

## SOLUTION 2 – MATH-250 Advanced Numerical Analysis I

---

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be discussed in the beginning of the lecture on Thursday, March 6. The exercises marked with  $(\star)$  are graded homework. The exercises marked with **(Python)** are implementation based and can be solved in the Jupyter notebooks which are available on Moodle/Noto. **The deadline for submitting your solutions to the homework is Friday, March 7 at 10h15.**

### Quiz

- (a) Consider the harmonic series  $\sum_{k=1}^{\infty} \frac{1}{k}$ , which is known to diverge. When attempting to compute the partial sum  $1 + 1/2 + 1/3 + \dots + 1/n$  (from the smallest to the largest) in double precision, what will happen as  $n \rightarrow \infty$ ?
- The computed partial sums will overflow.  
 The computed partial sums will stagnate (“converge”) to  $\approx 34$ .
- The computed partial sum will stagnate (“converge”) to  $\approx 2 \times 10^{16}$ .  
 The computed partial sum will stagnate (“converge”) to  $\approx 10^{300}$ .
- (b) Consider the same question for the alternating harmonic series  $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k}$ , which is known to converge to  $\log(2)$ .
- The computed partial sums will overflow.  
 The computed partial sums will stagnate (“converge”) to  $\approx \log(2)$ .
- The computed partial sum will underflow.  
 The computed partial sum will stagnate (“converge”) to  $\approx 0$ .

### Solution.

- (a) Let  $s_n = \sum_{k=1}^n \frac{1}{k}$ . Then

$$s_n = \sum_{k=1}^n \frac{1}{k} = s_{n-1} + \frac{1}{n}.$$

At some point,  $s_{n-1}$  (which is larger than 1 and grows with  $n$ ) will be so much larger than  $\frac{1}{n}$ , that the result of their sum suffers from a roundoff error. Formally, for some  $n^* \in \mathbb{N}$ , all  $n > n^*$  will satisfy

$$s_n = \text{fl}(s_{n-1} + \frac{1}{n}) = s_{n-1}.$$

That is, the partial sums  $s_n$  will remain constant for all  $n > n^*$ .

Since  $s_n \geq 1, \forall n$ , in double precision this will at latest happen when  $\frac{1}{n^*} \approx \varepsilon_M \implies n^* \approx 5 \times 10^{15}$ . So

$$s_{n^*} = \sum_{k=1}^{n^*} \frac{1}{k} \ll \sum_{k=1}^{n^*} 1 = n^* \approx 5 \times 10^{15}.$$

This excludes all answer possibilities except one.

- (b) In a similar manner to question (a), it can again be argued that the partial sums will remain constant after a certain  $n^* \in \mathbb{N}$ . Due to the convergence properties of the alternating harmonic series, the partial sum will already be close to the value  $\log(2)$  once this happens.

## Exercises

**Problem 1.** Let  $\mathbb{F}_1 = \mathbb{F}(2, 24, -126, 127)$  denote the set of single precision floating point numbers and let  $\mathbb{F}_2 = \mathbb{F}(2, 53, -1022, 1023)$  denote the set of double precision floating point numbers. Consider an adjacent pair  $x, y \in \mathbb{F}_1$  with  $x, y \neq 0$ , that is  $x < y$  and  $\nexists z \in \mathbb{F}_1$  such that  $x < z < y$ . How many distinct elements of  $\mathbb{F}_2$  are between  $x$  and  $y$ ?

**Solution.** We consider a generic point  $x$  in  $[\beta^e, \beta^{e+1})$ , with  $\beta = 2$ ,  $e \in (-126, 127)$ . The distance  $\Delta$  between two adjacent points (also called *spacing*) is given by  $\Delta = \beta^e(0.\underbrace{0 \cdots 0}_{t-1 \text{ zeros}} 1)_\beta = \beta^e \beta^{-t} = \beta^{e-t}$ , where  $t$  is number of digits considered. In the case of  $\mathbb{F}_1$ ,  $\Delta_1 = \beta^{e-24}$ , and in the case of  $\mathbb{F}_2$ ,  $\Delta_2 = \beta^{e-53}$ . Since  $\mathbb{F}_1 \subset \mathbb{F}_2$  for all  $e \in (-126, 127)$ , then both  $x$  and  $x + \Delta_1 x$  belong to  $\mathbb{F}_2$ . So the number of elements  $n$  of  $\mathbb{F}_2$  in the interval  $(x, x + \Delta_1 x]$  is equal to

$$n\Delta_2 = \Delta_1 \Rightarrow n = 2^{53-24} = 2^{29}.$$

Since  $x + \Delta_1 x$  belongs to  $\mathbb{F}_1$ , it should not be counted, and thus between an adjacent pair of non-zero elements in  $\mathbb{F}_1$ , there are  $n - 1 = 2^{29} - 1$  non-zero elements of  $\mathbb{F}_2$ .

