
Solution 3 – MATH-250 Numerical Analysis

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 13. The exercises marked
with (⋆) are graded homework. The deadline for submitting your solutions to the homework
is Friday, March 14 at 10h15.

Quiz
(a) Given interpolation points x0, x1, . . . , xn ∈ [a, b], consider the operator I : C0([a, b]) →

Πn, I : f 7→ pn, which returns the polynomial pn interpolating a given function f at
the interpolation points. Which of the following statements are true about I?
(i) I is a linear operator

■ True □ False

(ii) I is surjective

■ True □ False

(iii) |pn(x)| ≤ maxx∈[a,b] |f(x)| for all x ∈ [a, b]

□ True ■ False

Solution.

(a) (i) Consider any two functions f and g. Then for all λ ∈ R it holds by the interpolation
property

I[f + λg](xi) = (f + λg)(xi) = f(xi) + λg(xi) = I[f ](xi) + λI[g](xi), ∀i = 0, 1, . . . , n.

Consequently, I is linear.

(ii) Because I[qn] = qn for any polynomial qn of degree n.

(iii) There exist countless counter-examples; see e.g. Runge phenomenon (Figure 3.1 in
Lecture Notes).

Exercises

Problem 1. Rewrite the following expressions such that numerical cancellation is avoided
(or at least reduced).

(a) (x + 1)
1
4 − 1 for x ≈ 0
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(b) 1−cos(x)
sin(x) for x ≈ 0

(c) x2 − y2 for x ≈ y

Solution.

(a)

(x + 1)
1
4 − 1 = ((x + 1)

1
4 − 1)((x + 1)

1
4 + 1)

(x + 1)
1
4 + 1

= (x + 1)
1
2 − 1

(x + 1)
1
4 + 1

= ((x + 1)
1
2 − 1)((x + 1)

1
2 + 1)

((x + 1)
1
4 + 1)((x + 1)

1
2 + 1)

= x

((x + 1)
1
4 + 1)((x + 1)

1
2 + 1)

(b)
1 − cos(x)

sin(x) = (1 − cos(x))(1 + cos(x))
sin(x)(1 + cos(x)) = sin(x)

1 + cos(x)

(c)
x2 − y2 = (x + y)(x − y)

This does not avoid the deletion, but the result has a smaller relative error, as the
following argument shows:
We know from Lemma 1.16 that fl((x + y)(x − y)) = (x + y)(x − y)(1 + θ3) with
|θ3| ≤ γ3 = 3u

1−3u , therefore the calculated result has a small relative error.
On the other hand fl(x2 − y2) = x2(1 + θ2) − y2(1 + θ′

2) and thus∣∣∣∣∣fl(x2 − y2) − (x2 − y2)
x2 − y2

∣∣∣∣∣ =
∣∣∣∣∣x2θ2 − y2θ′

2
x2 − y2

∣∣∣∣∣ ≤ x2 + y2

|x2 − y2|

Hence, we cannot guarantee a small relative error with this computation.

Problem 2.

(a) The midpoint rule approximates an integral via∫ b

a
f(x) dx ≈ f

(
a + b

2

)
(b − a).

Let P =
∞⋃

n=0
Pn be the set of all polynomials. Find the largest N ∈ N0 s.t. ∀p ∈ P with

deg(p) ≤ N the midpoint rule returns the exact result for all a < b.

Hint: The monomials 1, x, x2, x3, . . . form a basis for P. What is the highest degree of
1, x, x2, x3, . . . for which the midpoint rule actually returns the exact result?
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(b) We now consider the calculation of the integral

I =
∫ 1

0
xm−1(1 − x)n−1 dx

where m and n are two integer values m, n ≥ 1. Apply the midpoint rule to approximate
I. For which values of n and m does this rule return the exact value of I?

Solution.

