

SOLUTION 4 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed in the beginning of the lecture on Thursday, March 20. The exercises marked with (\star) are graded homework. **The deadline for submitting your solutions to the homework is Friday, March 21 at 10h15.**

Quiz

(a) Given a function $f \in C^\infty([a, b])$, we consider the composite trapezoidal rule $Q_h^{(1)}[f]$ and the composite Simpson rule $Q_h^{(2)}[f]$ on the interval $[a, b]$. Which of the following statements are correct?

(i) $\lim_{h \rightarrow 0} Q_h^{(1)}[f] = \lim_{h \rightarrow 0} Q_h^{(2)}[f] = \int_a^b f(x) dx.$

True False

(ii) $|Q_h^{(1)}[f] - \int_a^b f(x) dx| \leq |Q_H^{(1)}[f] - \int_a^b f(x) dx|$ if $h \leq H$.

True False

(iii) $|Q_h^{(2)}[f] - \int_a^b f(x) dx| \leq |Q_h^{(1)}[f] - \int_a^b f(x) dx|$ for all sufficiently small values $h > 0$.

True False

(iv) If $f(x) \geq 0$ for all $x \in [a, b]$ then

$$0 \leq Q_h^{(1)}[f] \leq \int_a^b f(x) dx.$$

True False

(v) If f is convex on $[a, b]$ then

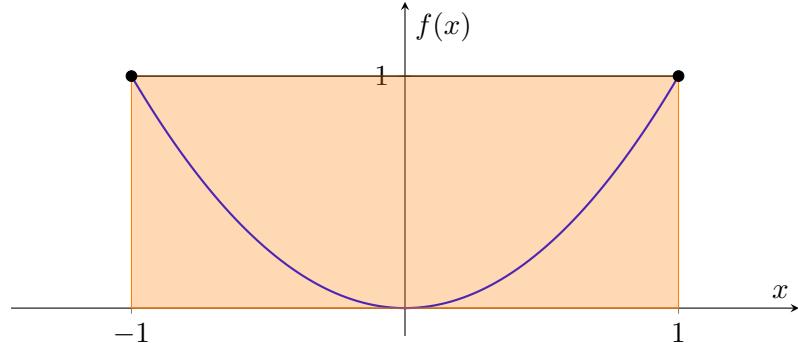
$$Q_h^{(1)}[f] \geq \int_a^b f(x) dx.$$

True False

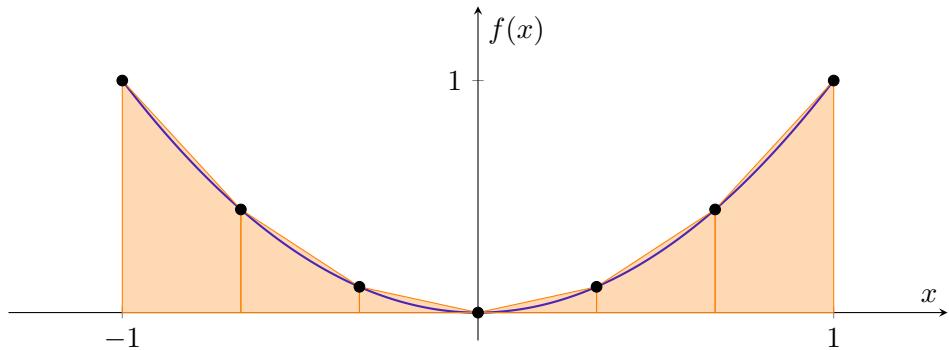
Solution.

- (a) (i) See error bounds (Theorem 2.6 in Lecture Notes).
- (ii) There are many counter-examples for this. In fact, every function f with $f(-1) = -1$ and $f(1) = 1$ and $\int_{-1}^1 f(x) dx = 0$ but $f(0) \neq 0$ has an exact approximation for $H = 2$, but not for $h = 1$.
- (iii) There always exist similar counter-examples as the one in (ii).

- (iv) The first inequality always holds. For the second inequality there exist many counter-examples. For example the function $f(x) = x^2$ on the interval $[-1, 1]$ for $h = 2$ violates it:



- (v) For a convex function f , any line connecting two function values lies entirely above or on f . Hence, the trapezoidal rule will always over estimate the integral on all subintervals:



Exercises (Exercises marked (\star) will be graded.)

Problem 1.

- (a) Compute the approximation errors for the trapezoidal rule and Simpson rule applied to the integrals:

$$\int_0^1 x^4 dx \quad \text{and} \quad \int_0^1 x^5 dx$$

- (b) Find C such that the trapezoidal rule gives the exact result for the integral

$$\int_0^1 x^5 - Cx^4 dx.$$

- (c) Show that the trapezoidal rule gives a better approximation than the Simpson rule in the case that $\frac{15}{14} < C < \frac{85}{74}$.

Solution.

