
Solution 2 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, March 6. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, March 7 at 10h15.

Quiz
(a) Consider the harmonic series ∑∞

k=1
1
k , which is known to diverge. When attempting to

compute the partial sum 1 + 1/2 + 1/3 + . . . + 1/n (from the smallest to the largest)
in double precision, what will happen as n → ∞?

□ The computed partial sums will over-
flow.

■ The computed partial sums will stag-
nate (“converge”) to ≈ 34.

□ The computed partial sum will stag-
nate (“converge”) to ≈ 2 × 1016.

□ The computed partial sum will stag-
nate (“converge”) to ≈ 10300.

(b) Consider the same question for the alternating harmonic series ∑∞
k=1(−1)k−1 1

k , which
is known to converge to log(2).

□ The computed partial sums will over-
flow.

■ The computed partial sums will stag-
nate (“converge”) to ≈ log(2).

□ The computed partial sum will under-
flow.

□ The computed partial sum will stag-
nate (“converge”) to ≈ 0.

Solution.

(a) Let sn = ∑n
k=1

1
k . Then

sn =
n∑

k=1

1
k

= sn−1 + 1
n

.

At some point, sn−1 (which is larger than 1 and grows with n) will be so much larger
than 1

n , that the result of their sum suffers from a ronudoff error. Formally, for some
n∗ ∈ N, all n > n∗ will satisfy

sn = fl(sn−1 + 1
n

) = sn−1.

That is, the partial sums sn will remain constant for all n > n∗.

Since sn ≥ 1, ∀n, in double precision this will at latest happen when 1
n∗ ≈ εM =⇒

n∗ ≈ 5 × 1015. So

sn∗ =
n∗∑

k=1

1
k

≪
n∗∑

k=1
1 = n∗ ≈ 5 × 1015.

This excludes all answer possibilities except one.

1

(b) In a similar manner to question (a), it can again be argued that the partial sums will
remain constant after a certain n∗ ∈ N. Due to the convergence properties of the
alternating harmonic series, the partial sum will already be close to the value log(2)
once this happens.

Exercises

Problem 1. Let F1 = F(2, 24, −126, 127) denote the set of single precision floating point
numbers and let F2 = F(2, 53, −1022, 1023) denote the set of double precision floating point
numbers. Consider an adjacent pair x, y ∈ F1 with x, y ̸= 0, that is x < y and ∄z ∈ F1
such that x < z < y. How many distinct elements of F2 are between x and y?

Solution. We consider a generic point x in
[
βe, βe+1), with β = 2, e ∈ (−126, 127).

The distance ∆ between two adjacent points (also called spacing) is given by ∆ =
βe(0. 0 · · · 0︸ ︷︷ ︸

t−1 zeros

1)β = βeβ−t = βe−t, where t is number of digits considered. In the case of

F1, ∆1 = βe−24, and in the case of F2, ∆2 = βe−53. Since F1 ⊂ F2 for all e ∈ (−126, 127),
then both x and x + ∆1x belong to F2. So the number of elements n of F2 in the interval
(x, x + ∆1x] is equal to

n∆2 = ∆1 ⇒ n = 253−24 = 229.

Since x + ∆1x belongs to F1, it should not be counted, and thus between an adjacent pair
of non-zero elements in F1, there are n − 1 = 229 − 1 non-zero elements of F2.

It is also possible to answer this question by taking a probabilistic point of view. Indeed,
numbers if F1 have 24 digits (that may be either 0 or 1) while numbers in F2 have 53
digits. Consider x and x + ∆1x, an adjacent pair of non-zero elements in F1. Both x and
x + ∆1x also belong to F2 since we can write them with the same 24 first digits as in F1
and then we append 53 − 24 = 29 zero digits to them. All the numbers of F2 in [x, x + ∆x)
thus have the same first 24 digits as x, and any possible combination of the last 29 digits,
which gives 229 possible combinations (since a digit is, in this case, either 0 or 1). However,
since x ∈ F1 and corresponds to the combination with all zeros, we do not want to count
it. Consequently, there are 229 − 1 non-zero elements of F2 between x and ∆1x, that is
between an adjacent pair of non-zero elements in F1.

Problem 2. Derive the smallest and largest positive elements in F(2, 8, −126, 127).1

Solution. For this exercise, we refer to Lemma 1.8 of the lecture notes. A generic element

in F(β, t, emin, emax) can be written as ±βe
t∑

i=1

di

βi
, where di ∈ 0, 1, ...β − 1, d1 ̸= 0 and

e ∈ {emin, emin + 1, . . . , emax}.

• The largest (in magnitude) element of the set is obtained when the exponent e equals
1F(2, 8, −126, 127) is known as bfloat16, which is used in, for example, Google cloud TPUs.

2

to emax and when all the digits coincide with β − 1, that is

largest = βemax (0.(β − 1)(β − 1)...(β − 1))β

= βemax

t∑
i=1

(β − 1)β−i = βemax(1 − β−t).

• The smallest element is instead obtained when the exponent e is equal to e = emin

and when all the digits are 0 but the first one. The first digit must be 1 (since it has
to be greater than 0). We thus have:

smallest = βemin (0.100...0)β = βemin−1.

