- By differentiating f(z) = e~ twice we get f(z) =
(422 — 2)e™". We also have f"(z) = —(823 — 122)e™*" > 0 Vz € [0,1]. Hence, the
maximum of |f”| is attained at either z = 0 or z = 1. By checking both endpoints



we see that |f”(0)| = 2 is the maximum value. Hence, ||f”||oc = 2. Thus, the upper
bound guaranteed by the result in (a) gives

E(N) <

1
= N
1282 <°¢ ~ 03k

Hence, N = [ﬁ} would suffice.

(c¢) Available in the Jupyter notebook serie04-sol.ipynb on Moodle.



