
Solution 4 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 20. The exercises marked
with (⋆) are graded homework. The deadline for submitting your solutions to the homework
is Friday, March 21 at 10h15.

Quiz
(a) Given a function f ∈ C∞([a, b]), we consider the composite trapezoidal rule Q

(1)
h [f ]

and the composite Simpson rule Q
(2)
h [f ] on the interval [a, b]. Which of the following

statements are correct?

(i) lim
h→0

Q
(1)
h [f ] = lim

h→0
Q

(2)
h [f ] =

∫ b
a f(x) dx.

■ True □ False

(ii) |Q(1)
h [f ] −

∫ b
a f(x) dx| ≤ |Q(1)

H [f ] −
∫ b

a f(x) dx| if h ≤ H.

□ True ■ False

(iii) |Q(2)
h [f ]−

∫ b
a f(x) dx| ≤ |Q(1)

h [f ]−
∫ b

a f(x) dx| for all sufficiently small values h > 0.

□ True ■ False

(iv) If f(x) ≥ 0 for all x ∈ [a, b] then

0 ≤ Q
(1)
h [f ] ≤

∫ b

a
f(x) dx.

□ True ■ False

(v) If f is convex on [a, b] then

Q
(1)
h [f ] ≥

∫ b

a
f(x) dx.

■ True □ False

Solution.

(a) (i) See error bounds (Theorem 2.6 in Lecture Notes).

(ii) There are many counter-examples for this. In fact, every function f with f(−1) =
−1 and f(1) = 1 and

∫ 1
−1 f(x) dx = 0 but f(0) ̸= 0 has an exact approximation

for H = 2, but not for h = 1.

(iii) There always exist similar counter-examples as the one in (ii).
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(iv) The first inequality always holds. For the second inequality there exist many
counter-examples. For example the function f(x) = x2 on the interval [−1, 1] for
h = 2 violates it:

−1 1

1

x

f(x)

(v) For a convex function f , any line connecting two function values lies entirely
above or on f . Hence, the trapezoidal rule will always over estimate the integral
on all subintervals:

−1 1

1

x

f(x)

Exercises (Exercises marked (⋆) will be graded.)

Problem 1.

(a) Compute the approximation errors for the trapezoidal rule and Simpson rule applied
to the integrals: ∫ 1

0
x4 dx and

∫ 1

0
x5 dx

(b) Find C such that the trapezoidal rule gives the exact result for the integral∫ 1

0
x5 − Cx4 dx.

(c) Show that the trapezoidal rule gives a better approximation than the Simpson rule in
the case that 15

14 < C < 85
74 .

Solution.
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(a) Let QT
[0,1][f ] and QS

[0,1][f ] be the approximate integral of any function f defined on
[0, 1] obtained, respectively, with the trapezoidal rule and Simpson rule. Then∫ 1

0
x4dx − QT

[0,1]

[
x4

]
= 1

5 − 1
2 = − 3

10;∫ 1

0
x5dx − QT

[0,1]

[
x5

]
= 1

6 − 1
2 = −1

3;∫ 1

0
x4dx − QS

[0,1]

[
x4

]
= 1

5 − 5
24 = − 1

120;∫ 1

0
x5dx − QS

[0,1]

[
x5

]
= 1

6 − 9
48 = − 1

48 .

The errors are then the absolute values of each expression.

(b) Using the results in the previous question and since both the integral and the quadrature
rules are linear, one can verify that∫ 1

0

(
x5 − Cx4

)
dx − QT

[0,1]

[
x5 − Cx4

]
= −1

3 + 3
10C.

Therefore, the trapezoidal rule is exact if 3
10C − 1

3 = 0, that is, when C = 10
9 .

Similarly, for the Simpson rule∫ 1

0

(
x5 − Cx4

)
dx − QS

[0,1]

[
x5 − Cx4

]
= − 1

48 + 1
120C.

Therefore, the Simpson rule is exact if 1
120C − 1

48 = 0, that is, when C = 5
2.

(c) Based on the previous question, the trapezoidal rule gives a better approximation than
the Simpson rule when ∣∣∣∣ 3

10C − 1
3

∣∣∣∣ <

∣∣∣∣ 1
120C − 1

48

∣∣∣∣ .

This inequality is satisfied whenever C1 < C < C2 where

3
10C1 − 1

3 = 1
120C1 − 1

48
3
10C2 − 1

3 = −
( 1

120C2 − 1
48

)
.

That is, C1 = 15
14 and C2 = 85

74.

Problem 2.

Let {bi}N
i=1 ⊂ R and {ci}N

i=1 ⊂ [0, 1] define a quadrature rule Q[f ] =
∑N

i=1 bif(ci) with
N ∈ N nodes for approximating

∫ 1
0 f(x) dx. The quadrature rule Q is called symmetric if

ci = 1 − cN+1−i and bi = bN+1−i, for all i = 1, 2, . . . , N .
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Show that any symmetric quadrature rule has an even order, that is if Q is exact for
polynomials of degree ≤ 2m − 2 for some m ∈ N, then it is automatically exact for
polynomials of degree 2m − 1.