In our case we are considering F(2, 8, −126, 127). Therefore:

largest = βemax(1 − β−t) = 2127(1 − 2−8); smallest = βemin−1 = 2−127

Problem 3. Consider the set of floating point numbers with no constraints on the exponent,
that is2

F =
{

x = ± m

βt
βe : m ∈ N, βt−1 ≤ m ≤ βt − 1, e ∈ Z

}
∪ {0}

where β is the base and t the precision. Compute the smallest element in N not part of
F.

Solution.

1. We notice that the spacing ∆ between a generic point x ∈ F∩ [βe, βe+1) and the next
element in the set is given by ∆ = βe−t (see Problem 1). We observe that:

∆ > 1 ⇐⇒ e − t > 0 ⇐⇒ e > t.

2. All the natural numbers up to βt belong to the set, indeed:

mβ0 = m ∈ F, ∀m ∈ N, βt−1 ≤ m ≤ βt − 1

while βt clearly belongs to the set.

3. We finally observe that mβ ∈ F for m ∈ N, βt−1 ≤ m ≤ βt − 1, but in this interval
the spacing between two adjacent elements is bigger than 1 by point 1. Thus, βt

belongs to this interval and the next elements is given by βt + ∆ > βt + 1. Therefore
βt + 1 does not belong to the set, since it is skipped, and by point 2, it is the smallest
positive integer that does not belong to F.

2By setting a limit on the exponent e you will create a finite subset of F, which is then used in computers.
By restricting emin ≤ e ≤ emax you will get the set F(β, t, emin, emax).

3

Problem 4. (Python) The sample variance sn of n numbers x1, . . . , xn ∈ R is given by

s2
n = 1

n − 1

n∑
i=1

(xi − x)2, (1)

where x denotes the sample mean

x = 1
n

n∑
i=1

xi.

Computing s2
n with formula (1) requires two passes through the data; one to compute x

and the other to accumulate the sum of squares. A two-pass computation is undesirable
for large data sets. An alternative formula, found in many statistics textbooks, requires
only a single pass through the data:

s2
n = 1

n − 1

 n∑
i=1

x2
i − 1

n

(
n∑

i=1
xi

)2
 . (2)

Compute the sample variance sn of the data x = [100′000′000, 100′000′001, 100′000′002]
with both formulae. What do you notice? Explain.

Solution. Available in the Jupyter notebook serie02-sol.ipynb on Moodle.

Problem 5. Consider complex numbers x = a + ib, y = c + id with real floating point
numbers a, b, c, d ∈ r(F). Suppose that their product xy is computed according to the
usual definition of complex multiplication. Show that in the standard model of rounding
(Definition 1.14) it follows that the computed result fl(xy) satisfies

fl(xy) = xy(1 + δ), |δ| ≤
√

2 · γ2(F)

with γ2(F) defined as in Lemma 1.16.

Solution. In the following, δi denotes a number bounded by |δi| ≤ u and |θ2|, |θ′
2|, |θ′′

2 |,
|θ′′

2 | ≤ γ2(F) (see Lemma 1.16).

fl(xy) = (ac(1 + δ1) − bd(1 + δ2))(1 + δ3) + i(ad(1 + δ4) + bc(1 + δ5))(1 + δ6)
= ac(1 + θ2) − bd(1 + θ′

2) + i(ad(1 + θ′′
2) + bc(1 + θ′′′

2))
= xy + e,

where

|e|2 ≤ γ2(F)2((|ac| + |bd|)2 + (|ad| + |bc|)2)
≤ 2γ2(F)2(a2 + b2)(c2 + d2)
= 2γ2(F)2|xy|2

which shows the claim.

(⋆) Problem 6. (Python) Consider quadratic polynomials of the form q + px + x2 for
p, q ∈ R. The formula to compute the roots x1 and x2 of the polynomial is

x1,2 = −p

2 ±

√(
p

2

)2
− q. (3)

4

(a) Using (3), write a Python function roots(p, q) which computes the roots

x̂1, x̂2 = roots(p, q)

given p and q.

(b) Test your roots function for the three polynomials

p1(x) = 12 + 8 x + x2,

p2(x) = 1 − 1000000000.000000001 x + x2, and
p3(x) = 1 + (231 + 2−31) x + x2

and clearly display the roots x̂1 and x̂2 for each polynomial.

Hint: Assure that you used the same order of summands as specified here. Otherwise,
your results may differ.

(c) Evaluate the polynomials p1, p2, and p3 for the roots x̂1 and x̂2 you computed using
your roots function in (b) and clearly display the values you obtained.

(d) Given the exact roots for the polynomials p1, p2, and p3 in Figure 1, write a Python
function rel_error that computes

ε = |x − x̂|
|x|

,

calculate the relative errors for (x̂1, x1) and (x̂2, x2) for each polynomial, and clearly
display them.

p1 p2 p3
x1 −2 109 −2−31

x2 −6 10−9 −231

Figure 1: Exact roots for the polynomials p1, p2, and p3

(e) (This is for your understanding and will not be graded.) Explain why for two of the
polynomials one of their roots is not well approximated. Explain the role of the sign of
p into determining which root will be well-approximated by the quadratic formula (3).

Solution. Available in the Jupyter notebook homework02-sol.ipynb on Moodle.

Remember to upload the completed Jupyter notebook homework02.ipynb corresponding
to the homework to the submission panel on Moodle until Friday, March 7 at 10h15. To
download your notebook from Noto, use File > Download. Only your submissions to
Moodle will be considered for grading.

5

