

SOLUTION 3 – MATH-250 Numerical Analysis

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed in the beginning of the lecture on Thursday, March 13. The exercises marked with (\star) are graded homework. **The deadline for submitting your solutions to the homework is Friday, March 14 at 10h15.**

Quiz

(a) Given interpolation points $x_0, x_1, \dots, x_n \in [a, b]$, consider the operator $I : C^0([a, b]) \rightarrow \Pi_n$, $I : f \mapsto p_n$, which returns the polynomial p_n interpolating a given function f at the interpolation points. Which of the following statements are true about I ?

- (i) I is a linear operator
 - True
 - False

- (ii) I is surjective
 - True
 - False

- (iii) $|p_n(x)| \leq \max_{x \in [a, b]} |f(x)|$ for all $x \in [a, b]$
 - True
 - False

Solution.

(a) (i) Consider any two functions f and g . Then for all $\lambda \in \mathbb{R}$ it holds by the interpolation property

$$I[f + \lambda g](x_i) = (f + \lambda g)(x_i) = f(x_i) + \lambda g(x_i) = I[f](x_i) + \lambda I[g](x_i), \quad \forall i = 0, 1, \dots, n.$$

Consequently, I is linear.

(ii) Because $I[q_n] = q_n$ for any polynomial q_n of degree n .

(iii) There exist countless counter-examples; see e.g. Runge phenomenon (Figure 3.1 in Lecture Notes).

Exercises

Problem 1. Rewrite the following expressions such that numerical cancellation is avoided (or at least reduced).

(a) $(x + 1)^{\frac{1}{4}} - 1$ for $x \approx 0$

(b) $\frac{1-\cos(x)}{\sin(x)}$ for $x \approx 0$

(c) $x^2 - y^2$ for $x \approx y$

Solution.

(a)

$$\begin{aligned} (x+1)^{\frac{1}{4}} - 1 &= \frac{((x+1)^{\frac{1}{4}} - 1)((x+1)^{\frac{1}{4}} + 1)}{(x+1)^{\frac{1}{4}} + 1} \\ &= \frac{(x+1)^{\frac{1}{2}} - 1}{(x+1)^{\frac{1}{4}} + 1} \\ &= \frac{((x+1)^{\frac{1}{2}} - 1)((x+1)^{\frac{1}{2}} + 1)}{((x+1)^{\frac{1}{4}} + 1)((x+1)^{\frac{1}{2}} + 1)} \\ &= \frac{x}{((x+1)^{\frac{1}{4}} + 1)((x+1)^{\frac{1}{2}} + 1)} \end{aligned}$$

(b)

$$\frac{1 - \cos(x)}{\sin(x)} = \frac{(1 - \cos(x))(1 + \cos(x))}{\sin(x)(1 + \cos(x))} = \frac{\sin(x)}{1 + \cos(x)}$$

(c)

$$x^2 - y^2 = (x+y)(x-y)$$

This does not avoid the deletion, but the result has a smaller relative error, as the following argument shows:

We know from Lemma 1.16 that $fl((x+y)(x-y)) = (x+y)(x-y)(1 + \theta_3)$ with $|\theta_3| \leq \gamma_3 = \frac{3u}{1-3u}$, therefore the calculated result has a small relative error.

On the other hand $fl(x^2 - y^2) = x^2(1 + \theta_2) - y^2(1 + \theta'_2)$ and thus

$$\left| \frac{fl(x^2 - y^2) - (x^2 - y^2)}{x^2 - y^2} \right| = \left| \frac{x^2\theta_2 - y^2\theta'_2}{x^2 - y^2} \right| \leq \frac{x^2 + y^2}{|x^2 - y^2|}$$

Hence, we cannot guarantee a small relative error with this computation.

Problem 2.

(a) The midpoint rule *approximates* an integral via

$$\int_a^b f(x) dx \approx f\left(\frac{a+b}{2}\right)(b-a).$$

Let $\mathbb{P} = \bigcup_{n=0}^{\infty} \mathbb{P}_n$ be the set of all polynomials. Find the largest $N \in \mathbb{N}_0$ s.t. $\forall p \in \mathbb{P}$ with $\deg(p) \leq N$ the midpoint rule returns the *exact* result for all $a < b$.

Hint: The monomials $1, x, x^2, x^3, \dots$ form a basis for \mathbb{P} . What is the highest degree of $1, x, x^2, x^3, \dots$ for which the midpoint rule actually returns the exact result?

(b) We now consider the calculation of the integral

$$I = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

where m and n are two integer values $m, n \geq 1$. Apply the midpoint rule to approximate I . For which values of n and m does this rule return the exact value of I ?

Solution.