It is also possible to answer this question by taking a probabilistic point of view. Indeed, numbers in  $\mathbb{F}_1$  have 24 digits (that may be either 0 or 1) while numbers in  $\mathbb{F}_2$  have 53 digits. Consider  $x$  and  $x + \Delta_1 x$ , an adjacent pair of non-zero elements in  $\mathbb{F}_1$ . Both  $x$  and  $x + \Delta_1 x$  also belong to  $\mathbb{F}_2$  since we can write them with the same 24 first digits as in  $\mathbb{F}_1$  and then we append  $53 - 24 = 29$  zero digits to them. All the numbers of  $\mathbb{F}_2$  in  $[x, x + \Delta x)$  thus have the same first 24 digits as  $x$ , and any possible combination of the last 29 digits, which gives  $2^{29}$  possible combinations (since a digit is, in this case, either 0 or 1). However, since  $x \in \mathbb{F}_1$  and corresponds to the combination with all zeros, we do not want to count it. Consequently, there are  $2^{29} - 1$  non-zero elements of  $\mathbb{F}_2$  between  $x$  and  $\Delta_1 x$ , that is between an adjacent pair of non-zero elements in  $\mathbb{F}_1$ .

**Problem 2.** Derive the smallest and largest positive elements in  $\mathbb{F}(2, 8, -126, 127)$ .<sup>1</sup>

**Solution.** For this exercise, we refer to Lemma 1.8 of the lecture notes. A generic element in  $\mathbb{F}(\beta, t, e_{min}, e_{max})$  can be written as  $\pm \beta^e \sum_{i=1}^t \frac{d_i}{\beta^i}$ , where  $d_i \in \{0, 1, \dots, \beta - 1\}$ ,  $d_1 \neq 0$  and  $e \in \{e_{min}, e_{min} + 1, \dots, e_{max}\}$ .

- The largest (in magnitude) element of the set is obtained when the exponent  $e$  equals

---

<sup>1</sup> $\mathbb{F}(2, 8, -126, 127)$  is known as bfloat16, which is used in, for example, Google cloud TPUs.

to  $e_{max}$  and when all the digits coincide with  $\beta - 1$ , that is

$$\begin{aligned} \text{largest} &= \beta^{e_{max}} (0.(\beta - 1)(\beta - 1)\dots(\beta - 1))_\beta \\ &= \beta^{e_{max}} \sum_{i=1}^t (\beta - 1) \beta^{-i} = \beta^{e_{max}} (1 - \beta^{-t}). \end{aligned}$$

- The smallest element is instead obtained when the exponent  $e$  is equal to  $e = e_{min}$  and when all the digits are 0 but the first one. The first digit must be 1 (since it has to be greater than 0). We thus have:

$$\text{smallest} = \beta^{e_{min}} (0.100\dots0)_\beta = \beta^{e_{min}-1}.$$

In our case we are considering  $\mathbb{F}(2, 8, -126, 127)$ . Therefore:

$$\text{largest} = \beta^{e_{max}} (1 - \beta^{-t}) = 2^{127} (1 - 2^{-8}); \quad \text{smallest} = \beta^{e_{min}-1} = 2^{-127}$$

**Problem 3.** Consider the set of floating point numbers with no constraints on the exponent, that is<sup>2</sup>

$$\mathbb{F} = \left\{ x = \pm \frac{m}{\beta^t} \beta^e : m \in \mathbb{N}, \beta^{t-1} \leq m \leq \beta^t - 1, e \in \mathbb{Z} \right\} \cup \{0\}$$

where  $\beta$  is the base and  $t$  the precision. Compute the smallest element in  $\mathbb{N}$  not part of  $\mathbb{F}$ .

**Solution.**

1. We notice that the spacing  $\Delta$  between a generic point  $x \in \mathbb{F} \cap [\beta^e, \beta^{e+1})$  and the next element in the set is given by  $\Delta = \beta^{e-t}$  (see Problem 1). We observe that:

$$\Delta > 1 \iff e - t > 0 \iff e > t.$$

2. All the natural numbers up to  $\beta^t$  belong to the set, indeed:

$$m\beta^0 = m \in \mathbb{F}, \quad \forall m \in \mathbb{N}, \quad \beta^{t-1} \leq m \leq \beta^t - 1$$

while  $\beta^t$  clearly belongs to the set.

3. We finally observe that  $m\beta \in \mathbb{F}$  for  $m \in \mathbb{N}$ ,  $\beta^{t-1} \leq m \leq \beta^t - 1$ , but in this interval the spacing between two adjacent elements is bigger than 1 by point 1. Thus,  $\beta^t$  belongs to this interval and the next elements is given by  $\beta^t + \Delta > \beta^t + 1$ . Therefore  $\beta^t + 1$  does not belong to the set, since it is skipped, and by point 2, it is the smallest positive integer that does not belong to  $\mathbb{F}$ .

---

<sup>2</sup>By setting a limit on the exponent  $e$  you will create a finite subset of  $\mathbb{F}$ , which is then used in computers. By restricting  $e_{min} \leq e \leq e_{max}$  you will get the set  $\mathbb{F}(\beta, t, e_{min}, e_{max})$ .

