EXERCISE SET 1 - MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, February 27. The exercises marked
with (x) are graded homework. The exercises marked with (Python) are implementation
based and can be solved in the Jupyter notebooks which are available on Moodle/Noto.
The deadline for submitting your solutions to the homework is Friday, February 28 at
10h15.

Quiz

(a) How many distinct elements are contained in F(2,3,—-1,1)?

0 17 O 49
O 25 O 129

(b) Let F =F(5,t, min, €max) be a set of floating point numbers in the sense of Definition
1.6. Is the following statement true? If a,b € F, then a + b € F.

O True O False

Exercises

Problem 1. (Python)

(a) Write a function sequence such that z, = sequence(n, C) for n € N, where

x1 = 2025
s ©)
Tn+1 = 9 Tn xn
for some C € R.

(b) For C' = 2, compute z99. What do you notice?
Problem 2. (Python) Consider the function

2

flx) = 5 sin(z), x € [1,20] (1)

Write Python code to visualize the function f(z) using 10, 20, and 100 evenly spaced
points, respectively. Plot the three graphs inside the same figure using different colors.
Which is the most appealing graphical representation of f(x)?

Hint: You can use the NumPy function numpy.linspace/np.linspace to generate evenly
spaced points (see numpy.linspace in the NumPy documentation).



Problem 3. (Python) The Fibonacci numbers are recursively defined as:

fo=0,
fi=1,
j% ::fn—14‘fh—27 n > 1.

(a) Write a function fibonacci(n) that, given a positive number n, returns a vector £
containing the first n + 1 Fibonacci numbers fo, f1,..., fa-
Program efficiently: it should, for example, not take longer than a couple of milliseconds
to calculate fibonacci(60).

(b) Write a function fiboquots(n) that returns the vector q with the elements

fofs In
AR

Hint: Do not use any loops. Instead, use / (look for numpy.divide in the NumPy
documentation).

(c) Using the function matplotlib.pyplot.semilogy/plt.semilogy in Python, and the
previously constructed fiboquots(n), plot the values

o 1+VE
n, B s

— forn =2,...,60.
fn—l

Based on the graph, try to understand what happens for large n.

Problem 4. (Python) Write a single function that computes the following three outputs for
two vectors x and y having the same length:

1. The element-wise product of the two vectors x and y;
2. The scalar product of x and y;

3. A vector v for which the components are

V1 =21Yn, V2=22Yn-1, ---3 Un—-1=2Tnpn-1Y2, Un = TnlY1.

The function should be implemented as follows:

def operations(x,y):

"ninn

ElProd is the elementwise product of two wectors = and y
NOTE: = and y can be row or column wvectors.

ScalProd 4s the scalar product of = and y
v 18 the wector defined as:

v(1) = z(1)y(n)
v(2) = z(2)y(n-1)




12
13
14
15
16
17
18

v(N) = z(N)y (1)

ninn

### YOUR CODE HERE

return ElProd, ScalProd, v

Problem 5. (Python) The Taylor series of the exponential is defined as

(a)

oo xn
eaj = Z ﬁ
n=0
Create a function myexp(x) which, given a real number x, returns an approximate
value for e* by summing the Taylor series until the ratio between the next element in
the sequence and the partial sum falls below 10716, Compute myexp (30) ,myexp(10),
myexp (1) ,myexp (-20) myexp (-40). Compare these values with the values returned
by the function numpy.exp/np.exp for the same arguments. What do you see? Can
you explain why the differences occur?

Hint: n! can be computed with the function math.factorial(n).

Modify your function myexp so that you save the values of the partial sums of the
Taylor series in a vector p. For z = 1, plot the approximation error |p,—e®|, n =0,1,...
throughout the iterations using the function matplotlib.pyplot.semilogy/plt.semilogy.

(%) Problem 6. (Python) Newton’s method is an algorithm which can be used to approximate
a root (or zero) of a real-valued function. Given an initial guess xg, the approximation is
generated by the sequence

The method stops when

|f(zp)| < tol.

Consider the function

(a)

(b)

1 )_log(a:+1)—7r
et +1 10 '

f(z) = sin (

Write a Python function func(x) such that f(z) = func(x). Compute and print the
vector

az[f(o.5) FLT) f(2.1) f(4.5)]

Differentiate f to get f’. Write a Python function dfunc(x) such that f/'(z) =
dfunc(x). Compute and print the vector

b=[f(05) f(7) f(21) f45)].
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(c) Plot the value of f(z) at 1000 evenly spaced values of x in the interval [0, 100].

(d) Write a Python function newton(func, dfunc, x0, tol, nmax) which implements
Newton’s method and returns the approximation of the root of the function func with
derivative dfunc. x0 is the initial guess, tol is the tolerance, and nmax the maximum
number of iterations.

If after nmax iterations we don’t have |f(x,)| < tol or if at any point z,, ¢ (—1,100),
terminate the algorithm, return the current value x,, and print "no convergence".

Fix tol = 1e-6 and nmax=500 and write Python code which prints the output of
newton(func, dfunc, x0, tol=1le-6, nmax=500) forx0 =1, 2, ..., 6.

Remember to upload the completed Jupyter notebook homeworkl.ipynb corresponding
to the homework to the submission panel on Moodle until Friday, February 28 at 10h15.
To download your notebook from Noto, use File > Download. Only your submissions to
Moodle will be considered for grading.