(a) Using the hint we will compute $\int_a^b 1dx, \int_a^b xdx, \int_a^b x^2dx, \int_a^b x^3dx, \dots$ until we find an N s.t. the formula does not give an exact value. Since the monomials form a basis for the vector space \mathbb{P} , we can conclude that the formula will be exact for all $p \in \mathbb{P}$ s.t. $\deg(p) \leq N$.

$$\begin{aligned} p(x) = 1 : \int_a^b 1dx &= (b-a) = p\left(\frac{a+b}{2}\right)(b-a) \\ p(x) = x : \int_a^b xdx &= \frac{1}{2}(b^2 - a^2) = \frac{a+b}{2}(b-a) = p\left(\frac{a+b}{2}\right)(b-a) \\ p(x) = x^2 : \int_a^b x^2dx &= \frac{1}{3}(b^3 - a^3) = \frac{(a^2 + ab + b^2)}{3}(b-a) \neq p\left(\frac{a+b}{2}\right)(b-a) \end{aligned}$$

Hence, we can conclude that it holds for any $p \in \mathbb{P}_1$, but not for all $p \in \mathbb{P}_2$ and therefore not for all $p \in \mathbb{P}_n$ with $n \geq 2$. Therefore, the midpoint rule will return the exact value for linear functions.

(b) The midpoint rule gives $I = \frac{1}{2^{m+n-2}}$. It follows from (a) that this is exact whenever $(m, n) = (2, 1), (1, 2)$. Now, let us show that it can never be exact whenever $m, n \geq 2$.

Let us denote $I(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$. Integration by parts yields

$$I(m, n) = 0 + \frac{n-1}{m} \int_0^1 x^m (1-x)^{n-2} dx = \frac{n-1}{m} I(m+1, n-1)$$

Repeating this $n-1$ times yields

$$I(m, n) = \frac{(n-1)(n-2) \cdots 1}{m(m+1) \cdots (m+n-2)} I(m+n-1, 1)$$

Note that $I(m+n-1, 1) = \frac{1}{m+n-1}$. Hence,

$$I(m, n) = \frac{(n-1)(n-2) \cdots 1}{m(m+1) \cdots (m+n-2)(m+n-1)} = \frac{(m-1)!(n-1)!}{(m+n-1)!} = \frac{1}{m \binom{m+n-1}{n-1}}$$

Hence, now look for (m, n) such that

$$m \binom{m+n-1}{n-1} = 2^{m+n-2} \tag{1}$$

By looking at the prime factors of the terms in (1) we conclude that m and $\binom{m+n-1}{n-1}$ must be powers of 2. In particular, we have for some $l \in \mathbb{N}_0$. However, $\binom{m+n-1}{n-1}$ can only be a power of 2 if $n-1 = 1$ or $n-1 = m+n-2$ (For a proof of this statement

see reference in footnote ¹). Thus, (1) can only hold if $n = 2$ or $m = 1$. We only need to consider the case when $n = 2$, since we have assumed that $m \geq 2$.

If $n = 2$ we have

$$\binom{m+n-1}{n-1} = \frac{(m+1)!}{m!} = m+1$$

However, since $m \geq 2$ is a power of 2, $m+1$ cannot be a power of 2. Thus, (1) cannot hold if $n = 2$.

Therefore, we can conclude that the midpoint rule is only exact if $(m, n) = (2, 1), (1, 2)$.

Problem 3.

- Given the interpolation points $x_0 = 0, x_1 = \frac{\pi}{2}, x_2 = \pi$, write down the polynomial $p_2 \in \mathbb{P}_2$ in the Lagrange basis that interpolates $f(x) = \sin(x)$ at these points. Compute $\int_0^\pi p_2(x) dx$ and $\int_0^\pi f(x) dx$.
- Given the interpolation points $x_0 = 0, x_1 = \frac{1}{2}, x_2 = 1$, write down the polynomial $p_2 \in \mathbb{P}_2$ in the Lagrange basis that interpolates $f(x) = e^x$ at these points.

Solution.

- We use the Lagrange polynomials to write out p_2 :

$$\begin{aligned} p_2(x) &= f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \\ &= \sin(0) \frac{(x - \frac{\pi}{2})(x - \pi)}{(0 - \frac{\pi}{2})(0 - \pi)} + \sin\left(\frac{\pi}{2}\right) \frac{(x - 0)(x - \pi)}{(\frac{\pi}{2} - 0)(\frac{\pi}{2} - \pi)} + \sin(\pi) \frac{(x - 0)(x - \frac{\pi}{2})}{(\pi - 0)(\pi - \frac{\pi}{2})} \\ &= -\frac{4}{\pi^2} x(x - \pi) \end{aligned}$$

We also have

$$\begin{aligned} \int_0^\pi \sin(x) dx &= 2 \\ \int_0^\pi p_2(x) dx &= -\frac{4}{\pi^2} \left(\frac{\pi^3}{3} - \frac{\pi^3}{2} \right) = \frac{2}{3} \pi \approx 2.094 \end{aligned}$$

Remark: In this case there is an alternative way of determining $p_2(x)$ which doesn't involve the use of Lagrange polynomials: Note that $\sin(0) = \sin(\pi) = 0$. So p_2 has roots at $x = 0, \pi$. Thus, $p_2(x) = Cx(x - \pi)$. Now we choose C s.t. $p_2(\frac{\pi}{2}) = 1$. $C = -\frac{4}{\pi^2}$ is the constant we seek. Thus, $p_2(x) = -\frac{4}{\pi^2}x(x - \pi)$.

