SOLUTION 3 — MATH-250 Numerical Analysis

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 13. The exercises marked
with (%) are graded homework. The deadline for submitting your solutions to the homework
is Friday, March 14 at 10h15.

Quiz

(a) Given interpolation points xg, z1, ..., T, € [a,b], consider the operator I : C°([a, b]) —
Il,, I : f — py, which returns the polynomial p,, interpolating a given function f at
the interpolation points. Which of the following statements are true about I7

(i) I is a linear operator

W True O False

(ii) I is surjective

B True O False

(i) |pa(@)| < max,eqoy) |£(x)] for all 2 € [a, ]

O True M False

Solution.

(a) (i) Consider any two functions f and g. Then for all A € R it holds by the interpolation
property

If + Agl(@i) = (f + Ag)(wi) = f(@i) + Ag(zi) = I[f](zi) + Mg](zi), Vi=0,1,...,n.

Consequently, I is linear.
(ii) Because I[g,] = ¢, for any polynomial ¢, of degree n.

(iii) There exist countless counter-examples; see e.g. Runge phenomenon (Figure 3.1 in
Lecture Notes).

Exercises

Problem 1. Rewrite the following expressions such that numerical cancellation is avoided
(or at least reduced).

(a) (a:—i—l)%—lforw;wo



(b) 1—cos(z)

() for x =0
(c) 22—y forz~y
Solution.

(a)

=
\

—_

Il

(x+1)

1 —cos(z) (1—cos(z))(1+cos(z))  sin(x)

sin(z) ~ sin(x)(1 +cos(z)) 1+ cos(x)

-yt =(z+y)(z—y)

This does not avoid the deletion, but the result has a smaller relative error, as the
following argument shows:

We know from Lemma 1.16 that fl((z + y)(z —y)) = (z + y)(z — y)(1 + 63) with
|05] < v3 = 2%, therefore the calculated result has a small relative error.

On the other hand fI(x? — y?) = 2%(1 + 02) — ¥*(1 + 63) and thus

fl(a? —y?) — (2® — y?)
ZL'2 _ y2

1209 — y20)

1‘2—]./2

:U2+y2
~ 2% =92

Hence, we cannot guarantee a small relative error with this computation.

Problem 2.

(a) The midpoint rule approzimates an integral via
b a+b
/ f(x)dmf( y ) (b—a).

oo
Let P = |J P, be the set of all polynomials. Find the largest N € Ny s.t. Vp € P with
n=0

deg(p) < N the midpoint rule returns the ezact result for all a < b.

Hint: The monomials 1,2, 2%, 23, ... form a basis for P. What is the highest degree of
1,z, 22,23, ... for which the midpoint rule actually returns the exact result?



(b) We now consider the calculation of the integral

1
I:/ 21— z)" L de
0

where m and n are two integer values m,n > 1. Apply the midpoint rule to approximate

I. For which values of n and m does this rule return the exact value of I?

Solution.

(a)

Using the hint we will compute f; ldz, f;’ zdz, ff z2dz, f; z3dz, - - - until we find an N
s.t. the formula does not give an exact value. Since the monomials form a basis for
the vector space P, we can conclude that the formula will be exact for all p € P s.t.

deg(p) < N.

p(ﬂs)zl:/jld:cz(b—a)zp(a;b) (b—a)
b

p(ac)::v:/a xdx:%(bQ—GQ): a;—b(b—a):p(a;_b> (b—a)

b a’+a 2 a
p(az)::vQ:/ax2d:v:;(b3—a3):(—i_;+b))(b—a)7ép( ;b)(b—a)

Hence, we can conclude that it holds for any p € P1, but not for all p € P and therefore
not for all p € P,, with n > 2. Therefore, the midpoint rule will return the exact value
for linear functions.

The midpoint rule gives I = 5---—. It follows from (a) that this is exact whenever

(m,n) = (2,1),(1,2). Now, let us show that it can never be exact whenever m,n > 2.

Let us denote I(m,n) = 01 2™ (1 — )" 'dz. Integration by parts yields

—1 rt -1
n ™1 —2)"% = LI(WH— 1,n—1)

I(m,n) =0+
mJo m

Repeating this n — 1 times yields
(n—1)(n—2)---1

I(m’”):m(m+1)...(m+n—2)l(m+n_1’1)
Note that I(m+n—1,1) = ﬁ Hence,
I(m,n) = (n—1(n-2)---1 (m=1n—-1)! 1
Y mm A+ (mAn—=2)(m4+n—-1)  (m+n-—1)! _m(m:{f;l)

Hence, now look for (m,n) such that

m(m +n— 1) _ gm+n—2 (1)

n—1
By looking at the prime factors of the terms in (1) we conclude that m and (m;:f; 1)
m+n—1

must be powers of 2. In particular, we have for some I € Ng However, ("™ ") can
only be a power of 2ifn—1=10orn—1=m+n —2 (For a proof of this statement



see reference in footnote ). Thus, (1) can only hold if n = 2 or m = 1. We only need
to consider the case when n = 2, since we have assumed that m > 2.
If n = 2 we have

n—1 m)! =m+l

(m—i—n—l) _ (m+1)!