**Problem 4. (Python)** The sample variance  $s_n$  of  $n$  numbers  $x_1, \dots, x_n \in \mathbb{R}$  is given by

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2, \quad (1)$$

where  $\bar{x}$  denotes the sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

Computing  $s_n^2$  with formula (1) requires two passes through the data; one to compute  $\bar{x}$  and the other to accumulate the sum of squares. A two-pass computation is undesirable for large data sets. An alternative formula, found in many statistics textbooks, requires only a single pass through the data:

$$s_n^2 = \frac{1}{n-1} \left( \sum_{i=1}^n x_i^2 - \frac{1}{n} \left( \sum_{i=1}^n x_i \right)^2 \right). \quad (2)$$

Compute the sample variance  $s_n$  of the data  $x = [100'000'000, 100'000'001, 100'000'002]$  with both formulae. What do you notice? Explain.

**Solution.** Available in the Jupyter notebook `serie02-sol.ipynb` on Moodle.

**Problem 5.** Consider complex numbers  $x = a + ib$ ,  $y = c + id$  with real floating point numbers  $a, b, c, d \in r(\mathbb{F})$ . Suppose that their product  $xy$  is computed according to the usual definition of complex multiplication. Show that in the standard model of rounding (Definition 1.14) it follows that the computed result  $\text{fl}(xy)$  satisfies

$$\text{fl}(xy) = xy(1 + \delta), \quad |\delta| \leq \sqrt{2} \cdot \gamma_2(\mathbb{F})$$

with  $\gamma_2(\mathbb{F})$  defined as in Lemma 1.16.

**Solution.** In the following,  $\delta_i$  denotes a number bounded by  $|\delta_i| \leq u$  and  $|\theta_2|, |\theta'_2|, |\theta''_2|, |\theta'''_2| \leq \gamma_2(\mathbb{F})$  (see Lemma 1.16).

$$\begin{aligned} \text{fl}(xy) &= (ac(1 + \delta_1) - bd(1 + \delta_2))(1 + \delta_3) + i(ad(1 + \delta_4) + bc(1 + \delta_5))(1 + \delta_6) \\ &= ac(1 + \theta_2) - bd(1 + \theta'_2) + i(ad(1 + \theta''_2) + bc(1 + \theta'''_2)) \\ &= xy + e, \end{aligned}$$

where

$$\begin{aligned} |e|^2 &\leq \gamma_2(\mathbb{F})^2 ((|ac| + |bd|)^2 + (|ad| + |bc|)^2) \\ &\leq 2\gamma_2(\mathbb{F})^2 (a^2 + b^2)(c^2 + d^2) \\ &= 2\gamma_2(\mathbb{F})^2 |xy|^2 \end{aligned}$$

which shows the claim.

(\*) **Problem 6. (Python)** Consider quadratic polynomials of the form  $q + px + x^2$  for  $p, q \in \mathbb{R}$ . The formula to compute the roots  $x_1$  and  $x_2$  of the polynomial is

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}. \quad (3)$$

- (a) Using (3), write a Python function `roots(p, q)` which computes the roots

$$\hat{x}_1, \hat{x}_2 = \text{roots}(p, q)$$

given  $p$  and  $q$ .

- (b) Test your `roots` function for the three polynomials

$$\begin{aligned} p_1(x) &= 12 + 8x + x^2, \\ p_2(x) &= 1 - 1000000000.000000001x + x^2, \text{ and} \\ p_3(x) &= 1 + (2^{31} + 2^{-31})x + x^2 \end{aligned}$$

and clearly display the roots  $\hat{x}_1$  and  $\hat{x}_2$  for each polynomial.

*Hint:* Assure that you used the same order of summands as specified here. Otherwise, your results may differ.

- (c) Evaluate the polynomials  $p_1, p_2$ , and  $p_3$  for the roots  $\hat{x}_1$  and  $\hat{x}_2$  you computed using your `roots` function in (b) and clearly display the values you obtained.
- (d) Given the exact roots for the polynomials  $p_1, p_2$ , and  $p_3$  in Figure 1, write a Python function `rel_error` that computes

$$\varepsilon = \frac{|x - \hat{x}|}{|x|},$$

calculate the relative errors for  $(\hat{x}_1, x_1)$  and  $(\hat{x}_2, x_2)$  for each polynomial, and clearly display them.

|       | $p_1$ | $p_2$     | $p_3$      |
|-------|-------|-----------|------------|
| $x_1$ | -2    | $10^9$    | $-2^{-31}$ |
| $x_2$ | -6    | $10^{-9}$ | $-2^{31}$  |

Figure 1: Exact roots for the polynomials  $p_1, p_2$ , and  $p_3$

- (e) **(This is for your understanding and will not be graded.)** Explain why for two of the polynomials one of their roots is not well approximated. Explain the role of the sign of  $p$  into determining which root will be *well-approximated* by the quadratic formula (3).

**Solution.** Available in the Jupyter notebook `homework02-sol.ipynb` on Moodle.

**Remember to upload the completed Jupyter notebook `homework02.ipynb` corresponding to the homework to the submission panel on Moodle until Friday, March 7 at 10h15. To download your notebook from Noto, use File > Download. Only your submissions to Moodle will be considered for grading.**