(a) Using the hint we will compute
∫ b

a 1dx,
∫ b

a xdx,
∫ b

a x2dx,
∫ b

a x3dx, · · · until we find an N
s.t. the formula does not give an exact value. Since the monomials form a basis for
the vector space P, we can conclude that the formula will be exact for all p ∈ P s.t.
deg(p) ≤ N .

p(x) = 1 :
∫ b

a
1dx = (b − a) = p

(
a + b

2

)
(b − a)

p(x) = x :
∫ b

a
xdx = 1

2(b2 − a2) = a + b

2 (b − a) = p

(
a + b

2

)
(b − a)

p(x) = x2 :
∫ b

a
x2dx = 1

3(b3 − a3) = (a2 + ab + b2)
3 )(b − a) ̸= p

(
a + b

2

)
(b − a)

Hence, we can conclude that it holds for any p ∈ P1, but not for all p ∈ P2 and therefore
not for all p ∈ Pn with n ≥ 2. Therefore, the midpoint rule will return the exact value
for linear functions.

(b) The midpoint rule gives I = 1
2m+n−2 . It follows from (a) that this is exact whenever

(m, n) = (2, 1), (1, 2). Now, let us show that it can never be exact whenever m, n ≥ 2.

Let us denote I(m, n) =
∫ 1

0 xm−1(1 − x)n−1dx. Integration by parts yields

I(m, n) = 0 + n − 1
m

∫ 1

0
xm(1 − x)n−2 = n − 1

m
I(m + 1, n − 1)

Repeating this n − 1 times yields

I(m, n) = (n − 1)(n − 2) · · · 1
m(m + 1) · · · (m + n − 2)I(m + n − 1, 1)

Note that I(m + n − 1, 1) = 1
m+n−1 . Hence,

I(m, n) = (n − 1)(n − 2) · · · 1
m(m + 1) · · · (m + n − 2)(m + n − 1) = (m − 1)!(n − 1)!

(m + n − 1)! = 1
m
(m+n−1

n−1
)

Hence, now look for (m, n) such that

m

(
m + n − 1

n − 1

)
= 2m+n−2 (1)

By looking at the prime factors of the terms in (1) we conclude that m and
(m+n−1

n−1
)

must be powers of 2. In particular, we have for some l ∈ N0 However,
(m+n−1

n−1
)

can
only be a power of 2 if n − 1 = 1 or n − 1 = m + n − 2 (For a proof of this statement
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see reference in footnote 1). Thus, (1) can only hold if n = 2 or m = 1. We only need
to consider the case when n = 2, since we have assumed that m ≥ 2.

If n = 2 we have (
m + n − 1

n − 1

)
= (m + 1)!

m! = m + 1

However, since m ≥ 2 is a power of 2, m + 1 cannot be a power of 2. Thus, (1) cannot
hold if n = 2.

Therefore, we can conclude that the midpoint rule is only exact if (m, n) = (2, 1), (1, 2).

Problem 3.

(a) Given the interpolation points x0 = 0, x1 = π
2 , x2 = π, write down the polynomial

p2 ∈ P2 in the Lagrange basis that interpolates f(x) = sin(x) at these points. Compute∫ π
0 p2(x) dx and

∫ π
0 f(x) dx.

(b) Given the interpolation points x0 = 0, x1 = 1
2 , x2 = 1, write down the polynomial

p2 ∈ P2 in the Lagrange basis that interpolates f(x) = ex at these points.

Solution.

(a) We use the Lagrange polynomials to write out p2:

p2(x) = f(x0) (x − x1)(x − x2)
(x0 − x1)(x0 − x2) + f(x1) (x − x0)(x − x2)

(x1 − x0)(x1 − x2) + f(x2) (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

= sin(0)
(x − π

2 )(x − π)
(0 − π

2 )(0 − π) + sin
(π

2
) (x − 0)(x − π)

(π
2 − 0)(π

2 − π) + sin(π)
(x − 0)(x − π

2 )
(π − 0)(π − π

2 )

= − 4
π2 x(x − π)

We also have ∫ π

0
sin(x)dx = 2∫ π

0
p2(x)dx = − 4

π2

(
π3

3 − π3

2

)
= 2

3π ≈ 2.094

Remark: In this case there is an alteriative way of determining p2(x) which doesn’t
involve the use of Lagrange polynomials: Note that sin(0) = sin(π) = 0. So p2 has roots
at x = 0, π. Thus, p2(x) = Cx(x − π). Now we choose C s.t. p2

(
π
2
)

= 1. C = − 4
π2 is

the constant we seek. Thus, p2(x) = − 4
π2 x(x − π).