However, since m > 2 is a power of 2, m + 1 cannot be a power of 2. Thus, (1) cannot
hold if n = 2.

Therefore, we can conclude that the midpoint rule is only exact if (m,n) = (2,1), (1, 2).

Problem 3.

(a) Given the interpolation points x9 = 0, 21 = 7, x2 = 7, write down the polynomial
p2 € Py in the Lagrange basis that interpolates f(z) = sin(x) at these points. Compute
Jo p2(x)dz and [ f(x)da.

b) Given the interpolation points zg = 0, &1 = 1, 9 = 1, write down the polynomial
p p , 5 poly
p2 € Py in the Lagrange basis that interpolates f(x) = e® at these points.

Solution.

(a) We use the Lagrange polynomials to write out po:

(x —x1)(x — z2) (x — x0)(x — x2) (x — o) (x — 1)
Pa() f(%)(ﬂfo—iﬂl)(iﬂo—@)Jr (1U1—$0)(501—902)1L )(562—900)(902—561)
s (x—3)(x—m) ain (M) (&= 0) (& —m) Sinw(l’—o)(l‘—g)
0G50 0 &) Emoa- 0 T e mom -y
:—ix(a:—ﬂ)
7T2

We also have
s
/ sin(z)dx = 2
0

Q 4 (w3 =3 2
d = —— _— — = T~ 2 4
/0 pa(z)dr = —— <3 2) ST~ 2.09

Remark: In this case there is an alteriative way of determining pa(x) which doesn’t
involve the use of Lagrange polynomials: Note that sin(0) = sin(w) = 0. So pa has roots

at x = 0,7. Thus, pa(xz) = Cx(x —m). Now we choose C s.t. po () =1. C = —% is
the constant we seek. Thus, p(z) = —Ha(z — ).

"https://math.stackexchange.com/questions/2338488 /binomial-coefficients-that-are-powers-of-2



(b) We again write down the polynomial in the Lagrange basis

(x —z1)(x — 2) (x — zo)(z — 22) (x — xo)(x — 1)

p2(x) = f(x0)

+ f(x1)

+ f(x2)

(zo — 1) (20 — T2) (21 — 20)(21 — 72) (z2 — z0)(22 — 71)

N G ) L B e I Gt ),
Eer ey wn)
:2(33—;)(az—l)—4\/éx(x—1)+2em<:r—;)
=(2-4Ve+2e)2” +(-3+4V/e—e)z+1

We also have

1
/ efdr=e—1~1.718
0

™ 2-4 2 —3+4\e— 1 2 1
/pg(x)dx: \gg+ 6+ 3+2\/E 6—1—1:6—1—5\/54-66%1.719
0

Problem 4.

(a) Consider the function f(x) = €2*. Find the quadratic polynomial ps(z) that interpolates
fatxy=0,21 = %,.%2 =1.

(b) By defining Es[f](x) = f(z) — p2(x), we know from Theorem 2.3 that

Balflo)] < 2l /o0 ve e oo

where for a function h : [0, 1] — R we define ||h||c := sup |h(x)|. Compare the exact
z€[0,1]
error at x = 3 with the a priori error bound %Hﬂ“l)m@
(c) Repeat (a) and (b) for the function g(z) = v/, the interpolation points zo = 1,21 =
1,29 =4, and x = 2.
Solution.

(a) Let us write pa(x) = co + c12 + coz?. The system of equations that we have to solve is
the following:

1z 3 Co f(xo) 1 00 Co
1z 22 al=|f(x) = 1 % i al=1e¢e
1 zo 23 c f(x2) 1 1 1 ca e2

We thus obtain ¢y = 1, ¢; = —3 +4e —e?, ca = 2 (1 — 2e + e?). Therefore, the obtained
interpolating quadratic polynomial is

p2(x) = 1+(—3+4e—62)x+2(1 —26+62) z2.



(b) We have

1
32 _ L (_ 2)| ~
e 3 ( 14 6e+ 3e ) ~ 0.2029.

= (3) =l (2) - (5)] -

Moreover, for the upper bound, we have

Hf(S)HDO = HSe% = 8¢ in the interval [0, 1],

1 1
w =llzlz—=<)(r—1 = —— in the interval [0, 1
ol = o (2= 3) @= 1| =555 val [0,1)

and therefore,

osllee | ) - 121\/3 ~ 0.4740

is indeed an upper bound for the error Esf] (%), even if it overestimates it by a factor
larger than 2.
Following the same reasoning as in question (a) with g(x) = \/x, we obtain pa(z) =

45( 4z? +35x+14)

Following the same reasoning as in question (b) with g(x) = \/z, we obtain
|Ea[g] (2)] = ‘f— —| ~0.0969

and

‘“3H°° I H wmwogm

since, following Theorem 2.3, the interval that should be used for the infinity norm is

[xo, 2] = |~ 4]. Therefore, we again indeed obtain an upper bound of the error, but

4’

which is overestimated this time by a factor nearly equal to 10.



