EXERCISE SET 4 - MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 20. The exercises marked
with (%) are graded homework. The deadline for submitting your solutions to the homework
is Friday, March 21 at 10h15.

Quiz
(a) Given a function f € C*([a,b]), we consider the composite trapezoidal rule Q;Ll)[ f]

and the composite Simpson rule QEZQ) [f] on the interval [a,b]. Which of the following
statements are correct?

(i) lim Q1) = lim Q”[f) = J} f(x) da.

O True O False

(i) Q1] = [0 f(2) de| < |QG[f] - JP f(a) da) if h < H.

O True O False

(iii) ]Qf) [f] —f: f(z)dz| < \Qg)[ﬂ —ff f(z) dz| for all sufficiently small values h > 0.

O True O False
(iv) If f(z) > 0 for all = € [a, b] then

b
0<@1N< [ @

O True O False

(v) If f is convex on [a, b] then

oz | () de,

O True O False
Exercises (Exercises marked (x) will be graded.)

Problem 1.

(a) Compute the approximation errors for the trapezoidal rule and Simpson rule applied

to the integrals:
1 1
/ z*dz and / 20 dz
0 0



(b) Find C such that the trapezoidal rule gives the exact result for the integral

1
/ 2° — Cztdx.
0

(c) Show that the trapezoidal rule gives a better approximation than the Simpson rule in
the case that % <C< %'

Problem 2.

Let {b;}Y, € R and {¢}Y, € [0,1] define a quadrature rule Q[f] = S, b; f(c;) with
N € N nodes for approximating fol f(z)dz. The quadrature rule @ is called symmetric if
C; = 1-— CN+4+1—i and bl = bNJrl,i, for all ¢« = 1,2, .. .,N.

Show that any symmetric quadrature rule has an even order, that is if ) is exact for
polynomials of degree < 2m — 2 for some m € N, then it is automatically exact for
polynomials of degree 2m — 1.

Problem 3.
We wish to approximate ,
luglf) = [ f@)da
using the midpoint rule, where f € C?([a, b]).
Let Qpq[f] denote the midpoint rule. We know from Theorem 2.5 that

(b—a)?®
Tanlf] = Qualfll £ “5 1o
where [|f”||c = sup |f”(z)|. Let ; = a +ih for i =0,1,...,N and h = °3%. Let Qu(f)
z€[a,b
denote the composite midpoint rule, where we apply the midpoint rule to each of the N

subintervals of length h.

(a) Derive an upper bound for the approximation error of the composite midpoint rule:

QL] = T[] (1)

(b) Let [a,b] = [0,1] and f(z) = exp (—x?) and fix £ > 0. Using your result from (a), find
the value for N such that (1) is guaranteed to be smaller than e.

(¢) Implement a Python function midpoint_rule(f, a, b, N) for the composite mid-
point rule. With the functions fi(z) = /x and fa(x) = ﬁ in [a,b] = [0,1] dis-
play [Qn[f] — I[a4[f]] with respect to N or h on a doubly logarithmic plot (use the
matplotlib function matplotlib.pyplot.loglog/plt.loglog). Using these plots,
find suitable values of p that describe the asymptotic behavior O(N~P) of the error for
f1 and fs, respectively.

Problem 4. (x)

Given a function g: [—1,1] — R we approximate the integral

/g(z) dz

-1



with the “simple” Gauss-Lobatto quadrature rule with 4 quadrature points

Qpryls] = 5(o(1) + 9(-1)) + 2(g(z1) + 9(2), @)

where 219 = %

(a) Determine the order of Q_; ;] experimentally by evaluating it for the monomials
1? m? $27

(b) Given a function f: [a,b] — R for a < b we can rewrite

/bf(:z:)d:c:b;a 1f<b;az+b—ga) dz

and therefore apply (2) to get the “general” Gauss-Lobatto quadrature rule Q4 [f]
with 4 quadrature points on the interval [a, b].

Implement the Python function general_gauss_lobatto(f, a, b) for the “general”
Gauss-Lobatto quadrature rule Qg5 [f]-

Hint: You can use the implementation of simple_gauss_lobatto(f) we provide in
the Jupyter notebook for the “simple” Gauss-Lobatto quadrature rule Q_; j[f] as a
guide.

(c) Consider the interval I = [a,b] and split it into N equally sized subintervals [x;, z;41] =
[a+i-h,a+ (i+1)-h]fori=0,1,...,N —1 with h = *5%. We define the composite
quadrature rule Qp[f] for the function f: [a,b] — R

N-1
= Z Q[:ci7xi+1] [.ﬂ
i=0
where Q| o, ) refers to the “general” Gauss-Lobatto quadrature rule from (b) with

a=uz;and b= x;41.

Implement the Python function composite_gauss_lobatto(f, a, b, N) for the “gen-
eral” Gauss-Lobatto quadrature rule Qp[f].

(d) Consider the functions

fi(z) =exp(x)cos(x)+1 and fa(z) =/|z/°
with their respective exact integrals

/ i _exp (3)(sin (3) + cos (3)) — 1
2
/ bl 32[

Compute the approximated integrals with the composite Gauss-Lobatto rule and the
composite trapezoidal rule for both f; and fo. For fi and f2. You can use the implemen-
tation of composite_trapezoidal(f, a, b, N) that we provided you or your own.

+3 and




Plot the errors of both quadrature rules with respect to the exact integrals for decreasing
a

h = % in a doubly logarithmic plot (matplotlib.pyplot.loglog/plt.loglog).

Hint: When choosing the number of subintervals N for the error computation you can
define them as np.logspace(1, 4, num=15, dtype=int).

(e) Consider the plots from (d). The errors for the Gauss-Lobatto rules are of order
O (h*cL) and the errors for the trapezoidal rule are of order O (h°T).

Write down sqr, and st for fi; and fs, respectively. Be sure to clearly mark which of
the four values correspond to which function.

(f) (This is for your understanding and will not be graded.) Assume that our imple-
mentation of the composite Gauss-Lobato quadrature calls the Python function
general_gauss_lobatto(f, a, b) on each of the N > 0 subintervals. This way
of implementing the composite rule is inefficient because we evaluate f more often
than it is necessary.

Given a fixed number of subintervals N > 0, state how many evaluations of f can
be avoided. Explain how you avoided those additional evaluations of f. If you want,
implement your more efficient quadrature rule as a Python function.

Remember to upload the completed Jupyter notebook homework04.ipynb corresponding
to the homework to the submission panel on Moodle until Friday, March 21 at 10h15.
To download your notebook from Noto, use File > Download Only your submissions to
Moodle will be considered for grading.



