
Exercise set 4 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 20. The exercises marked
with (⋆) are graded homework. The deadline for submitting your solutions to the homework
is Friday, March 21 at 10h15.

Quiz
(a) Given a function f ∈ C∞([a, b]), we consider the composite trapezoidal rule Q

(1)
h [f]

and the composite Simpson rule Q
(2)
h [f] on the interval [a, b]. Which of the following

statements are correct?

(i) lim
h→0

Q
(1)
h [f] = lim

h→0
Q

(2)
h [f] =

∫ b
a f(x) dx.

□ True □ False

(ii) |Q(1)
h [f] −

∫ b
a f(x) dx| ≤ |Q(1)

H [f] −
∫ b

a f(x) dx| if h ≤ H.

□ True □ False

(iii) |Q(2)
h [f]−

∫ b
a f(x) dx| ≤ |Q(1)

h [f]−
∫ b

a f(x) dx| for all sufficiently small values h > 0.

□ True □ False

(iv) If f(x) ≥ 0 for all x ∈ [a, b] then

0 ≤ Q
(1)
h [f] ≤

∫ b

a
f(x) dx.

□ True □ False

(v) If f is convex on [a, b] then

Q
(1)
h [f] ≥

∫ b

a
f(x) dx.

□ True □ False

Exercises (Exercises marked (⋆) will be graded.)

Problem 1.

(a) Compute the approximation errors for the trapezoidal rule and Simpson rule applied
to the integrals: ∫ 1

0
x4 dx and

∫ 1

0
x5 dx

1

(b) Find C such that the trapezoidal rule gives the exact result for the integral∫ 1

0
x5 − Cx4 dx.

(c) Show that the trapezoidal rule gives a better approximation than the Simpson rule in
the case that 15

14 < C < 85
74 .

Problem 2.

Let {bi}N
i=1 ⊂ R and {ci}N

i=1 ⊂ [0, 1] define a quadrature rule Q[f] =
∑N

i=1 bif(ci) with
N ∈ N nodes for approximating

∫ 1
0 f(x) dx. The quadrature rule Q is called symmetric if

ci = 1 − cN+1−i and bi = bN+1−i, for all i = 1, 2, . . . , N .

Show that any symmetric quadrature rule has an even order, that is if Q is exact for
polynomials of degree ≤ 2m − 2 for some m ∈ N, then it is automatically exact for
polynomials of degree 2m − 1.

Problem 3.

We wish to approximate

I[a,b][f] =
∫ b

a
f(x) dx

using the midpoint rule, where f ∈ C2([a, b]).

Let Q[a,b][f] denote the midpoint rule. We know from Theorem 2.5 that

|I[a,b][f] − Q[a,b][f]| ≤ (b − a)3

24 ∥f ′′∥∞

where ∥f ′′∥∞ = sup
x∈[a,b]

|f ′′(x)|. Let xi = a + ih for i = 0, 1, . . . , N and h = b−a
N . Let Qh(f)

denote the composite midpoint rule, where we apply the midpoint rule to each of the N
subintervals of length h.

(a) Derive an upper bound for the approximation error of the composite midpoint rule:

|Qh[f] − I[a,b][f]| (1)

(b) Let [a, b] = [0, 1] and f(x) = exp (−x2) and fix ε > 0. Using your result from (a), find
the value for N such that (1) is guaranteed to be smaller than ε.

(c) Implement a Python function midpoint_rule(f, a, b, N) for the composite mid-
point rule. With the functions f1(x) =

√
x and f2(x) = 1√

x
in [a, b] = [0, 1] dis-

play |Qh[f] − I[a,b][f]| with respect to N or h on a doubly logarithmic plot (use the
matplotlib function matplotlib.pyplot.loglog/plt.loglog). Using these plots,
find suitable values of p that describe the asymptotic behavior O(N−p) of the error for
f1 and f2, respectively.

Problem 4. (⋆)

Given a function g : [−1, 1] → R we approximate the integral
1∫

−1

g(z) dz

2

with the “simple” Gauss-Lobatto quadrature rule with 4 quadrature points

Q[−1,1][g] = 1
6(g(1) + g(−1)) + 5

6(g(z1) + g(z2)), (2)

where z1,2 = ±1√
5 .

(a) Determine the order of Q[−1,1] experimentally by evaluating it for the monomials
1, x, x2, . . .

(b) Given a function f : [a, b] → R for a < b we can rewrite

b∫
a

f(x) dx = b − a

2

1∫
−1

f

(
b − a

2 z + b + a

2

)
dz

and therefore apply (2) to get the “general” Gauss-Lobatto quadrature rule Q[a,b][f]
with 4 quadrature points on the interval [a, b].

Implement the Python function general_gauss_lobatto(f, a, b) for the “general”
Gauss-Lobatto quadrature rule Q[a,b][f].

Hint: You can use the implementation of simple_gauss_lobatto(f) we provide in
the Jupyter notebook for the “simple” Gauss-Lobatto quadrature rule Q[−1,1][f] as a
guide.

(c) Consider the interval I = [a, b] and split it into N equally sized subintervals [xi, xi+1] =
[a + i · h, a + (i + 1) · h] for i = 0, 1, . . . , N − 1 with h = b−a

N . We define the composite
quadrature rule Qh[f] for the function f : [a, b] → R

Qh[f] =
N−1∑
i=0

Q[xi,xi+1][f]

where Q[xi,xi+1] refers to the “general” Gauss-Lobatto quadrature rule from (b) with
a = xi and b = xi+1.

Implement the Python function composite_gauss_lobatto(f, a, b, N) for the “gen-
eral” Gauss-Lobatto quadrature rule Qh[f].

(d) Consider the functions

f1(x) = exp (x) cos (x) + 1 and f2(x) =
√

|x|5

with their respective exact integrals∫ 3

0
f1(x) dx = exp (3)(sin (3) + cos (3)) − 1

2 + 3 and∫ 2

−2
f2(x) dx = 32

√
2

7 .

Compute the approximated integrals with the composite Gauss-Lobatto rule and the
composite trapezoidal rule for both f1 and f2. For f1 and f2. You can use the implemen-
tation of composite_trapezoidal(f, a, b, N) that we provided you or your own.

3

Plot the errors of both quadrature rules with respect to the exact integrals for decreasing
h = b−a

N in a doubly logarithmic plot (matplotlib.pyplot.loglog/plt.loglog).

Hint: When choosing the number of subintervals N for the error computation you can
define them as np.logspace(1, 4, num=15, dtype=int).

(e) Consider the plots from (d). The errors for the Gauss-Lobatto rules are of order
O (hsGL) and the errors for the trapezoidal rule are of order O (hsT).

Write down sGL and sT for f1 and f2, respectively. Be sure to clearly mark which of
the four values correspond to which function.

(f) (This is for your understanding and will not be graded.) Assume that our imple-
mentation of the composite Gauss-Lobato quadrature calls the Python function
general_gauss_lobatto(f, a, b) on each of the N > 0 subintervals. This way
of implementing the composite rule is inefficient because we evaluate f more often
than it is necessary.

Given a fixed number of subintervals N > 0, state how many evaluations of f can
be avoided. Explain how you avoided those additional evaluations of f . If you want,
implement your more efficient quadrature rule as a Python function.

Remember to upload the completed Jupyter notebook homework04.ipynb corresponding
to the homework to the submission panel on Moodle until Friday, March 21 at 10h15.
To download your notebook from Noto, use File > Download Only your submissions to
Moodle will be considered for grading.

4