- (a) Let $Q_{[0,1]}^T[f]$ and $Q_{[0,1]}^S[f]$ be the approximate integral of any function f defined on $[0, 1]$ obtained, respectively, with the trapezoidal rule and Simpson rule. Then

$$\begin{aligned}\int_0^1 x^4 dx - Q_{[0,1]}^T[x^4] &= \frac{1}{5} - \frac{1}{2} = -\frac{3}{10}; \\ \int_0^1 x^5 dx - Q_{[0,1]}^T[x^5] &= \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}; \\ \int_0^1 x^4 dx - Q_{[0,1]}^S[x^4] &= \frac{1}{5} - \frac{5}{24} = -\frac{1}{120}; \\ \int_0^1 x^5 dx - Q_{[0,1]}^S[x^5] &= \frac{1}{6} - \frac{9}{48} = -\frac{1}{48}.\end{aligned}$$

The errors are then the absolute values of each expression.

- (b) Using the results in the previous question and since both the integral and the quadrature rules are linear, one can verify that

$$\int_0^1 (x^5 - Cx^4) dx - Q_{[0,1]}^T[x^5 - Cx^4] = -\frac{1}{3} + \frac{3}{10}C.$$

Therefore, the trapezoidal rule is exact if $\frac{3}{10}C - \frac{1}{3} = 0$, that is, when $C = \frac{10}{9}$.

Similarly, for the Simpson rule

$$\int_0^1 (x^5 - Cx^4) dx - Q_{[0,1]}^S[x^5 - Cx^4] = -\frac{1}{48} + \frac{1}{120}C.$$

Therefore, the Simpson rule is exact if $\frac{1}{120}C - \frac{1}{48} = 0$, that is, when $C = \frac{5}{2}$.

- (c) Based on the previous question, the trapezoidal rule gives a better approximation than the Simpson rule when

$$\left| \frac{3}{10}C - \frac{1}{3} \right| < \left| \frac{1}{120}C - \frac{1}{48} \right|.$$

This inequality is satisfied whenever $C_1 < C < C_2$ where

$$\begin{aligned}\frac{3}{10}C_1 - \frac{1}{3} &= \frac{1}{120}C_1 - \frac{1}{48} \\ \frac{3}{10}C_2 - \frac{1}{3} &= -\left(\frac{1}{120}C_2 - \frac{1}{48} \right).\end{aligned}$$

That is, $C_1 = \frac{15}{14}$ and $C_2 = \frac{85}{74}$.

Problem 2.

Let $\{b_i\}_{i=1}^N \subset \mathbb{R}$ and $\{c_i\}_{i=1}^N \subset [0, 1]$ define a quadrature rule $Q[f] = \sum_{i=1}^N b_i f(c_i)$ with $N \in \mathbb{N}$ nodes for approximating $\int_0^1 f(x) dx$. The quadrature rule Q is called *symmetric* if $c_i = 1 - c_{N+1-i}$ and $b_i = b_{N+1-i}$, for all $i = 1, 2, \dots, N$.

Show that any symmetric quadrature rule has an even order, that is if Q is exact for polynomials of degree $\leq 2m - 2$ for some $m \in \mathbb{N}$, then it is automatically exact for polynomials of degree $2m - 1$.

Solution. Let Q be a symmetric quadrature rule on $[0, 1]$, and assume that it is exact for all polynomials of degree at most $2m - 2$ for some $m \in \mathbb{N}$. Thanks to polynomial division, every polynomial g of degree $2m - 1$ can be rewritten as

$$g(t) = C \left(t - \frac{1}{2} \right)^{2m-1} + g_1(t),$$

where $g_1(t)$ has degree $\leq 2m - 2$. Since Q integrates exactly g_1 by hypothesis, then it is enough to show that the symmetric quadrature formula Q is exact for $h(t) := \left(t - \frac{1}{2} \right)^{2m-1}$ in order to conclude. Since $h(t)$ is symmetric around the value $\frac{1}{2}$ which is the middle point of the integration interval $[0, 1]$, then the exact value of its integral is

$$\int_0^1 h(t) dt = \int_0^1 \left(t - \frac{1}{2} \right)^{2m-1} dt = 0.$$

Moreover, since Q is symmetric, then for all $i = 1, \dots, s$,

$$\begin{aligned} b_i h(c_i) + b_{s-1-i} h(c_{s-1-i}) &= b_i \left(c_i - \frac{1}{2} \right)^{2m-1} + b_{s-1-i} \left(c_{s+1-i} - \frac{1}{2} \right)^{2m-1} \\ &= b_i \left(c_i - \frac{1}{2} \right)^{2m-1} + b_i \left(\frac{1}{2} - c_i \right)^{2m-1} = 0. \end{aligned}$$