¹<https://math.stackexchange.com/questions/2338488/binomial-coefficients-that-are-powers-of-2>

(b) We again write down the polynomial in the Lagrange basis

$$\begin{aligned}
p_2(x) &= f(x_0) \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + f(x_1) \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + f(x_2) \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \\
&= 1 \cdot \frac{\left(x - \frac{1}{2}\right)(x-1)}{\left(-\frac{1}{2}\right)(-1)} + \sqrt{e} \cdot \frac{x(x-1)}{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)} + e \cdot \frac{x\left(x - \frac{1}{2}\right)}{(1)\left(\frac{1}{2}\right)} \\
&= 2\left(x - \frac{1}{2}\right)(x-1) - 4\sqrt{e}x(x-1) + 2ex\left(x - \frac{1}{2}\right) \\
&= (2 - 4\sqrt{e} + 2e)x^2 + (-3 + 4\sqrt{e} - e)x + 1
\end{aligned}$$

We also have

$$\begin{aligned}
\int_0^1 e^x dx &= e - 1 \approx 1.718 \\
\int_0^\pi p_2(x) dx &= \frac{2 - 4\sqrt{e} + 2e}{3} + \frac{-3 + 4\sqrt{e} - e}{2} + 1 = \frac{1}{6} + \frac{2}{3}\sqrt{e} + \frac{1}{6}e \approx 1.719
\end{aligned}$$

Problem 4.

(a) Consider the function $f(x) = e^{2x}$. Find the quadratic polynomial $p_2(x)$ that interpolates f at $x_0 = 0, x_1 = \frac{1}{2}, x_2 = 1$.

(b) By defining $E_2[f](x) = f(x) - p_2(x)$, we know from Theorem 2.3 that

$$|E_2[f](x)| \leq \frac{\|\omega_{2+1}\|_\infty}{(2+1)!} \|f^{(2+1)}\|_\infty \quad \forall x \in [0, 1]$$

where for a function $h : [0, 1] \mapsto \mathbb{R}$ we define $\|h\|_\infty := \sup_{x \in [0, 1]} |h(x)|$. Compare the exact error at $x = \frac{3}{4}$ with the a priori error bound $\frac{\|\omega_{2+1}\|_\infty}{(2+1)!} \|f^{(2+1)}\|_\infty$.

(c) Repeat (a) and (b) for the function $g(x) = \sqrt{x}$, the interpolation points $x_0 = \frac{1}{4}, x_1 = 1, x_2 = 4$, and $x = 2$.

Solution.

(a) Let us write $p_2(x) = c_0 + c_1x + c_2x^2$. The system of equations that we have to solve is the following:

$$\begin{pmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & \frac{1}{2} & \frac{1}{4} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ e \\ e^2 \end{pmatrix}$$

We thus obtain $c_0 = 1, c_1 = -3 + 4e - e^2, c_2 = 2(1 - 2e + e^2)$. Therefore, the obtained interpolating quadratic polynomial is

$$p_2(x) = 1 + (-3 + 4e - e^2)x + 2(1 - 2e + e^2)x^2.$$

(b) We have

$$\left|E_2[f]\left(\frac{3}{4}\right)\right| = \left|f\left(\frac{3}{4}\right) - p_2\left(\frac{3}{4}\right)\right| = \left|e^{3/2} - \frac{1}{8}(-1 + 6e + 3e^2)\right| \approx 0.2029.$$

Moreover, for the upper bound, we have

$$\begin{aligned}\|f^{(3)}\|_\infty &= \|8e^{2x}\|_\infty = 8e^2 \quad \text{in the interval } [0, 1], \\ \|\omega_3\|_\infty &= \left\|x\left(x - \frac{1}{2}\right)(x - 1)\right\|_\infty = \frac{1}{12\sqrt{3}} \quad \text{in the interval } [0, 1]\end{aligned}$$

and therefore,

$$\frac{\|\omega_3\|_\infty}{3!} \|f^{(3)}\|_\infty = \frac{8e^2}{3!} \frac{1}{12\sqrt{3}} \approx 0.4740$$

is indeed an upper bound for the error $E_2[f]\left(\frac{3}{4}\right)$, even if it overestimates it by a factor larger than 2.

- (c) Following the same reasoning as in question (a) with $g(x) = \sqrt{x}$, we obtain $p_2(x) = \frac{1}{45}(-4x^2 + 35x + 14)$.
- (d) Following the same reasoning as in question (b) with $g(x) = \sqrt{x}$, we obtain

$$|E_2[g](2)| = \left|\sqrt{2} - \frac{68}{45}\right| \approx 0.0969$$

and

$$\frac{\|\omega_3\|_\infty}{3!} \|g^{(3)}\|_\infty \approx \frac{0.476}{6} 12 \approx 0.952$$

since, following Theorem 2.3, the interval that should be used for the infinity norm is $[x_0, x_2] = \left[\frac{1}{4}, 4\right]$. Therefore, we again indeed obtain an upper bound of the error, but which is overestimated this time by a factor nearly equal to 10.