Solution. Let Q be a symmetric quadrature rule on [0, 1], and assume that it is exact for
all polynomials of degree at most 2m − 2 for some m ∈ N. Thanks to polynomial division,
every polynomial g of degree 2m − 1 can be rewritten as

g(t) = C

(
t − 1

2

)2m−1
+ g1(t),

where g1(t) has degree ≤ 2m − 2. Since Q integrates exactly g1 by hypothesis, then it is
enough to show that the symmetric quadrature formula Q is exact for h(t) :=

(
t − 1

2

)2m−1

in order to conclude. Since h(t) is symmetric around the value 1
2 which is the middle point

of the integration interval [0, 1], then the exact value of its integral is∫ 1

0
h(t) dt =

∫ 1

0

(
t − 1

2

)2m−1
dt = 0.

Moreover, since Q is symmetric, then for all i = 1, . . . , s,

bih(ci) + bs−1−ih(cs−1−i) = bi

(
ci − 1

2

)2m−1
+ bs−1−i

(
cs+1−i − 1

2

)2m−1

= bi

(
ci − 1

2

)2m−1
+ bi

(1
2 − ci

)2m−1
= 0.

Therefore, if s is even,

Q [h] =
s∑

i=1
bih(ci) =

s
2∑

i=1

[
bih(ci) + bs−1−ih(cs−1−i)

]
= 0 =

∫ 1

0
h(t) dt,

and if s is odd, then c⌈ s
2 ⌉ = 1 − c⌈ s

2 ⌉ and thus c⌊ s
2 ⌋+1 = c⌈ s

2 ⌉ = 1
2 . Therefore, from the same

previous reasoning and since h
(

1
2

)
= 0, then

Q [h] =
⌊ s

2 ⌋∑
i=1

[
bih(ci) + bs−1−ih(cs−1−i)

]
+ b⌈ s

2 ⌉h

(1
2

)
= 0 =

∫ 1

0
h(t) dt.

Problem 3.

We wish to approximate

I[a,b][f ] =
∫ b

a
f(x) dx

using the midpoint rule, where f ∈ C2([a, b]).

Let Q[a,b][f ] denote the midpoint rule. We know from Theorem 2.5 that

|I[a,b][f ] − Q[a,b][f ]| ≤ (b − a)3

24 ∥f ′′∥∞
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where ∥f ′′∥∞ = sup
x∈[a,b]

|f ′′(x)|. Let xi = a + ih for i = 0, 1, . . . , N and h = b−a
N . Let Qh(f)

denote the composite midpoint rule, where we apply the midpoint rule to each of the N
subintervals of length h.

(a) Derive an upper bound for the approximation error of the composite midpoint rule:

|Qh[f ] − I[a,b][f ]| (1)

(b) Let [a, b] = [0, 1] and f(x) = exp (−x2) and fix ε > 0. Using your result from (a), find
the value for N such that (1) is guaranteed to be smaller than ε.

(c) Implement a Python function midpoint_rule(f, a, b, N) for the composite mid-
point rule. With the functions f1(x) =

√
x and f2(x) = 1√

x
in [a, b] = [0, 1] dis-

play |Qh[f ] − I[a,b][f ]| with respect to N or h on a doubly logarithmic plot (use the
matplotlib function matplotlib.pyplot.loglog/plt.loglog). Using these plots,
find suitable values of p that describe the asymptotic behavior O(N−p) of the error for
f1 and f2, respectively.

Solution.

(a) The composite quadrature rule is given by

Qh[f ] =
N−1∑
i=0

Q[xi,xi+1][f ]

and we also have

I[a,b][f ] =
N−1∑
i=0

I[xi,xi+1][f ]

Hence, the error is

|Qh[f ] − I[a,b][f ]| =
∣∣∣∣∣
N−1∑
i=0

Q[xi,xi+1][f ] − I[xi,xi+1]

∣∣∣∣∣
≤

N−1∑
i=0

|Q[xi,xi+1][f ] − I[xi,xi+1][f ]|

≤
N−1∑
i=0

(xi+1 − xi)3

24 sup
x∈[xi,xi+1]

|f ′′(x)|

≤ 1
24∥f ′′∥∞

N−1∑
i=0

(xi+1 − xi)3

= N
(b − a)3

24N3 ∥f ′′∥∞ = (b − a)3

24N2 ∥f ′′∥∞

(b) Let E(N) = |Qh[f ] − I[a,b][f ]|. By differentiating f(x) = e−x2 twice we get f ′′(x) =
(4x2 − 2)e−x2 . We also have f ′′′(x) = −(8x3 − 12x)e−x2 ≥ 0 ∀x ∈ [0, 1]. Hence, the
maximum of |f ′′| is attained at either x = 0 or x = 1. By checking both endpoints
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we see that |f ′′(0)| = 2 is the maximum value. Hence, ∥f ′′∥∞ = 2. Thus, the upper
bound guaranteed by the result in (a) gives

E(N) ≤ 1
12N2 < ε ⇒ N >

1
2
√

3ε

Hence, N = ⌈ 1
2
√

3ε
⌉ would suffice.

(c) Available in the Jupyter notebook serie04-sol.ipynb on Moodle.
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