Therefore, if s is even,

$$Q[h] = \sum_{i=1}^s b_i h(c_i) = \sum_{i=1}^{\frac{s}{2}} [b_i h(c_i) + b_{s-1-i} h(c_{s-1-i})] = 0 = \int_0^1 h(t) dt,$$

and if s is odd, then $c_{\lceil \frac{s}{2} \rceil} = 1 - c_{\lceil \frac{s}{2} \rceil}$ and thus $c_{\lceil \frac{s}{2} \rceil + 1} = c_{\lceil \frac{s}{2} \rceil} = \frac{1}{2}$. Therefore, from the same previous reasoning and since $h\left(\frac{1}{2}\right) = 0$, then

$$Q[h] = \sum_{i=1}^{\lceil \frac{s}{2} \rceil} [b_i h(c_i) + b_{s-1-i} h(c_{s-1-i})] + b_{\lceil \frac{s}{2} \rceil} h\left(\frac{1}{2}\right) = 0 = \int_0^1 h(t) dt.$$

Problem 3.

We wish to approximate

$$I_{[a,b]}[f] = \int_a^b f(x) dx$$

using the midpoint rule, where $f \in C^2([a, b])$.

Let $Q_{[a,b]}[f]$ denote the midpoint rule. We know from Theorem 2.5 that

$$|I_{[a,b]}[f] - Q_{[a,b]}[f]| \leq \frac{(b-a)^3}{24} \|f''\|_\infty$$

where $\|f''\|_\infty = \sup_{x \in [a,b]} |f''(x)|$. Let $x_i = a + ih$ for $i = 0, 1, \dots, N$ and $h = \frac{b-a}{N}$. Let $Q_h(f)$ denote the composite midpoint rule, where we apply the midpoint rule to each of the N subintervals of length h .

(a) Derive an upper bound for the approximation error of the composite midpoint rule:

$$|Q_h[f] - I_{[a,b]}[f]| \quad (1)$$

(b) Let $[a, b] = [0, 1]$ and $f(x) = \exp(-x^2)$ and fix $\varepsilon > 0$. Using your result from (a), find the value for N such that (1) is guaranteed to be smaller than ε .

(c) Implement a Python function `midpoint_rule(f, a, b, N)` for the composite midpoint rule. With the functions $f_1(x) = \sqrt{x}$ and $f_2(x) = \frac{1}{\sqrt{x}}$ in $[a, b] = [0, 1]$ display $|Q_h[f] - I_{[a,b]}[f]|$ with respect to N or h on a doubly logarithmic plot (use the `matplotlib` function `matplotlib.pyplot.loglog/plt.loglog`). Using these plots, find suitable values of p that describe the asymptotic behavior $\mathcal{O}(N^{-p})$ of the error for f_1 and f_2 , respectively.

Solution.

(a) The composite quadrature rule is given by

$$Q_h[f] = \sum_{i=0}^{N-1} Q_{[x_i, x_{i+1}]}[f]$$

and we also have

$$I_{[a,b]}[f] = \sum_{i=0}^{N-1} I_{[x_i, x_{i+1}]}[f]$$

Hence, the error is

$$\begin{aligned} |Q_h[f] - I_{[a,b]}[f]| &= \left| \sum_{i=0}^{N-1} Q_{[x_i, x_{i+1}]}[f] - I_{[x_i, x_{i+1}]}[f] \right| \\ &\leq \sum_{i=0}^{N-1} |Q_{[x_i, x_{i+1}]}[f] - I_{[x_i, x_{i+1}]}[f]| \\ &\leq \sum_{i=0}^{N-1} \frac{(x_{i+1} - x_i)^3}{24} \sup_{x \in [x_i, x_{i+1}]} |f''(x)| \\ &\leq \frac{1}{24} \|f''\|_\infty \sum_{i=0}^{N-1} (x_{i+1} - x_i)^3 \\ &= N \frac{(b-a)^3}{24N^3} \|f''\|_\infty = \frac{(b-a)^3}{24N^2} \|f''\|_\infty \end{aligned}$$

(b) Let $E(N) = |Q_h[f] - I_{[a,b]}[f]|$. By differentiating $f(x) = e^{-x^2}$ twice we get $f''(x) = (4x^2 - 2)e^{-x^2}$. We also have $f'''(x) = -(8x^3 - 12x)e^{-x^2} \geq 0 \quad \forall x \in [0, 1]$. Hence, the maximum of $|f''|$ is attained at either $x = 0$ or $x = 1$. By checking both endpoints

we see that $|f''(0)| = 2$ is the maximum value. Hence, $\|f''\|_\infty = 2$. Thus, the upper bound guaranteed by the result in (a) gives

$$E(N) \leq \frac{1}{12N^2} < \varepsilon \Rightarrow N > \frac{1}{2\sqrt{3\varepsilon}}$$

Hence, $N = \lceil \frac{1}{2\sqrt{3\varepsilon}} \rceil$ would suffice.

- (c) Available in the Jupyter notebook `serie04-sol.ipynb` on Moodle.