1https://math.stackexchange.com/questions/2338488/binomial-coefficients-that-are-powers-of-2
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(b) We again write down the polynomial in the Lagrange basis

p2(x) = f(x0) (x − x1)(x − x2)
(x0 − x1)(x0 − x2) + f(x1) (x − x0)(x − x2)

(x1 − x0)(x1 − x2) + f(x2) (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

= 1 ·

(
x − 1

2

)
(x − 1)(

−1
2

)
(−1)

+
√

e · x(x − 1)(
1
2

) (
−1

2

) + e ·
x
(
x − 1

2

)
(1)
(

1
2

)
= 2

(
x − 1

2

)
(x − 1) − 4

√
ex(x − 1) + 2ex

(
x − 1

2

)
= (2 − 4

√
e + 2e)x2 + (−3 + 4

√
e − e)x + 1

We also have∫ 1

0
exdx = e − 1 ≈ 1.718∫ π

0
p2(x)dx = 2 − 4

√
e + 2e

3 + −3 + 4
√

e − e

2 + 1 = 1
6 + 2

3
√

e + 1
6e ≈ 1.719

Problem 4.

(a) Consider the function f(x) = e2x. Find the quadratic polynomial p2(x) that interpolates
f at x0 = 0, x1 = 1

2 , x2 = 1.

(b) By defining E2[f ](x) = f(x) − p2(x), we know from Theorem 2.3 that

|E2[f ](x)| ≤ ∥ω2+1∥∞
(2 + 1)! ∥f (2+1)∥∞ ∀x ∈ [0, 1]

where for a function h : [0, 1] 7→ R we define ∥h∥∞ := sup
x∈[0,1]

|h(x)|. Compare the exact

error at x = 3
4 with the a priori error bound ∥ω2+1∥∞

(2+1)! ∥f (2+1)∥∞.

(c) Repeat (a) and (b) for the function g(x) =
√

x, the interpolation points x0 = 1
4 , x1 =

1, x2 = 4, and x = 2.

Solution.

(a) Let us write p2(x) = c0 + c1x + c2x2. The system of equations that we have to solve is
the following:1 x0 x2

0
1 x1 x2

1
1 x2 x2

2


c0

c1
c2

 =

f(x0)
f(x1)
f(x2)

 ⇒

 1 0 0
1 1

2
1
4

1 1 1


c0

c1
c2

 =

 1
e
e2


We thus obtain c0 = 1, c1 = −3 + 4e − e2, c2 = 2

(
1 − 2e + e2). Therefore, the obtained

interpolating quadratic polynomial is

p2(x) = 1 + (−3 + 4e − e2)x + 2
(
1 − 2e + e2

)
x2.
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(b) We have∣∣∣∣E2[f ]
(3

4

)∣∣∣∣ =
∣∣∣∣f (3

4

)
− p2

(3
4

)∣∣∣∣ =
∣∣∣∣e3/2 − 1

8
(
−1 + 6e + 3e2

)∣∣∣∣ ≈ 0.2029.

Moreover, for the upper bound, we have∥∥∥f (3)
∥∥∥

∞
=
∥∥∥8e2x

∥∥∥
∞

= 8e2 in the interval [0, 1],

∥ω3∥∞ =
∥∥∥∥x(x − 1

2

)
(x − 1)

∥∥∥∥
∞

= 1
12

√
3

in the interval [0, 1]

and therefore,
∥ω3∥∞

3!

∥∥∥f (3)
∥∥∥

∞
= 8e2

3!
1

12
√

3
≈ 0.4740

is indeed an upper bound for the error E2[f ]
(

3
4

)
, even if it overestimates it by a factor

larger than 2.

(c) Following the same reasoning as in question (a) with g(x) =
√

x, we obtain p2(x) =
1
45
(
−4x2 + 35x + 14

)
.

(d) Following the same reasoning as in question (b) with g(x) =
√

x, we obtain

|E2[g] (2)| =
∣∣∣∣√2 − 68

45

∣∣∣∣ ≈ 0.0969

and
∥ω3∥∞

3!

∥∥∥g(3)
∥∥∥

∞
≈ 0.476

6 12 ≈ 0.952

since, following Theorem 2.3, the interval that should be used for the infinity norm is
[x0, x2] =

[1
4 , 4

]
. Therefore, we again indeed obtain an upper bound of the error, but

which is overestimated this time by a factor nearly equal to 10.
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