
Solution 10 – MATH-250 Advanced Numerical Analysis I

The exercise sheet is divided into two sections: quiz and exercises. The quiz will be
discussed in the beginning of the lecture on Thursday, May 15. The exercises marked with
(⋆) are graded homework. The exercises marked with (Python) are implementation based
and can be solved in the Jupyter notebooks which are available on Moodle/Noto. The
deadline for submitting your solutions to the homework is Friday, May 16 at 10h15.

Quiz
(a) Let A ∈ Rm×n with m ≥ n and b ∈ Rm. If A has rank smaller than n then

minx ∥Ax − b∥2 has infinitely many solutions.

□ True ■ False

(b) Let R ∈ Rn×n be upper triangular then

∥R−1∥2 ≤ n · max{|r11|−1, . . . , |rnn|−1}.

In particular, this means that ∥R−1∥2 can only be large when R has small diagonal
entries.

□ True ■ False

(c) Consider the problem minx ∥Ax − b∥1 with A ∈ Rm×n, m ≥ n, and b ∈ Rm. Then
there is always a minimizer x⋆ such that the residual Ax⋆ − b has at least one zero
entry.

■ True □ False

Solution.

(a) We assume that there exists a minimizer x ∈ Rm. This is true if the rank of A is
larger than zero because then range(A) ̸= ∅ and we can simply choose x such that
Ax is the projection of b onto range(A). Then, for any y ∈ kern(A) it holds that
A(x + y) = Ax + Ay = Ax which is hence also a minimizer. The kernel of A has a
dimension of at least one because A is not full rank, wherefore there exist infinitely
many solutions.

(b) We define R such that rii = 1 for all i = 1, 2, . . . , n and rij = −1 if j > i. We now apply
Gaussian eliminiation to see that the inverse S of R has the entries sii = 1, i = 1, 2, . . . , n
and sij = 2j−i−1, j > i. We now compute ∥S∥1. We know that the largest sum of
entries of S is contained in the first row, namely 1 +∑n−2

i=0 2i. Applying the usual sum
of powers of two formula we get that the sum of the elements of the first row of S
is equal to 2n−1. Lastly, ∥A∥2 ≤

√
n∥A∥2 means that the inequality from the claim

cannot be true for n ≥ 4.
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(c) We rewrite the problem minx ∥Ax − b∥1 into the combined linear program

min
v=[x⊤z⊤]⊤∈R2n

n∑
i=1

zi s.t. −
[
0 I

]
v ≤ 0,

[
A −I

−A −I

]
v ≤

[
b

−b

]
,

where we understand the vector inequalities to hold for each component. This is means
we need to minimize a concave function on a convex constraint set, implying that the
minimizer lies on the boundary of the constraint set. In turn, this requires that at
least one of the inequality constraints is fulfilles with equality because the optimization
takes place on a convex simplex. If this is the case for one of the inequalities in[

A −I
−A −I

]
v ≤

[
b

−b

]
, then it holds that the residual Ax − b in that coordinate is

zero and hence zi = (Ax − b)i = 0. On the other hand, if the equality is found in
the constraint −

[
0 I

]
v ≤ 0, then this means that one of the zi is zero and hence

(Ax − b)i = 0. This concludes the proof.

Exercises
Problem 1. (Python)

(a) Write a function gradient in Python that solves Ax = b using the Gradient method.
Your function should take as inputs

• The symmetric positive definite matrix A ∈ Rn×n

• The right hand side b ∈ Rn

• The tolerance rtol

The function should output

• A vector x̂ ∈ Rn such that ∥Ax̂−b∥2
∥b∥2

< rtol.

• The number of iterations required to achieve a relative error smaller than tol.

• A vector consisting of the norms of the residuals at each iteration ∥r(k)∥2.

(b) Apply your function to the two linear systems Ax = b where

(1)

A1 =
(

3 2
2 6

)
, b1 =

(
2

−8

)

(2) A2 ∈ R1024×1024 with right hand side b2 ∈ R1024 generated by the following code
1 import numpy as np
2 import scipy as sp
3
4 n = 32
5 a = sp.sparse.diags([-1, 2, -1], [-1, 0, 1], shape=(n, n))
6 I = sp.sparse.eye(n)
7 A_2 = sp.sparse.kron(I, a) + sp.sparse.kron(a, I)
8
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9 def f(x, y):
10 return -(12 * x ** 2 - 6 * x) * y * (y - 1) - 2 * x ** 3 * (x - 1)
11
12 t = np.tile(np.arange(1, n + 1) / (n + 1), (n, 1))
13 x = t.T.flatten()
14 y = t.flatten()
15 b_2 = f(x, y) / ((n + 1) ** 2)

For tol = 10−8 plot the norm of the residuals ∥r(k)∥2 versus k. Compare your method with
the Conjugate Gradient method. You may use the built-in conjugate gradient method
scipy.sparse.linalg.cg/sp.sparse.linalg.cg in Python.1

Solution. Available in the Jupyter notebook serie10-sol.ipynb on Moodle.

Problem 2.

Prove Lemma 6.2 in the lecture notes. That is, show that if A ∈ Rm×n has rank n then
A⊤A is symmetric positive definite.

Solution. Clearly A⊤A is symmetric since A⊤A = (A⊤A)⊤. It is positive definite since for
all x ̸= 0 we have x⊤A⊤Ax = ∥Ax∥2

2 > 0.

Problem 3. Assume that you are given data t1, . . . , tm ∈ R and y1, . . . , ym ∈ R. Suppose
that x1 and x2 are chosen such that

m∑
i=1

(x1 + x2ti − yi)2

is minimized. Further, define ŷi = x1 + x2ti and ri = yi − ŷi for i = 1, · · · , m. Show
that

(a)
m∑

i=1
ri = 0

(b) Let t̄ = 1
m

m∑
i=1

ti and ȳ = 1
m

m∑
i=1

yi. Then ȳ = x1 + x2t̄.

(c)
m∑

i=1
tiri = 0

(d)
m∑

i=1
ŷiri = 0

Solution.

(a) Define f(x1, x2) :=
m∑

i=1
(x1 + x2ti − yi)2. Differentiating with respect to x1 gives

∂f

∂x1
= 2

m∑
i=1

(x1 + x2ti − yi) = 2
m∑

i=1
ri

Since x1, x2 are optimal we must have ∂f
∂x1

= 0 and hence
m∑

i=1
ri = 0.

1Note that the function scipy.sparse.linalg.cg in Python does not return the norm of the residual
for each iteration. An ugly solution is to call the function multiple times in a loop, increasing the maximum
number of iterations until convergence, and computing by hand the residual norm each time.
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(b) This follows immediately from (a). We have
m∑

i=1
ri = 0 ⇔

m∑
i=1

yi = mx1 + x2

m∑
i=1

ti

Dividing by m yields the required result.

(c) With f(x1, x2) defined as in (a). Since x1, x2 are optimal we must have

∂f

∂x2
= 2

m∑
i=1

tiri = 0

which gives the required result.

(d) Inserting the definition of ŷi gives
m∑

i=1
ŷiri = x1

n∑
i=1

ri + x2

m∑
i=1

tiri = 0 + 0 = 0
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